Chapter 9

Moduli Spaces

9.1 Combinatorially Equivalent Arrangements

Fix a pair (ℓ, n) with $\ell \geq 1$ and $n \geq 0$. Recall from Section 3.1 that we compactify \mathbb{C}^{ℓ} by adding the infinite hyperplane \bar{H}_{∞} to get complex projective space \mathbb{CP}^{ℓ} . In order to understand the moduli space of arrangements, we must consider their degeneration. There are two possibilities when we move a single hyperplane. Either it moves into an already existing intersection, thereby creating more dependencies (or parallelism), or it coincides with an existing hyperplane as was the case in 1-arrangements. In the former case the result is still an arrangement. In the latter case we want to register the coincidence. We do this by using the following notion.

Definition 9.1.1. A multiset is a set which allows repetitions. A multiset \mathcal{M} is a projective multiarrangement if \mathcal{M} is a finite multiset of projective hyperplanes of \mathbb{CP}^{ℓ} . Let

 $\mathcal{M}_n(\mathbb{CP}^\ell) = \{ projective \ multiarrangements \ of \ n+1 \ linearly \ ordered$ $hyperplanes \ of \ \mathbb{CP}^\ell \ where \ \bar{H}_\infty \ is \ the \ last \ hyperplane \}.$

Let $(\mathbb{CP}^{\ell})^*$ be the dual projective space of \mathbb{CP}^{ℓ} . Each point of $(\mathbb{CP}^{\ell})^*$ corresponds to a hyperplane of \mathbb{CP}^{ℓ} . Thus we indentify $\mathcal{M}_n(\mathbb{CP}^{\ell})$ with $((\mathbb{CP}^{\ell})^*)^n$:

$$\mathcal{M}_n(\mathbb{CP}^\ell) = ((\mathbb{CP}^\ell)^*)^n$$

so $\mathcal{M}_n(\mathbb{CP}^{\ell})$ is a compact complex manifold isomorphic to $(\mathbb{CP}^{\ell})^n$.

$$\mathbf{t} = \left((t_1^{(0)}: \dots : t_1^{(\ell)}), (t_2^{(0)}: \dots : t_2^{(\ell)}), \dots, (t_n^{(0)}: \dots : t_n^{(\ell)}) \right).$$

be homogeneous coordinates for $((\mathbb{CP}^{\ell})^*)^n$. Let $\mathbf{u} = (u_0 : u_1 : \dots : u_{\ell})$ be standard coordinates for \mathbb{CP}^{ℓ} . The linear forms $\alpha_i = t_i^{(0)} u_0 + \sum_{j=1}^{\ell} t_i^{(j)} u_j$ $(i = 1, \dots, n)$

together with the hyperplane at infinity define a multiarrangement with coefficient matrix

$$\mathsf{T} = \begin{pmatrix} t_1^{(0)} & \cdots & t_n^{(0)} & 1 \\ t_1^{(1)} & \cdots & t_n^{(1)} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ t_1^{(\ell)} & \cdots & t_n^{(\ell)} & 0 \end{pmatrix}.$$

Let $\mathcal{M} \in \mathcal{M}_n(\mathbb{CP}^\ell)$. Write $\mathcal{M} = \{\bar{H}_1, \bar{H}_2, \dots, \bar{H}_{n+1}\}$. We say that \mathcal{M} is **essential** if $\bigcap_{H \in \mathcal{M}} H = \emptyset$. Denote the set $\{1, 2, \dots, n+1\}$ by [n+1]. Define

$$\left(\binom{[n+1]}{\ell+1} \right) = \{ \text{ subsets of } [n+1] \text{ of cardinality } \ell+1 \}.$$

Let \wp denote the power set. Let

$$\mathcal{J}: \mathcal{M}_n(\mathbb{CP}^\ell) \longrightarrow \wp\left(inom{[n+1]}{\ell+1}\right)$$

be the map defined by

$$\mathcal{J}(\mathcal{M}) = \{\{i_1, \dots, i_{\ell+1}\} \in \left(\binom{[n+1]}{\ell+1} \right) \mid \bar{H}_{i_1} \cap \dots \cap \bar{H}_{i_{\ell+1}} \neq \emptyset\}.$$

Let $S = (i_1, \ldots, i_{\ell+1})$ and let T_S denote the submatrix of T consisting of the columns labeled by S. Let $\Delta_S = \det(\mathsf{T}_S)$ be the corresponding minor. Then $S \in \mathcal{J}(\mathcal{M})$ if and only if $\Delta_S = 0$.

