
APPENDIX $B$

An overview of the theory of $p$-adic uniformization.

By F. KATO

In this appendix we always denote by $K,$ $R$ , and $\pi$ a complete discrete
valuation field, its valuation ring, and a prime element of $R$ , respectively.
We assume that the residue field $k=R/\pi R$ is finite and consists of $q$ ele-
ments. The Mumford-Kurihara-Mustafin uniformization is a procedure to
construct nice analytic (and in many cases algebraic) varieties by taking
discrete Schottky-type quotients of a certain p-adic analogue of symmetric
space, so-called Drinfeld symmetric space $\Omega$ , or its variants.

1. Bruhat-Tits building.

First we survey the construction of a certain simplicial complex, called
Bruhat-Tits building (attached to $PGL(n+1,$ $K)$ ), which will be closely
related with the Drinfeld symmetric space. Let $n$ be a positive integer and $V$

an $n+1$ dimensional vector space over $K$ . A lattice in $V$ is a finitely generated
R-submodule of $V$ which spans $V$ over $K$ . Every lattice is therefore a free
R-module of rank $n+1$ . Let $\triangle_{0}-$ be the set of all lattices in $V$ . We say
that two lattices $M_{1}$ and $M_{2}$ are similar if there exists $\lambda\in K^{\times}$ such that
$M_{1}=\lambda M_{2}$ . The similarity is obviously an equivalence relation. We denote
by $\triangle 0$ the set of all similarity classes of lattices in $V$ .

Definition 1.1. The Bruhat- Tits building (attached to $PGL(n+1,$ $K)$ ) is
the finite dimensional simplicial complex $\triangle$ with the vertex set $\triangle 0$ defined as
follows: A finite subset $\{\Lambda_{0}, \ldots, \Lambda_{l}\}$ of $\triangle_{0}$ forms an l-simplex if and only if,
after permuting indices if necessary, one can choose $M_{i}\in\Lambda_{i}$ for $0\leq i\leq n+1$

such that
$M_{0}\supsetneq M_{1}\supsetneq\cdots\supsetneq M_{l}\supsetneq\pi M_{0}$ .

The role of $M_{0}$ is by no means important; for example, one can shift the
indices like $M_{1}\supsetneq\cdots\supsetneq M_{l}\supsetneq\pi M_{0}\supsetneq\pi M_{1}$ .

To understand the structure of $\Delta$ , let us fix one vertex $\Lambda=[M]$ . Suppose
$\{\Lambda_{0}, \ldots, \Lambda_{l}\}$ is an l-simplex having $\Lambda$ as a vertex; we may assume $\Lambda=\Lambda_{0}$ ,
and can take $M_{i}\in\Lambda_{i}$ for $1\leq i\leq l$ such that $M\supsetneq M_{1}\supsetneq\cdots\supsetneq M_{l}\supsetneq\pi M$ .
Set $\overline{M}_{i}$ : $=M_{i}/\pi M$ . Then we get a flag

$\overline{M}\supsetneq\overline{M}_{1}\supsetneq\cdots\supsetneq\overline{M}_{l}\supsetneq 0$
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of length $l+1$ consisting of subspaces of the $n+1$ -dimensional k-vector space
$\overline{j|[}=j|I/\pi_{1}1I$ . AIoreover, by the elementary algebra one finds that this yields
a one-to-one correspondence between l-simplices containing $\Lambda$ and length
$l+1$ flags in $\overline{\Lambda I}=\Lambda I/\pi j|l$ . By this, in particular, we know that simplices in
$\triangle$ are at most n-dimensional, and there are indeed n-dimensional simplices,
called chmabers, corresponding to flags of the full length $(=n+1)$ . (Recall
that by a chamber in an n-dimensional simplicial complex we mean a simplex
having the maximal $(=n)$ dimension.) Moreover, we deduce

(i) $\triangle$ is an n-dimensional locally finite simplicial complex,
(ii) every simplex in $\triangle$ is a face of a chamber.

Furthermore, by the construction,

(iii) the group $Aut_{K}(V)/K^{\times}(\cong PGL(n+1, K))$ naturally acts on $\triangle$ sim-
plicially.

