Chapter 9

Moduli Spaces

9.1 Combinatorially Equivalent Arrangements

Fix a pair (¢,n) with £ > 1 and n > 0. Recall from Section 3.1 that we compactify
C’ by adding the infinite hyperplane H,, to get complex projective space CP*.
In order to understand the moduli space of arrangements, we must consider their
degeneration. There are two possibilities when we move a single hyperplane. Either
it moves into an already existing intersection, thereby creating more dependencies
(or parallelism), or it coincides with an existing hyperplane as was the case in 1-
arrangements. In the former case the result is still an arrangement. In the latter
case we want to register the coincidence. We do this by using the following notion.

Definition 9.1.1. A multiset is a set which allows repetitions. A multiset M is a
projective multiarrangement if M is a finite multiset of projective hyperplanes
of CPt. Let

M, (CPY) = {projective multiarrangements of n + 1 linearly ordered

hyperplanes of CP* where Hy, is the last hyperplane}.

Let (CPY)* be the dual projective space of CP‘. Each point of (CP‘)* corre-
sponds to a hyperplane of CP¢. Thus we indentify M,, (CP*) with ((CP¢)*)" :

My (CP) = ((CP)*)"

s0 M,,(CP') is a compact complex manifold isomorphic to (CP¢)".
Let

0 ¢ 0 ¢
t = <(t(1) R N S RTRR: ) WU (1O ---:t;”)).
be homogeneous coordinates for ((CP*)*)". Let u = (ug : ug : -+ : ug) be standard
coordinates for CP‘. The linear forms a; = tgo)uo + Zﬁzlty)uj (i=1,...,n)
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together with the hyperplane at infinity define a multiarrangement with coefficient
matrix

AP LC |
" t 0

Let M € M, (CP"). Write M = {Hy,Ho,... ,Hy11}. We say that M is
essential if (¢ H = (). Denote the set {1,2,...,n+ 1} by [n+ 1]. Define

1
((bz:ll—_ 1]>) = { subsets of [n + 1] of cardinality £+1 }.

Let p denote the power set. Let

J : My (CP') —W(([Zill]))

be the map defined by

TM) = {in,... et} € ((“l}il”)) By 0N iy, £ 0},

Let S = (i1,...,ie+1) and let Tg denote the submatrix of T consisting of the
columns labeled by S. Let Ag = det(Tg) be the corresponding minor. Then
S € J(M) if and only if Ag = 0.

Example 9.1.2. Let M € M,,(CPY). Suppose that n > £. Then M is in general
position if and only if J(M) = 0. Similarly, M is essential if and only if

soae((521)

because (Ve pg H = 0 implies that there exist {+1 hyperplanes Hi,,....H;,  eM
such that Hy, N---N H;,,, = 0.

For M € M,,(CP"), we define the intersection poset L(M) by

LM)={[] H|NC M}

HeN

Here we agree that NyepH = CPY € L(M). A (multi) subset A is said to
be linearly independent if codimgpe(NgenH) = |N|, where we agree that
codimepe ) = £+ 1.
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Proposition 9.1.3. Let M; € M,,(CP) fori=1,2 and let 1 : My — My be an
order-preserving bijection. Suppose that both My and My are essential. Then the
following three conditions are equivalent:

(i) ¢ induces an isomorphism L(My) — L(Ms),

(i) Ni C My is linearly independent if and only if L(N7) is linearly independent,

(iii) T (M) = T (Mz)

Proof. Tt is obvious that conditions (i) and (ii) are equivalent. Note that M; and
My contain £ + 1 linearly independent hyperplanes. In general, let vy, vs, ..., v,
span an (¢ + 1)-dimensional vector space W. Then it is an elementary fact that
any linearly independent subset of the set {vy,va,...,v,} is contained in a basis
for W. This implies that (ii) and (iii) are equivalent. O

Definition 9.1.4. Call J(M) the combinatorial type of M € M, (CP!). Two
essential arrangements My and Msy in M,(CP') are called combinatorially
equivalent if they have the same combinatorial type.

It follows from Proposition 9.1.3 that two essential arrangements M; and Mo
in M,,(CPY) are combinatorially equivalent if and only if there is a natural iso-
morphism L(M;) — L(M3). We see in the next example that the map J is not
surjective.

Definition 9.1.5. Define
Bs = j_l(S)

for S C <<[Z—tll]>> We say that S C <<[Zi11]>> is realizable when Bs # ().

Example 9.1.6. Evample 9.1.2 shows that the sets () and [Z:II—— i}
izable. However, when { =1, S = {{1,2},{2,3}} is not realizable. The smallest
realizable set containing S is 8" = {{1,2},{2,3},{1,3}}. Then M has combinato-
rial type S' if and only if M is an arrangement of n + 1 points in CP* such that
the first three points coincide and all the other points are distinct.

are real-

By definition we have

M, (CPY) =| JBs,
S

where S runs over the set of all realizable subsets of [Zill }>> and the union
e : . n+1]
is disjoint. Given a realizable set S C (11 , define

Cs= | Bs.

8’28
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Then Cgs is defined by the vanishing of the minors specified by S. These are
homogeneous polynomial equations of degree /41 and thus Cgs is a closed subvariety
of M,,(CP*). Since we have

Bs=Cs\ |J Cs,
858

Bs is a locally closed set of M,,(CP). Let Bs be the closure of Bs in M,,(CPY).
It is known that Bs can have singularities. It is conjectured that Bs is a smooth
manifold.

[n+1]

Proposition 9.1.7. Suppose that S C << (41

>> is realizable. Define
Ds,r = Bs N Csuiry

forTe s = ((Vl}il”)) \'S, and Ds = Upes. Dsr. Then

(l) Bs\BSZDS, B
(ii) for any T € S¢, Ds 1 is a hypersurface in Bs.