Example 9.1.2. Let $\mathcal{M} \in \mathcal{M}_n(\mathbb{CP}^{\ell})$. Suppose that $n > \ell$. Then \mathcal{M} is in general position if and only if $\mathcal{J}(\mathcal{M}) = \emptyset$. Similarly, \mathcal{M} is essential if and only if

$$\mathcal{J}(\mathcal{M}) \neq \left(\binom{[n+1]}{\ell+1} \right)$$

because $\bigcap_{H \in \mathcal{M}} H = \emptyset$ implies that there exist $\ell+1$ hyperplanes $\bar{H}_{i_1}, \ldots, \bar{H}_{i_{\ell+1}} \in \mathcal{M}$ such that $\bar{H}_{i_1} \cap \cdots \cap \bar{H}_{i_{\ell+1}} = \emptyset$.

For $\mathcal{M} \in \mathcal{M}_n(\mathbb{CP}^\ell)$, we define the intersection poset $L(\mathcal{M})$ by

$$L(\mathcal{M}) = \{ \bigcap_{H \in \mathcal{N}} H \mid \mathcal{N} \subseteq \mathcal{M} \}.$$

Here we agree that $\cap_{H\in\emptyset}H=\mathbb{CP}^\ell\in L(\mathcal{M})$. A (multi) subset \mathcal{N} is said to be **linearly independent** if $\operatorname{codim}_{\mathbb{CP}^\ell}(\cap_{H\in\mathcal{N}}H)=|\mathcal{N}|$, where we agree that $\operatorname{codim}_{\mathbb{CP}^\ell}\emptyset=\ell+1$.

Proposition 9.1.3. Let $\mathcal{M}_i \in \mathcal{M}_n(\mathbb{CP}^\ell)$ for i = 1, 2 and let $\iota : \mathcal{M}_1 \to \mathcal{M}_2$ be an order-preserving bijection. Suppose that both \mathcal{M}_1 and \mathcal{M}_2 are essential. Then the following three conditions are equivalent:

- (i) ι induces an isomorphism $L(\mathcal{M}_1) \to L(\mathcal{M}_2)$,
- (ii) $\mathcal{N}_1 \subseteq \mathcal{M}_1$ is linearly independent if and only if $\iota(\mathcal{N}_1)$ is linearly independent, (iii) $\mathcal{J}(\mathcal{M}_1) = \mathcal{J}(\mathcal{M}_2)$

Proof. It is obvious that conditions (i) and (ii) are equivalent. Note that \mathcal{M}_1 and \mathcal{M}_2 contain $\ell+1$ linearly independent hyperplanes. In general, let v_1, v_2, \ldots, v_n span an $(\ell+1)$ -dimensional vector space W. Then it is an elementary fact that any linearly independent subset of the set $\{v_1, v_2, \ldots, v_n\}$ is contained in a basis for W. This implies that (ii) and (iii) are equivalent.

Definition 9.1.4. Call $\mathcal{J}(\mathcal{M})$ the **combinatorial type** of $\mathcal{M} \in \mathcal{M}_n(\mathbb{CP}^{\ell})$. Two essential arrangements \mathcal{M}_1 and \mathcal{M}_2 in $\mathcal{M}_n(\mathbb{CP}^{\ell})$ are called **combinatorially equivalent** if they have the same combinatorial type.

It follows from Proposition 9.1.3 that two essential arrangements \mathcal{M}_1 and \mathcal{M}_2 in $\mathcal{M}_n(\mathbb{CP}^\ell)$ are combinatorially equivalent if and only if there is a natural isomorphism $L(\mathcal{M}_1) \to L(\mathcal{M}_2)$. We see in the next example that the map \mathcal{J} is not surjective.

Definition 9.1.5. Define

$$\mathsf{B}_{\mathcal{S}} = \mathcal{J}^{-1}(\mathcal{S})$$

for $S \subseteq \left({[n+1] \choose \ell+1} \right)$. We say that $S \subseteq \left({[n+1] \choose \ell+1} \right)$ is **realizable** when $B_S \neq \emptyset$.

Example 9.1.6. Example 9.1.2 shows that the sets \emptyset and $\binom{[n+1]}{\ell+1}$ are realizable. However, when $\ell=1$, $\mathcal{S}=\{\{1,2\},\{2,3\}\}$ is not realizable. The smallest realizable set containing \mathcal{S} is $\mathcal{S}'=\{\{1,2\},\{2,3\},\{1,3\}\}$. Then \mathcal{M} has combinatorial type \mathcal{S}' if and only if \mathcal{M} is an arrangement of n+1 points in \mathbb{CP}^1 such that the first three points coincide and all the other points are distinct.