Example 1.2 ($n=1$ case). In $n=1$ case, the vertices adjacent to a fix
vertex $\Lambda$ are in one-to-one correspondence with the set of all k-rational points
of the projective line $\mathbb{P}_{k}^{1}$ ; in particular, each vertex has exactly $q+1$ adjacent
vertices. Moreover, it can be seen that the simplicial complex $\triangle=\Delta^{1}$ is a
tree. The following picture shows how it looks like in case $q=2$ :

In general, the geometrical realization $|\triangle|$ of $\triangle$ is known to be a con-
tractible topological space.

Example 1.3 ($n=2$ case). Already in case $n=2$ , the structure of $\triangle=\triangle^{2}$

is fairly complicated. For a fixed vertex $\Lambda$ , the set of all vertices adjacent
of $\Lambda$ is divided in two; one for those corresponding to $q^{2}+q+1$ k-rational
points in $\mathbb{P}_{k}^{2}$ and the other for those corresponding to $q^{2}+q+1$ k-rational
lines in $\mathbb{P}_{k}^{2}$ . So it is convenient to consider the surface $B$ which is obtained
by blowing-up of $\mathbb{P}_{k}^{2}$ at all its k-rational points. Two vertices adjacent to $\Lambda$

forms with $\Lambda$ a 2-simplex if and only if the corresponding lines in $B$ intersect.

2. Drinfeld symmetric space.

To each lattice $\Lambda I$ in $V$ we associate an R-scheme
$\mathbb{P}(\Lambda I):=Proj(Sym_{R}\Lambda l)$ .

Obviously the scheme $\mathbb{P}(M)$ depends only on the similarity class; so we
should write as $\mathbb{P}(\Lambda)$ , where $\Lambda=[\Lambda I]$ . The scheme $\mathbb{P}(M)$ is isomorphic to
$\mathbb{P}_{R}^{n}$ ; but the isomorphism cannot be taken canonically, while there exists the
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canonical isomorphism $\mathbb{P}(V)\cong \mathbb{P}(M)\otimes_{R}K$ due to the canonical isomorphism
$M\otimes_{R}K\cong V$ . So we get a bijection:

$\triangle 0\rightarrow^{\sim}\{(\mathbb{P}, \phi)|\mathbb{P}\rightarrow \mathbb{P}_{R}^{n}\phi:\mathbb{P}\otimes_{R}K\sim\rightarrow\sim \mathbb{P}(V)\}/\sim$ ,

where $(\mathbb{P}_{1}, \phi_{1})\sim(\mathbb{P}_{2}, \phi_{2})$ if and only if there exists an R-isomorphism
$\Phi:\mathbb{P}_{1}\rightarrow\sim \mathbb{P}_{2}$ which makes the diagram

$\mathbb{P}_{1}\otimes_{R}K$
$\Phi\bigotimes_{\rightarrow}RK$

$\mathbb{P}_{2}\otimes_{R}K$

$\phi_{1}\downarrow$ $\downarrow\phi_{2}$

$\mathbb{P}(V)$ $=$ $\mathbb{P}(V)$

commutative.
Next we consider two vertices $\Lambda_{1}$ and $\Lambda_{2}$ which are adjacent with each

other. The canonical isomorphism between the generic fibers induce a nat-
ural birational map between $\mathbb{P}(\Lambda_{1})$ and $\mathbb{P}(\Lambda_{2})$ . More explicitly, taking rep-
resentatives $M_{i}\in\Lambda_{i}(i=1,2)$ so that $M_{1}\supsetneq M_{2}\supsetneq\pi M_{1}$ , we have the
birational map from $\mathbb{P}(\Lambda_{1})$ to $\mathbb{P}(\Lambda_{2})$ induced by $M_{2}c\rightarrow M_{1}$ . We define the
join $\mathbb{P}(\Lambda_{1})\vee \mathbb{P}(\Lambda_{2})$ to be the closure of the graph in $\mathbb{P}(\Lambda_{1})x_{R}\mathbb{P}(\Lambda_{2})$ of this
rational map. It is easily seen that the join $\mathbb{P}(\Lambda_{1})\vee \mathbb{P}(\Lambda_{2})$ is R-isomorphic
to the blow-up of $\mathbb{P}(\Lambda_{1})$ at the closed subscheme Proj $(Sym_{k}M_{1}/M_{2})$ . In
particular, the closed fiber of $\mathbb{P}(\Lambda_{1})\vee \mathbb{P}(\Lambda_{2})$ consists of two rational varieties
intersecting transversally.

Lemma 2.1. The operation V is associative and commutative.