By definition we have

$$\mathcal{M}_n(\mathbb{CP}^\ell) = \bigcup_{\mathcal{S}} \mathsf{B}_{\mathcal{S}},$$

where \mathcal{S} runs over the set of all realizable subsets of $\left(\binom{[n+1]}{\ell+1}\right)$ and the union is disjoint. Given a realizable set $\mathcal{S}\subseteq\left(\binom{[n+1]}{\ell+1}\right)$, define

$$\mathsf{C}_{\mathcal{S}} = \bigcup_{\mathcal{S}' \supset \mathcal{S}} \mathsf{B}_{\mathcal{S}'}.$$

Then C_S is defined by the vanishing of the minors specified by S. These are homogeneous polynomial equations of degree $\ell+1$ and thus C_S is a closed subvariety of $\mathcal{M}_n(\mathbb{CP}^{\ell})$. Since we have

$$\mathsf{B}_{\mathcal{S}} = \mathsf{C}_{\mathcal{S}} \setminus \bigcup_{\mathcal{S}' \supset \mathcal{S}} \mathsf{C}_{\mathcal{S}'},$$

 $B_{\mathcal{S}}$ is a locally closed set of $\mathcal{M}_n(\mathbb{CP}^\ell)$. Let $\bar{B}_{\mathcal{S}}$ be the closure of $B_{\mathcal{S}}$ in $\mathcal{M}_n(\mathbb{CP}^\ell)$. It is known that $\bar{B}_{\mathcal{S}}$ can have singularities. It is conjectured that $B_{\mathcal{S}}$ is a smooth manifold.

Proposition 9.1.7. Suppose that $S \subseteq \left({n+1 \choose \ell+1} \right)$ is realizable. Define

$$\mathsf{D}_{\mathcal{S},T} = \bar{\mathsf{B}}_{\mathcal{S}} \cap \mathsf{C}_{\mathcal{S} \cup \{T\}}$$

for
$$T \in \mathcal{S}^c = \left(\binom{[n+1]}{\ell+1} \right) \setminus \mathcal{S}$$
, and $\mathsf{D}_{\mathcal{S}} = \bigcup_{T \in \mathcal{S}^c} \mathsf{D}_{\mathcal{S},T}$. Then

- $(i) \; \bar{\mathsf{B}}_{\mathcal{S}} \setminus \mathsf{B}_{\mathcal{S}} = \mathsf{D}_{\mathcal{S}},$
- (ii) for any $T \in \mathcal{S}^c$, $D_{\mathcal{S},T}$ is a hypersurface in $\bar{\mathsf{B}}_{\mathcal{S}}$.

Proof. (i) We have

$$\bar{\mathsf{B}}_{\mathcal{S}} \, \setminus \, \mathsf{D}_{\mathcal{S}} \; = \; \bar{\mathsf{B}}_{\mathcal{S}} \, \setminus \, \bigcup_{T \in \mathcal{S}^c} \mathsf{C}_{\mathcal{S} \cup \{T\}} \; = \; \bar{\mathsf{B}}_{\mathcal{S}} \, \setminus \, \bigcup_{\mathcal{S}' \supset \mathcal{S}} \mathsf{C}_{\mathcal{S}'} \; \subseteq \; \mathsf{C}_{\mathcal{S}} \, \setminus \, \bigcup_{\mathcal{S}' \supset \mathcal{S}} \mathsf{C}_{\mathcal{S}'} \; = \; \mathsf{B}_{\mathcal{S}}.$$

On the other hand, it is clear that $B_{\mathcal{S}} \subseteq \bar{B}_{\mathcal{S}} \setminus D_{\mathcal{S}}$.

(ii) Note that $C_{S \cup \{T\}}$ $(T \in S^c)$ is defined by a single equation in C_S . If $D_{S,T}$ is not of codimension one in \bar{B}_S , then there exists an irreducible component C_0 of \bar{B}_S which lies in $D_{S,T}$. Thus $C_0 \cap B_S = \emptyset$ by (i). On the other hand, since B_S is dense in \bar{B}_S , B_S meets any irreducible component of \bar{B}_S . This is a contradiction, which proves (ii).

The pure braid space of Chapter 8 is the space B_{\emptyset} for $\ell=1$. In Chapter 8 we considered B_{\emptyset} inside \mathbb{C}^n while here we view it inside $(\mathbb{CP}^1)^n$, so we see a compactification of B_{\emptyset} . The additional components in this compactification correspond to points moving to infinity.

9.2 Realizable Arrangements

So far in this chapter we have considered only multiarrangements in \mathbb{CP}^{ℓ} . Next let $\mathcal{A}_n(\mathbb{C}^{\ell})$ be the set of affine arrangements of n linearly ordered hyperplanes in \mathbb{C}^{ℓ} . When we want to emphasize that repetitions are *not* allowed, we call an arrangement *simple*. Let $\mathcal{A} \in \mathcal{A}_n(\mathbb{C}^{\ell})$. Recall the projective closure \mathcal{A}_{∞} from Section 3.1:

$$\mathcal{A}_{\infty} = \{ \bar{H} \mid H \in \mathcal{A} \} \cup \{ \bar{H}_{\infty} \},$$

where \bar{H} is the closure of H in \mathbb{CP}^{ℓ} . Then \mathcal{A}_{∞} is a projective arrangement of n+1 hyperplanes of \mathbb{CP}^{ℓ} . The hyperplanes of \mathcal{A}_{∞} are naturally linearly ordered by regarding the infinite hyperplane \bar{H}_{∞} as the (n+1)st hyperplane. Thus $\mathcal{A}_{\infty} \in \mathcal{M}_n(\mathbb{CP}^{\ell})$ and there is an injective map

$$\mathcal{A}_n(\mathbb{C}^\ell) \longrightarrow \mathcal{M}_n(\mathbb{CP}^\ell)$$

which sends $\mathcal{A} \in \mathcal{A}_n(\mathbb{C}^\ell)$ to its projective closure $\mathcal{A}_\infty \in \mathcal{M}_n(\mathbb{CP}^\ell)$. Through this injection, we identify $\mathcal{A}_n(\mathbb{C}^\ell)$ with its image in $\mathcal{M}_n(\mathbb{CP}^\ell)$. Then the subset $\mathcal{A}_n(\mathbb{C}^\ell)$ is open and dense in $\mathcal{M}_n(\mathbb{CP}^\ell)$ with respect to the Zariski topology because it is characterized by the open condition that no two hyperplanes are equal.

Proposition 9.2.1. Let $A \in A_n(\mathbb{C}^{\ell})$ and recall the cone construction from Section 3.1. The following five conditions are equivalent:

- (i) A is essential so $r(A) = \ell$,
- (ii) $\mathbf{c} \mathcal{A}$ is essential so $r(\mathbf{c} \mathcal{A}) = \ell + 1$,
- (iii) the intersection of all hyperplanes of $\mathbf{c}\mathcal{A}$ contains no point other than the origin,
- (iv) A_{∞} is essential so the intersection of all hyperplanes of the projective closure A_{∞} is empty,

(v)
$$\mathcal{J}(\mathcal{A}_{\infty}) \neq \begin{pmatrix} [n+1] \\ \ell+1 \end{pmatrix}$$
.

Proof. It is clear that conditions (ii) and (iii) are equivalent. Example 9.1.2 shows that (iv) and (v) are equivalent. The implication (iv) \Rightarrow (iii) is obvious.

- (iii) \Rightarrow (i): Let H_{∞} be the "infinite" hyperplane in $\mathbf{c}\mathcal{A}$. Then there exist hyperplanes $H_{i_1}, \ldots, H_{i_\ell}$ in \mathcal{A} such that the intersection $\mathbf{c}H_{i_1} \cap \cdots \cap \mathbf{c}H_{i_\ell} \cap H_{\infty}$ consists of the origin only. Thus $\mathbf{c}H_{i_1} \cap \cdots \cap \mathbf{c}H_{i_\ell}$ is a line not entirely inside H_{∞} . Therefore $H_{i_1} \cap \cdots \cap H_{i_\ell}$ is a point.
- (i) \Rightarrow (iv): Let \bar{H}_{∞} be the infinite hyperplane (=last hyperplane) in \mathcal{A}_{∞} . By the assumption there exist hyperplanes $H_{i_1}, \ldots, H_{i_\ell}$ such that the intersection $H_{i_1} \cap \cdots \cap H_{i_\ell}$ is a point. Thus $\bar{H}_{i_1} \cap \cdots \cap \bar{H}_{i_\ell} \cap \bar{H}_{\infty}$ is empty.

Proposition 9.2.2. Let A_1 , A_2 be essential simple ℓ -arrangements with an order-preserving bijection $\iota: A_1 \to A_2$. Then the following three conditions are equivalent:

- (i) ι induces an isomorphism $L(A_1) \to L(A_2)$,
- (ii) ι induces an isomorphism $L((A_1)_{\infty}) \to L((A_2)_{\infty})$,
- (iii) $\mathcal{J}((\mathcal{A}_1)_{\infty}) = \mathcal{J}((\mathcal{A}_2)_{\infty})$

Proof. It follows from Proposition 9.1.3 that conditions (ii) and (iii) are equivalent. Since L(A) is obtained from $L(A_{\infty})$ by deleting everything above or equal to the infinite hyperplane \bar{H}_{∞} , (ii) implies (i).