The proof is straightforward, and left to the reader. By the lemma, we
can extend the construction to any finite subcomplex of $\triangle$ . More precisely,
for a finite subcomplex $S$ , we take the joins of all vertices in $S$ ; the resulting
R-scheme is denoted by $\mathbb{P}(S)$ . The scheme $\mathbb{P}(S)$ is a regular projective scheme
over $R$ having the following properties:

(i) The generic fiber is canonically isomorphic to $\mathbb{P}(V)$ .
(ii) The closed fiber is a reduced normal crossing of non-singular rational

varieties of which the dual graph coincides with S.
We want to do this for a general convex subcomplex of $\triangle$ ; this cannot

be done in terms of schemes because we have to consider a limit of blow-up’s
of $\mathbb{P}_{R}^{n}$ centered in the closed fiber. But we can do this in terms of formal
schemes, or rigid analytic spaces. Let $\triangle*be$ a convex subcomplex of $\triangle$ . For
any finite subcomplex $S$ of $\triangle*we$ define $\hat{\Omega}(S)$ to be the completion of $\mathbb{P}(S)$

along the closed fiber. Consider the maximal Zariski open subset $\hat{\Omega}(S)^{\prime}$ of
$\hat{\Omega}(S)$ such that, for any finite subcomplex $T$ of $\triangle {}_{*}ContainingS$ , the induced
morphism $p_{S}^{T}$ : $\hat{\Omega}(T)\rightarrow\hat{\Omega}(S)$ gives an isomorphism restricted to the pull-back
of $\hat{\Omega}(S)^{\prime}$ .

Definition 2.2. For a convex subcomplex $\triangle*of\triangle$ we define
$\hat{\Omega}(\triangle*):=$

$f_{iS:nite}\hat{\Omega}(S)^{\prime}$
,
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where $S$ runs through all finite subcomplex of $\triangle*\cdot$ The corresponding rigid
analytic space (Raynaud generic fiber) is denoted by $\Omega(\triangle*)$ . In case $\triangle*=\triangle$

we simply write $\hat{\Omega}=\hat{\Omega}(\triangle)$ and $\Omega=\Omega(\triangle)$ . The rigid analytic space $\Omega$ is
called the Drinfeld symmetric space.

The formal scheme $\hat{\Omega}(\Delta_{*})$ is formally locally of finite type. Its closed
fiber is a normal crossing union of non-singular rational varieties, whose
associated intersection graph (so called, dual graph) isomorphic to $\triangle*\cdot$ By
definition, the group $PGL(n+1, K)$ naturally acts on $\hat{\Omega}$ , and hence $\Omega$ .

Example 2.3. Let us consider $\hat{\Omega}$ in $n=2$ . The closed fiber $\hat{\Omega}_{0}$ consists
of countably many components which are all isomorphic to the surface $B$

considered in 1.3. In each component every k-rational line is a double curve
in $\hat{\Omega}_{0}$ , and every k-rational point is a triple point.

$Str^{v}ucture$ of $\Omega$ . First we note that, as a point set, we have an equality

$\Omega=\mathbb{P}_{K}^{n,an}\backslash \bigcup_{H\in \mathcal{H}}H$
,

where $\mathcal{H}$ is the set of all K-rational hyperplanes.
Here we do not attempt to give a proof of this fact, but rather give a

sketchy explanation in order to get a feeling. We limit ourselves to $n=1$

case just for simplicity. The formal scheme $\hat{\Omega}$ is, roughly speaking, the limit
of successive blow-up’s

. . . $\rightarrow U_{i}\rightarrow^{\rho_{t}}U_{i-1}\rightarrow\cdots\rightarrow U_{0}$

with $U_{0}=\mathbb{P}_{R}^{1}$ and $\rho_{i}$ the blow-up centered at all the k-rational points in
the closed fiber of $U_{i-1}$ . Let $z$ be a point in the generic fiber $\mathbb{P}_{K}^{1}$ of each
$U_{i}$ . We consider the closure 7 of $z$ in each $U_{i}$ . Since $U_{i}$ is a regular scheme,
the section 7 intersects the closed fiber at a smooth point transversally. If
$z$ is not a K-rational point, then for sufficiently large $N,$ $\overline{z}$ intersects the
closed fiber of $U_{i}$ at a non-k-rational smooth point for $i>N$ . But, if $z$ is
K-rational, 7 intersects the closed fiber always at a k-rational point which is
in the next blow-up center. So if we consider the limit, such formal sections
determined by K-rational points does not exist any more, while those by
non-K-rational points certainly exist. This explains the above equality in
$n=1$ . For higher $n$ we can apply the similar argument.

Next we discuss the analytic structure of $\Omega$ ; viz. we show how to in-
troduce an admissible covering to $\Omega$ ; since we have constructed the rigid
analytic space $\Omega$ from the formal model, we must have one such covering
such that the associated formal model recovers $\hat{\Omega}$ . This can be actually
described in an elegant way in terms of norms: A non-negative real valued
function $\alpha:V\rightarrow \mathbb{R}\geq 0$ is said to be a norm over $K$ if it satisfies:

(i) $\alpha(x)>0$ whenever $x\neq 0$ .
(ii) For $a\in K,$ $\alpha(ax)=|a|\alpha(x)$ .
(iii) $\alpha(x+y)\leq\max\{\alpha(x), \alpha(y)\}$ .



2. DRINFELD SYMMETRIC SPACE. 223

Two norms $\alpha$ and $\alpha^{\prime}$ over $K$ is said to be similar if $\alpha^{\prime}=\lambda\alpha$ for some $\lambda\in \mathbb{R}_{>0}$ .
The set of all similarity classes of norms on $V$ over $K$ forms in an obvious
way a topological space. The following fact is well-known ([GI63]):

Proposition 2.4. The topological space of similarlity classes of norms on
$V$ over $K$ is $PGL(n+1, K)$ -equivaliantly homeomorphic to the topological
realization $|\triangle|$ of the Bruhat-Tits building $\triangle$ .

The homeomorphism is given as follows: To any lattice $M$ we need to
associate a norm $\alpha_{M}$ . For a non-zero $x\in V$ , the set $\{a\in K|ax\in M\}$ is a
fractional ideal of $R$ , and hence is of form $(\pi^{m})$ . We then define $\alpha_{M}(x)=q^{m}$

for non-zero $x\in V$ , and $\alpha_{M}(0)=0$ . It is easily verified that $\alpha_{M}$ is a norm.
The similarity class of $\alpha_{M}$ depends only on the similarity class of $M$ . Thus
we get a mapping from $\triangle 0$ to the set of similarity classes of norms. Let
$\Lambda_{0}$ and $\Lambda_{1}$ be vertices adjacent with each other. We can choose a basis
$e_{0},$

$\ldots,$
$e_{n}$ of $V$ such that $M_{0}=\oplus_{i=0}^{n}Re_{i}$ and $M_{1}=\oplus_{i=0}^{n-1}Re_{i}\oplus R\pi e_{n}$ give

representatives of $\Lambda_{0}$ and $\Lambda_{1}$ , respectively. Then the norms $\alpha_{M_{0}}$ and $\alpha_{M_{1}}$

are given by

$\alpha_{M_{0}}(\sum_{i=0}^{n}a_{i}e_{i})$ $=$ $\max\{|a_{0}|, \ldots, |a_{n}|\}$ ,

$\alpha_{M_{1}}(\sum_{i=0}^{n}a_{i}e_{i})$ $=$ $\max\{|a_{0}|, \ldots, |a_{n-1}|, |\pi|^{-1}|a_{n}|\}$ ,

respectively. For $0<t<1$ , the class of the norm

$\alpha_{t}(\sum_{i=0}^{n}a_{i}e_{i})=\max\{|a_{0}|, \ldots, |a_{n-1}|, |\pi|^{-t}|a_{n}|\}$

corresponds to the point $t\Lambda_{0}+(1-t)\Lambda_{1}$ on the edge connecting $\Lambda_{0}$ and $\Lambda_{1}$ .
Now, to any point $z=$ $(z_{0}$ : . . . : $z_{n})\in \mathbb{P}(V)$ (subject to some K-basis

$\{e_{0}, \ldots, e_{n}\}ofV)$ we associate, up to invertible factor, a non-negative real
valued function

$\alpha_{z}(\sum_{i=0}^{n}a_{i}e_{i})=|\sum_{i=0}^{n}a_{i}z_{i}|$

on $V$ . Note that this determines a class of norm if and only if $z$ is not lying
in any K-rational hyperplane. Thus we get a mapping