Now it is sufficient to prove that (i) implies (iii). We will show that the poset structure of L(A) completely determines $\mathcal{J}(A_{\infty})$. Let $S \subseteq A_{\infty}$ with $|S| = \ell + 1$.

Case 1) Suppose $S = \{\bar{H}_{i_1}, \dots, \bar{H}_{i_\ell}, \bar{H}_{\infty}\}$ with $1 \leq i_1 < \dots < i_\ell \leq n$. Let $\mathcal{B} = \{H_{i_1}, \dots, H_{i_\ell}\}$. Then $S = \mathcal{B}_{\infty} \in \mathcal{J}(\mathcal{A}_{\infty})$ if and only if \mathcal{B} is not essential by Proposition 9.2.1.

Case 2) Suppose $S = \{\bar{H}_{i_1}, \dots, \bar{H}_{i_{\ell+1}}\}$ with $1 \leq i_1 < \dots < i_{\ell+1} \leq n$. Let $\mathcal{B} = \{H_{i_1}, \dots, H_{i_{\ell+1}}\}$. Then

$$S \in \mathcal{J}(\mathcal{A}_{\infty}) \iff \bar{H}_{i_1} \cap \dots \cap \bar{H}_{i_{\ell+1}} \neq \emptyset$$

$$\iff \text{ either } H_{i_1} \cap \dots \cap H_{i_{\ell+1}} \neq \emptyset \text{ or } \bar{H}_{i_1} \cap \dots \cap \bar{H}_{i_{\ell+1}} \cap \bar{H}_{\infty} \neq \emptyset$$

$$\iff \text{ either } \mathcal{B} \text{ is central or nonessential }$$

$$\iff \mathcal{B} \text{ is either central or nonessential }.$$

The last equivalence follows from Proposition 9.2.1. These arguments imply that the condition for S to be in $\mathcal{J}(\mathcal{A}_{\infty})$ can be stated in terms of $L(\mathcal{A})$.

Definition 9.2.3. For $A \in A_n(\mathbb{C}^\ell)$, we say that A has combinatorial type $\mathcal{J}(A_\infty)$. Two essential affine arrangements A_1 and A_2 in $A_n(\mathbb{C}^\ell)$ are combinatorially equivalent if they have the same combinatorial type.

It follows from Proposition 9.2.2 that two essential simple affine arrangements A_1 , $A_2 \in A_n(\mathbb{C}^{\ell})$ are combinatorially equivalent if and only if there is an isomorphism $L(A_1) \to L(A_2)$.

Definition 9.2.4. We say that $S \subseteq \left(\binom{[n+1]}{\ell+1} \right)$ is affine realizable if there exists a simple affine arrangement A in \mathbb{C}^{ℓ} with $\mathcal{J}(A_{\infty}) = S$ hence

$$\mathcal{A}_n(\mathbb{C}^\ell)\cap\mathsf{B}_\mathcal{S}
eq\emptyset.$$

It is clear that $\mathsf{B}_{\mathcal{S}} \subseteq \mathcal{A}_n(\mathbb{C}^\ell)$ if $\mathcal{S} \neq \left(\binom{[n+1]}{\ell+1} \right)$ is affine realizable. In other words, if $\mathcal{M} \in \mathcal{M}_n(\mathbb{CP}^\ell)$ is combinatorially equivalent to (the projective closure of) an essential simple affine arrangement, then \mathcal{M} is (the projective closure of) an essential simple affine arrangement.

9.3 Codimension ≤ 1

Let $\mathcal{A} \in \mathcal{A}_n(\mathbb{C}^{\ell})$ be essential in the rest of this section. In particular, $\ell \leq n$. We write $\mathsf{B}_{\mathcal{A}} = \mathsf{B}_{\mathcal{J}(\mathcal{A}_{\infty})}$. By Propostion 9.2.2, we can regard $\mathsf{B}_{\mathcal{A}}$ as a moduli space of the affine arrangements which are combinatorially equivalent to \mathcal{A} . When the codimension of $\mathsf{B}_{\mathcal{A}}$ in $((\mathbb{CP}^{\ell})^*)^n$ is less than two, we can describe explicitly the geometry of $\mathsf{B}_{\mathcal{A}}$ and $\mathsf{D}_{\mathcal{A}}$.