$\rho:\Omega\rightarrow|\triangle|$ .
The admissible covering in question is actually given by the collection of
subsets of $\Omega$ consisting of pull-backs of each simplices of $|\triangle|$ by $\rho$ . For
example, notation being as above,

$\rho^{-1}(\Lambda_{0})=\{|z_{0}|=\cdots=|z_{n}|=1\}\backslash \bigcup_{H}\{(z_{0} : . . . : z_{n})mod \pi\in H\}$ ,

where $H$ runs through all hyperplanes in $\mathbb{P}_{k}^{n}$ , and
$\rho^{-1}(t\Lambda_{0}+(1-t)\Lambda_{1})=\{|z_{0}|=\cdots=|z_{n-1}|=1, |z_{n}|=|\pi|^{-t}\}$
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for $0<t<1$ .

3. Uniformization.

Recall that, once we fixaK-basis of V, the group PGL $(n+1, K)canon-$

ically acts on the Bruhat-Tits building $\triangle$ and the Drinfeld symmetric space
$\Omega$ . We shall consider discrete groups in $PGL(n+1, K)$ and the quotients of
$\triangle$ and $\Omega$ by them. A subgroup $\Gamma\in PGL(n+1, K)$ is said to be hyperbolic
if it acts on $\triangle$ discretely and freely.

To a hyperbolic subgroup $\Gamma$ we associate a convex subcomplex $\triangle_{\Gamma}$ of
$\triangle$ by the following recipe: In general, a convex subcomplex generated by
vertices of form

$[\sum_{i=0}^{n}R\cdot\pi^{\sigma_{1}}Y_{i}]$ , $\sigma_{i}\in \mathbb{Z}$ , $0\leq i\leq n$ ,

subject to a basis $Y_{0},$
$\ldots$ , $Y_{n}$ of $V$ , is said to be an apartment. The geo-

metrical realization of each apartment is a triangulation of $\mathbb{R}^{n}$ of $A_{n}$-type,
and $\triangle$ is the union of all apartments. There exists an obvious bijection
between the set of all apartments and the set of all K-split maximal tori in
$PGL(n+1, K)$ . For any K-split maximal tori $T$ the untersection $\Gamma\cap T$ is a
commutative discrete group of rank at most $n$ . If this rank is $n$ we call the
apartment corresponding to $T$ a F-apartment, and we define $\triangle_{\Gamma}$ to be the
union of all F-apartments. Clearly the group $\Gamma$ acts on $\triangle r$ ; if the quotient
$\triangle_{\Gamma}/\Gamma$ is a finite simplicial complex, we say $\Gamma$ is normal hyperbolic.

Now let us be given a normal hyperbolic subgroup F. For each $\gamma\in\Gamma$

and each finite subcomplex $S$ of $\triangle r,$ $\gamma S$ is again a finite subcomplex of
$\triangle r$ and then, $\gamma$ induces an R-isomorphism $\mathbb{P}(S)\cong \mathbb{P}(\gamma S)$ which induces on
generic fibers $(=\mathbb{P}_{K}^{n})$ exactly the linear automorphism $\gamma$ . Considering all $S$ ,
gluing, and taking Raynaud generic fiber give a rigid analytic automorphism
of $\Omega(\triangle_{\Gamma})$ which we denote again by $\gamma$ . Thus we get an homomorphism

$\Gamma\rightarrow Aut_{K- rig}.\Omega(\triangle_{\Gamma})$ .

Theorem 3.1 (Mustafin [Mus78], Kurihara [Kur80]). Let $\Gamma$ be a normal
hyperbolic subgroup of $PGL(n+1, K)$ and $\triangle_{\Gamma}$ as above. Then there exists,
unique up to isomorphisms, a rigid analytic space $X_{\Gamma}$ , smooth, proper and
of finite type over $K$ , and a topological covering map $p:\Omega(\triangle r)\rightarrow X_{\Gamma}$ such
that

(i) $p\circ\gamma=p$ for any $\gamma\in\Gamma$ ,
(ii) for $x,$ $y\in\Omega(\Delta_{\Gamma}),$ $p(x)=p(y)$ if and only if $x=\gamma(y)$ for some $\gamma\in\Gamma$ .

In the references, this theorem has been stated in terms of formal schemes;
viz. they took quotients of $\hat{\Omega}(\triangle_{\Gamma})$ to get a formal scheme $\hat{X}_{\Gamma}$ flat and for-
mally of finite type over $R$ . We have an admissible covering of $X_{\Gamma}$ induced
from that of $\Omega(\triangle_{\Gamma})$ ; in terms of formal scheme, the closed fiber of $\hat{X}_{\Gamma}$ is a
divisor of normal crossings with rational components having the dual group
isomorphic to $\Delta_{\Gamma}/\Gamma$ .
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Algebmicity. In $n=1$ case the rigid analytic curve $X_{\Gamma}$ is algebraizable
for any $F([Mu72b])$ . In higher dimensions, we know the following sufficient
condition: Let $\Gamma$ be a torsion-free uniform lattice in $PGL(n+1, K)$ , viz. a
discrete co-compact subgroup of finite co-volume without elements of finite
order. Then, since it is finite co-volume, we have $\triangle r=\triangle$ . Hence in this
case, we are going to take a quotient of the Drinfeld symmetric space $\Omega$ .

Theorem 3.2 (loc. cit.). If $\Gamma$ is a torsion-free uniform lattice, then the
quotient rigid analytic variety $X_{\Gamma}$ can be algebraizable to a non-singular
projective variety having the ample canonical class.

In terms of formal scheme, this means that the relative canonical sheaf
of $\hat{X}_{\Gamma}/SpfR$ is ample.

4. Examples.

Tate curve. Let $T$ be the maxial torus consisting of all invertible diagonal
matrices. We take $n$ elements $q_{i}\in K^{\times}(1\leq i\leq n)$ with $|q_{i}|<1$ and set
$q_{0}=1$ . Define $F\subset T$ to be the set of all diagonal matrices with $(i, i)$ -entry
an integer power of $q_{i}$ for $0\leq i\leq n$ . Then $F$ is a normal hyperbolic subgroup
of $PGL(n+1, K)$ with $\Delta_{\Gamma}$ the apartment corresponding to $T$ . If $n=1$ , the
curve $\Omega(\Delta_{\Gamma})/F$ is known to be the so-called Tate curve; in this case $\Omega(\triangle_{\Gamma})$

is simply $\mathbb{P}_{K}^{1}$ minus two points.

Mumford curve. Consider again the $n=1$ case. The rigid analytic curve
$X_{\Gamma}$ with $\Gamma$ generated by at least two elements is called a Mumford curue. A
Mumford curve is, in fact, algebraized to a non-singular projective curve of
genus greater than 1. Moreover, the formal model provided by the admissible
covering inhereted from $\Omega(\triangle_{\Gamma})$ gives a stable k-split multiplicative reduction
of that curve. The converse is also known:

Theorem 4.1 (Mumford $[Mu72b]$ ). Let $X$ be a smooth and proper rigid
analytic curve over $K$ , and suppose $X$ admits a formal model with k-split
multiplicative reduction. Then $X$ is isomorphic to $X_{\Gamma}$ for a unique F.

Surface case. In higher dimension it becomes extremely difficult to find
normal hyperbolic groups; but there are several known examples of torsion-
free uniform lattices. Let $F$ is a torsion-free uniform lattice, and $N$ the
number of F-orbits in the vertex set $\Delta_{0}$ . Mumford [Mu79] calculated the
several numerical invariants of the quotient surface $X_{\Gamma}$ :

(i) $\chi(\mathcal{O}_{X_{\Gamma}})=N(q-1)^{2}(q+1)/3$ .
(ii) $(c_{1,X_{\Gamma}})^{2}=3c_{2,X_{\Gamma}}=3N(q-1)^{2}(q+1)$ .
(iii) $q(X_{\Gamma})=0$ ,

where $q$ denotes the irregularity. It is very interesting that the Mumford-
Kurihara-Mustafin uniformization in two dimension always produces the
surfaces which satisfies the equality in Miyaoka-Yau inequality. Mumford
[Mu79] constructed one example of $F$ in $q=2$ such that $N=1$ ; the
resulting surface is one of the so-called “fake projective planes” Recently,
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Cartwright, Mantero, Steger, and Zappa constructed several examples of
lattices in $q=2$ and $q=3$ . Making use of this groups, in [IK98], Ishida
and the author discussed other possible fake projective planes, and showed
that there are at least three fake projective planes (incl. Mumford’s one)
which are not isomorphic to each other. We will see in more detail the
construction of Mumford’s fake projective plane in the next section.