Codimension Zero

The moduli space $B_{\mathcal{A}}$ has codimension zero in $((\mathbb{CP}^{\ell})^*)^n$ if and only if $|\mathcal{J}(\mathcal{A}_{\infty})| = 0$. Recall that an affine arrangement \mathcal{A} is in general position if $\mathcal{J}(\mathcal{A}_{\infty}) = \emptyset$. Thus $B_{\mathcal{A}}$ is a moduli space of general position arrangements. In this case $B_{\mathcal{A}}$ is a dense open subset of $((\mathbb{CP}^{\ell})^*)^n$ and

$$\mathsf{D}_{\mathcal{A}} = \bigcup_{\mathit{T}} \mathsf{C}_{\{\mathit{T}\}},$$

where T runs over $\binom{[n+1]}{\ell+1}$. Since $\mathsf{C}_{\{T\}}$ is defined by the single equation $\Delta_T=0$ and the determinant function is an irreducible polynomial (a special case of Theorem 9.3.1), each $\mathsf{C}_{\{T\}}$ is an irreducible hypersurface. Therefore $\mathsf{D}_{\mathcal{A}}$ is composed of $\binom{n+1}{\ell+1}$ irreducible components.

When $\ell = 1$, $B_{\mathcal{A}} = \{(t_1, \dots, t_n) \in \mathbb{C}^n \mid t_i \neq t_j \ (i \neq j)\}$ is the pure braid space.

Codimension One

We need the following fundamental result on determinantal ideals.

Theorem 9.3.1 (Hochster-Eagon[HE]). Let $X = (X_{ij})$ be a matrix of indeterminates over an integral domain R of size $m \times n$. Let $I_t(X)$ be the ideal in the polynomial ring $R[X_{ij}]$ generated by the t-minors of X. Then $I_t(X)$ is a prime ideal of height (m-t+1)(n-t+1). \square

Recall the $(\ell+1) \times (n+1)$ -matrix T. Let $\mathbb{C}[\mathsf{T}]$ be the polynomial ring over \mathbb{C} with indeterminates $\{t_j^{(i)}\}_{0 \leq i \leq \ell, 1 \leq j \leq n}$. For $S \subseteq [n+1]$, define T_S to be the submatrix of T consisting of the columns corresponding to S. Recall that for $|S| = \ell + 1$, we defined $\Delta_S = \det(\mathsf{T}_S)$.

Lemma 9.3.2. Let $S, S' \in \left(\binom{[n+1]}{\ell+1}\right)$ and $I = (\Delta_S, \Delta_{S'})\mathbb{C}[\mathsf{T}]$. Define I_t as in Theorem 9.3.1.

(i) (cf. Andrade-Simis [AS, Corollary 1.2]) If $|S \cap S'| = \ell$, then

$$I = I_{\ell}(\mathsf{T}_{S \cap S'}) \cap I_{\ell+1}(\mathsf{T}_{S \cup S'}).$$

(ii) If $|S \cap S'| \leq \ell - 1$, then I is a prime ideal of height two.

Proof. (i) Let $A = \mathsf{T}_{S \cap S'}, B = \mathsf{T}_{S \cup S'}$. Write $B = (b_{ij})_{0 \le i \le \ell, 0 \le j \le \ell+1}$. Define

$$\Delta_j = (-1)^j \det(B_j) \quad (j = 0, \dots, \ell + 1),$$

where B_j is obtained from B by deleting the jth column of B. We may assume that $\Delta_S = \Delta_0$ and $\Delta_{S'} = \Delta_{\ell+1}$. Let $P_1 = I_{\ell}(A)$ and $P_2 = I_{\ell+1}(B) = (\Delta_0, \dots, \Delta_{\ell+1})$. We will show that $I = P_1 \cap P_2$. If $\ell = 1$ and $S \cap S' = \{n+1\}$, then $P_1 = \mathbb{C}[T]$. In this case $I = P_2$ and (i) holds true. In the other cases, both P_1 and P_2 are prime ideals of

height two by Theorem 9.3.1. By elementary linear algebra, we have $\sum_{j=0}^{\ell+1} b_{ij} \Delta_j = 0$ $(i=0,\ldots,\ell)$. Thus $\sum_{j=1}^{\ell} b_{ij} \Delta_j \in I$ $(i=0,\ldots,\ell)$. By applying Cramer's rule, we get $P_1P_2 \subseteq I$. Since I is generated by two irreducible polynomials, every associated prime of I is of height two or less. If P is an associated prime of I, then $P_1P_2 \subseteq I \subseteq P$. Thus either $P_1 \subseteq P$ or $P_2 \subseteq P$. So we have $P \in \{P_1, P_2\}$. Write a primary decomposition of I as $I = Q_1 \cap Q_2$ with $\sqrt{Q_i} = P_i$ (i=1,2). Note that there is no inclusion relation between P_1 and P_2 . Since $P_1P_2 \subseteq Q_i$, we have $P_i = Q_i$ (i=1,2).