Shimum variety case. Let $D$ be a quaternion algebra over a totally real
field $F$ . We assume that $D$ ramifies at every infinite place except one $\infty 0$ .
Let $r_{\infty}$ be a subgroup of $D^{\times}/F^{\times}$ defined by some congruence condition;
we shall assume that it is “sufficiently small” Then it is classically known
that $r_{\infty}$ acts discontinuously on the upper $\frac{1}{2}$ plane $H$ such that the quotient
$H/r_{\infty}$ is a projective curve (Shimura curve of PEL-type). The canonical
model Sh is defined over some ray-class field of F.

There must be a finite place $\nu$ at which $B$ ramifies. Let $p$ be the residue
characteristic of $\nu$ . We assume that $r_{\infty}$ is maximal at $\nu$ . Then the Shimura
curve Sh has a bad reduction at $\nu$ , and due to Cherednik [ $\check{C}$er76] and
Drinfeld [Dri76], the associated rigid analytic space over $F_{\nu}^{ur}$ has a p-adic
uniformization, where $F_{\nu}^{ur}$ is the maximal unramified extension of $F_{\nu}$ . Let
$\overline{D}$ be the quaternion algebra which has local invariants obtained precisely
by switching those of $D$ at $\nu$ and $\infty 0$ Then there exists a subgroup $F_{\nu}$ in
$\overline{D}^{\times}/F^{\times}$ defined basically by the same congruence relation as that of $r_{\infty}$

such that $\Omega\otimes F^{ur}/\Gamma_{\nu}$ is isomorphic to the assocaied analytic space of Sh at
$\nu$ . (This isomorphism actually decends to some finite unramified extension
of $F_{\nu}$ , depending on the data of connected components of Sh.)

This story has been generalized to higher dimension by Rapoport-Zink
[RZ96] and Boutot-Zink [BZ95]. The next section is devoted to explain
one special example of the p-adic uniformization of a Shimura surface.

5. Mumford’s fake projective plane.

Our example of p-adically uniformizable Shimura surface is constructed
by means of some division algebra $D$ . Th following construction is inspired
by the Mumford’s oroginal paper [Mu79].

Let $\zeta=\zeta_{7}$ be a primitive $7th$-root of unity, and set $L:=\mathbb{Q}(();L$ is a
cyclic extension of $\mathbb{Q}$ of degree 6 having an intermediate quadratic extension
$K:=\mathbb{Q}(\lambda)(\cong \mathbb{Q}(\sqrt{-7}))$ , where $\lambda=\zeta+\zeta^{2}+\zeta^{4}$ . The Galois group of $L/K$

is generated by the Frobenius map $\sigma:\zeta\mapsto\zeta^{2}$ , and that of $K/\mathbb{Q}$ is generated
by the complex conjugation $z\mapsto\overline{z}$ . Note that the prime 2 decomposes on
$K$ , more explicitly, $2=\lambda\overline{\lambda}$ gives the prime factorization, and the prime 7
ramifies. We fix an infinite place $\epsilon:K^{c}\rightarrow \mathbb{C}$ by $\lambda\vdash\rightarrow\frac{-1+\sqrt{-7}}{2}$

We set $\mu:=\lambda/\overline{\lambda}$ , and define the central division algebra $D$ over $K$ of
dimension 9 by

$D:=\bigoplus_{i=0}^{2}L\Pi^{i}$
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with $\Pi^{3}=\mu$ and $\Pi z=z^{\sigma}\Pi$ for $z\in L$ . The $involution*onD$ is defined by
$z^{*}=\overline{z}$ for $z\in L$ and $\Pi^{*}=\overline{\mu}\Pi^{2}$ . It is easily verified that $*is$ positive.

We introduce a non-degenerate anti-symmetric $\mathbb{Q}$-bilinear form $\psi=\psi_{b}$

on $V=D$ by putting $b=(\lambda-\overline{\lambda})-\overline{\lambda}\Pi+\overline{\lambda}\Pi^{2}$ . Then define an algebraic
group $G$ over $\mathbb{Q}$ as follows: Given a $\mathbb{Q}$-algebra $R$ , we set

$G(R):=\{g\in((D\otimes R)^{opp})^{\times}|\psi(xg, yg)=c(g)\psi(x, y), c(g)\in R^{\times}, x, y\in V\otimes R\}$ .