(ii) We thank K. Kurano for the following argument. Case 1): Suppose $n+1 \notin S \cap S'$. Choose $S'' \in \left(\begin{bmatrix} [n+1] \\ \ell+1 \end{bmatrix} \right)$ such that $S \cap S' \subset S'' \subset S \cup S'$ and $|S \cap S''| = \ell$. Let $\Delta = \Delta_S$, $\Delta' = \Delta_{S'}$, and $\Delta'' = \Delta_{S''}$. By abuse of notation, let a matrix also denote the set of its entries. So the ring $R = \mathbb{C} \left[\mathsf{T}_{S''}, (\Delta'')^{-1} \right]$ stands for the subring of $\mathbb{C}(\mathsf{T}_{S''})$ generated by $(\Delta'')^{-1}$ and the entries of $\mathsf{T}_{S''}$ over \mathbb{C} . Let $\mathsf{Z} = (\mathsf{T}_{S''})^{-1}$. Then each entry of Z lies in R. Let $S''' = (S \cup S') \setminus S''$. Since the entries of $\mathsf{T}_{S'''}$ are algebraically independent over $\mathbb{C}(\mathsf{T}_{S''})$, so are the entries of $\mathsf{ZT}_{S'''}$. Note that there exists an entry of $\mathsf{ZT}_{S'''}$ which is equal either to $\det(\mathsf{ZT}_S)$ or to $-\det(\mathsf{ZT}_S)$ and that there exists a minor of $\mathsf{ZT}_{S'''}$ which is equal either to $\det(\mathsf{ZT}_S)$ or to $-\det(\mathsf{ZT}_{S'})$. Thus the ideal

$$(\Delta, \Delta')R\left[\mathsf{T}_{S'''}\right] = (\det(\mathsf{T}_S), \det(\mathsf{T}_{S'}))R\left[\mathsf{T}_{S'''}\right] = (\det(\mathsf{ZT}_S), \det(\mathsf{ZT}_{S'}))R\left[\mathsf{ZT}_{S'''}\right]$$

is a prime ideal of

$$R\left[\mathsf{ZT}_{S'''}\right] = R\left[\mathsf{T}_{S'''}\right] = \mathbb{C}\left[\mathsf{T}_{S \cup S'}, (\Delta'')^{-1}\right]$$

by Theorem 9.3.1. On the other hand, the associated primes of $(\Delta, \Delta')R[T_{S\cup S'}]$ are $I_{\ell}(T_{S\cap S''})$ and $I_{\ell+1}(T_{S\cup S''})$. Since $(S\cap S'')\setminus S'\neq\emptyset$ and $|(S\cup S'')\setminus S'|\geq 2$, we have $\Delta'\notin I_{\ell}(T_{S\cap S''})$ and $\Delta'\notin I_{\ell+1}(T_{S\cup S''})$. Therefore $(\Delta,\Delta''):(\Delta')=(\Delta,\Delta'')$. This implies $(\Delta,\Delta'):(\Delta'')=(\Delta,\Delta')$. Thus Δ'' is a non-zero divisor of $\mathbb{C}[T_{S\cup S'}]/(\Delta,\Delta')$. Since the factor ring $\mathbb{C}[T_{S\cup S'},(\Delta'')^{-1}]/(\Delta,\Delta')$ is a domain, so is the factor ring $\mathbb{C}[T_{S\cup S'}]/(\Delta,\Delta')$. This shows (ii).

Case 2): Suppose $n+1 \in S \cap S'$. Then this case reduces to Case 1).

Case 3): Suppose $n+1 \in S \setminus S'$. Choose $S'' \in \left(\binom{[n+1]}{\ell+1} \right)$ such that $S \cap S' \subset S'' \subset S \cup S', |S \cap S''| = \ell$, and $n+1 \in S''$. The rest of the proof is exactly the same as Case 1).