The algebraic group $G_{\mathbb{R}}$ is isomorphic to $GU(2,1)$ , which acts on the two
dimensional complex unit-ball B. In the following we will construct an open
compact subgroup $C$ in $G(A_{f})$ . By these data, we can define a Shimura
variety

$S_{C}$ : $=G(\mathbb{Q})\backslash B\times G(A_{f})/C$ .
The canonical model of $S_{C}$ is defined over $E:=\epsilon(K)$ , which we denote by
$Sh_{C}$ .

The congruence condition. First we define an algebraic group $I$ over $\mathbb{Q}$

by
$I(R)$ : $=\{g\in(M_{d}(K)\otimes R)^{\times}|H^{-1}{}^{t}\overline{g}H\in R^{\times}\}$

for any $\mathbb{Q}$-algebra $R$ , where

$H=[\lambda\lambda 3$
$\overline{3\lambda\lambda}$

$\overline{\frac{\lambda}{3\lambda}}]$

Then $I$ is an inner form of $G$ so that $G(A_{f}^{2})\cong I(A_{f}^{2})$ .
To define the level structure, it suffices to define the prime-2-part $C^{2}$ .

We define $C^{2}$ in the form $C^{2}=C^{2,7}C_{7}$ with $C_{7}\in G(\mathbb{Q}_{7})\cong I(\mathbb{Q}_{7})$ and $C^{2,7}$

being the maximal one:
$C^{2,7}$ : $=\{g\in G(A_{f}^{2,7})|F^{2,7}g=F^{2,7}\}$ ,

with $F^{2,7}=F\otimes_{\mathbb{Z}}\hat{\mathbb{Z}}^{2,7}$ , where $\hat{\mathbb{Z}}^{2,7}=\lim \mathbb{Z}/m\mathbb{Z}$ with the projective limit
taken over $m$ such that $(2, m)=(7, m)=1$ .

Now the component $C_{7}$ is defined as follows: we have an isomorphism

$G(\mathbb{Q}_{7})\rightarrow^{\sim}\{g\in GL_{3}(\overline{\mathbb{Q}}_{7})|g^{*}Hg=c(g)H, c(g)\in \mathbb{Q}_{7}^{\times}\}$ ,

where $\overline{\mathbb{Q}}_{7}$ is the ramified quadratic extension of $\underline{\mathbb{Q}}_{7}$ , and $*is$ the matrix
transposition followed by the Galois action. Let $C_{7}$ be the maximal open
compact subgroup of $G(\mathbb{Q}_{7})consisit\underline{in}g$ of $g$ which maps $F\otimes_{\mathbb{Z}}\mathbb{Z}_{7}$ to itself. We
consider modulo $\sqrt{-7}$ reduction of $C_{7}$ , which is a subgroup $G_{0}$ in $GL_{3}$ (F7).
The matrix $H$ mod $\sqrt{-7}$ is of rank 1, and has 2 dimensional null space $N_{0}$ .
Restricting elements in $G_{0}$ to $N_{0}$ , we obtain a homomorphism

$\pi:\tilde{C}_{7}\rightarrow GL_{2}$ (F7).

The last group has $2^{6}3^{2}7$ elements. Let $S$ be a 2-Sylow subgroup of $GL_{2}(F_{7})\cap$

$\{g|\det g=\pm 1\}$ . Now we set $C_{7}$ : $=\pi^{-1}(S)$ .
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Theorem 5.1. The canonical model $Sb_{C}$ of the Shimura variety obtained
by the data as above is a geometrically connected non-singular projective
surface over $E=\mathbb{Q}(\sqrt{-7})$ such that the base change $Shc\otimes_{E}E_{\lambda}$ is isomorphic
over $\mathbb{Q}_{2}\cong E_{\lambda}$ to the Mumford’s fake projective plane [Mu79].

More precisely, the associated rigid analytic space to $Sh_{C}\otimes_{E}E_{\lambda}$ is iso-
morphic to $\Omega/\Gamma$ with

$ F=I(\mathbb{Q})\cap(J(\mathbb{Q}_{2})\times C^{2})\subset J(\mathbb{Q}_{2})\cong$ PGL $(3, \mathbb{Q}_{2})$ ,

where $I(\mathbb{Q})$ is considered as a subgroup of $I(A_{f})\cong J(\mathbb{Q}_{2})\times G(A_{f}^{2})$ . The
proof of the theorem is in [KatOl], where two more fake projective planes
are discussed as examples of Shimura varieties.