Proposition 9.3.3. The moduli space $B_{\mathcal{A}}$ has codimension one in $((\mathbb{CP}^{\ell})^*)^n$ if and only if $|\mathcal{J}(\mathcal{A}_{\infty})| = 1$. Suppose $\mathcal{J}(\mathcal{A}_{\infty}) = \{S\}$. Write $B = B_{\mathcal{A}}$, $C = C_{\{S\}}$ and $D = \bar{B} \setminus B$. Then

- (i) $\bar{\mathsf{B}} = \mathsf{C}$ is irreducible,
- (ii) B is smooth,
- (iii) the irreducible components of D are:

$$\begin{aligned} & \textbf{type I: } \mathsf{C}_{\{S,S'\}} \ for \ S' \in \left(\binom{[n+1]}{\ell+1} \right) \ with \ |S \cap S'| \leq \ell-1, \\ & \textbf{type II: } \mathsf{C}_{\langle S-p \rangle} \ for \ p \in S, \ where \ \langle S-p \rangle = \{S' \in \left(\binom{[n+1]}{\ell+1} \right) \mid S' \supseteq S \setminus \{p\}\}, \\ & \textbf{type III: } \mathsf{C}_{\langle S+q \rangle} \ for \ q \in [n+1] \setminus S, \ where \ \langle S+q \rangle = \{S' \in \left(\binom{[n+1]}{\ell+1} \right) \mid S' \subseteq S \cup \{q\}\}. \end{aligned}$$

In all, there exist $\binom{n+1}{\ell+1} - \ell(n-\ell-1)$ irreducible components of D. When $\ell=1$, type II does not appear and the number of irreducible components of D is equal to n(n-1)/2.

Proof. Since \mathcal{A} is essential and not in general position, $\ell + 1 \leq n$.

- (i) By Theorem 9.3.1, Δ_S is an irreducible polynomial. Thus C is irreducible and $\bar{\mathsf{B}}=\mathsf{C}.$
- (ii) Let $n+1 \notin S$. Let J be the ideal generated by the partial derivatives of Δ_S . Because of the Laplace expansion formula for $\det(\mathsf{T}_S)$, J is generated by the ℓ -minors of T_S . Thus any singular point \mathbf{t} of B lies in $\mathsf{C}_{\{S'\}}$ for any $S' \in \left(\binom{[n+1]}{\ell+1} \right)$ with $|S \cap S'| = \ell$. Thus $\mathbf{t} \notin \mathsf{B}$. We can similarly prove the assertion when $n+1 \in S$.
- (iii) Let $S' \in \left(\binom{[n+1]}{\ell+1} \right) \setminus \{S\}$. Note $\mathsf{D}_{S'} = \mathsf{C}_{\{S,S'\}}$. If $|S \cap S'| \leq \ell-1$, then $(\Delta_S, \Delta_{S'})$ is a prime ideal by Lemma 9.3.2 (i). Thus $\mathsf{D}_{S'} = \mathsf{C}_{\{S,S'\}}$ is irreducible. If $|S \cap S'| = \ell$, then $(\Delta_S, \Delta_{S'}) = I_\ell(\mathsf{T}_{S \cap S'}) \cap I_{\ell+1}(\mathsf{T}_{S \cup S'})$ by Lemma 9.3.2 (ii). If $\ell \geq 2$, this is a primary decomposition of $(\Delta_S, \Delta_{S'})$. Let $\{p\} = S \setminus S'$ and $\{q\} = S' \setminus S$. Then

$$\mathsf{D}_{S'} = \mathsf{C}_{\{S,S'\}} = \mathsf{C}_{\langle S-p \rangle} \cup \mathsf{C}_{\langle S+q \rangle}$$

is the decomposition of $\mathsf{D}_{S'}$ into irreducible components. The cardinality of the set $\{S' \in \left(\binom{[n+1]}{\ell+1}\right) \mid |S \cap S'| \leq \ell-1\}$ is equal to $\binom{n+1}{\ell+1} - 1 - (n-\ell)(\ell+1)$. Thus the total number of irreducible components of $\mathsf{D} = \bigcup_{S' \in \mathcal{J}(\mathcal{A}_{\infty})^c} \mathsf{D}_{S'}$ is equal to

$$\binom{n+1}{\ell+1} - 1 - (n-\ell)(\ell+1) + (\ell+1) + (n-\ell) = \binom{n+1}{\ell+1} - \ell(n-\ell-1).$$

If $\ell = 1 = |S \cap S'|$, then the ideal $I_{\ell}(\mathsf{T}_{S \cap S'})$ does not define a subvariety of $((\mathbb{CP}^{\ell})^*)^n$. Thus $\mathsf{D}_{S'} = \mathsf{C}_{\langle S+q \rangle}$ where $\{q\} = S' \setminus S$. Therefore the total number of irreducible components of $\mathsf{D} = \bigcup_{S' \in \mathcal{J}(\mathcal{A}_{\infty})^c} \mathsf{D}_{S'}$ is equal to

$$\binom{n+1}{2} - 1 - 2(n-1) + (n-1) = n(n-1)/2.$$