Proof. (i) We have

Bs\Ds = Bs\ |J Csugry = Bs\ |JCs C Cs\ | Cs = Bs.
Tese 558 598

On the other hand, it is clear that Bs C Bs \ Ds.

(ii) Note that Csuqry (T € S8°) is defined by a single equation in Cs. If Ds
is not of codimension one in Bg, then there exists an irreducible component Cy of
Bs which lies in Ds 7. Thus Co N Bs = () by (i). On the other hand, since Bs is
dense in Bg, Bs meets any irreducible component of Bs. This is a contradiction,
which proves (ii). O

The pure braid space of Chapter 8 is the space By for £ = 1. In Chapter 8 we
considered By inside C™ while here we view it inside (CP!)™, so we see a compact-
ification of By. The additional components in this compactification correspond to
points moving to infinity.

9.2 Realizable Arrangements

So far in this chapter we have considered only multiarrangements in CP‘. Next
let A, (C’) be the set of affine arrangements of n linearly ordered hyperplanes
in C!. When we want to emphasize that repetitions are not allowed, we call an
arrangement simple. Let A € A,(C%). Recall the projective closure Ay, from
Section 3.1:

A = {H | H € A}U{HL},
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where H is the closure of H in CP. Then A, is a projective arrangement of
n + 1 hyperplanes of CP‘. The hyperplanes of Ay, are naturally linearly ordered
by regarding the infinite hyperplane Ho, as the (n + 1)st hyperplane. Thus A, €
M,,(CPY) and there is an injective map

Ap(CH — M, (CPY)

which sends A € A, (CY) to its projective closure Ay, € M, (CP'). Through this
injection, we identify A, (C?) with its image in M,,(CP). Then the subset A, (C")
is open and dense in M,,(CP*) with respect to the Zariski topology because it is
characterized by the open condition that no two hyperplanes are equal.

Proposition 9.2.1. Let A € A,(C") and recall the cone construction from Section
3.1. The following five conditions are equivalent:

(i) A is essential so r(A) =,

(ii) cA is essential so r(cA) =L+ 1,

(iii) the intersection of all hyperplanes of cA contains no point other than the
origin,

(iv) A is essential so the intersection of all hyperplanes of the projective clo-
sure Ay is empty,

waua # ((G10):

Proof. Tt is clear that conditions (ii) and (iii) are equivalent. Example 9.1.2 shows
that (iv) and (v) are equivalent. The implication (iv) = (iii) is obvious.

(iii) = (i): Let Hy be the “infinite” hyperplane in cA. Then there exist
hyperplanes H;,, ..., H;, in A such that the intersection ¢cH;, N---NcH;, N Hy
consists of the origin only. Thus ¢H;, N---NcH;, is a line not entirely inside H.
Therefore H;, N---N H;, is a point.

(i) = (iv): Let Hy, be the infinite hyperplane (=last hyperplane) in A.,. By the
assumption there exist hyperplanes H;,, ..., H;, such that the intersection H;, N
.-+ H;, is a point. Thus 1':1@41 NN H@-Z N Hy is empty. O

Proposition 9.2.2. Let Ay, Ay be essential simple £-arrangements with an order-
preserving bijection v : Ay — As. Then the following three conditions are equiva-
lent:

(i) v induces an isomorphism L(A;) — L(As),

(ii) ¢ induces an isomorphism L((A1)oo) — L((A2)0o),

(iii) T ((Ar)oo) = T ((A2)o0)

Proof. Tt follows from Proposition 9.1.3 that conditions (ii) and (iii) are equivalent.
Since L(A) is obtained from L(As) by deleting everything above or equal to
the infinite hyperplane H, (ii) implies (i).
Now it is sufficient to prove that (i) implies (iii). We will show that the poset
structure of L(A) completely determines J(Ax). Let S C Ay with [S| =4+ 1.
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Case 1) Suppose S = {H;,,...,H;,, Hy,} with 1 < iy < --- < i < n. Let
B ={Hi,...,H;}. Then S = By € J(Ax) if and only if B is not essential by
Proposition 9.2.1.

Case 2) Suppose S = {Hj,,...,H;,,,} with 1 < i; < -+ < igp1 < n. Let
B = {Hip- "’Hié+l}' Then

S e j(Aoo) — Hil ﬂ"'ﬂHiéH ?é(b
< either H;, N---NH;,,, #0or Hy,N---NH;,,, NHe #0
<= either B is central or B, is nonessential

<= B is either central or nonessential .

The last equivalence follows from Proposition 9.2.1. These arguments imply that
the condition for S to be in J(Aw) can be stated in terms of L(A). O

Definition 9.2.3. For A € A,(C’), we say that A has combinatorial type
J(Ax). Two essential affine arrangements Ay and Ay in A,(C*) are combina-
torially equivalent if they have the same combinatorial type.

It follows from Proposition 9.2.2 that two essential simple affine arrangements
Aq, Ay € An((CZ ) are combinatorially equivalent if and only if there is an isomor-
phism L(A;) — L(A2).

n+1]
(+1
exists a simple affine arrangement A in C* with J(Ax) = S hence

Definition 9.2.4. We say that S C <<[ )) is affine realizable if there

A, (CHNBs # 0.

n+1]
(+1
words, if M € M, (CP) is combinatorially equivalent to (the projective closure
of) an essential simple affine arrangement, then M is (the projective closure of) an
essential simple affine arrangement.

It is clear that Bs C A, (CY) if S # <<[ >> is affine realizable. In other

9.3 Codimension < 1

Let A € A,(C’) be essential in the rest of this section. In particular, £ < n. We
write B4 = By(4..). By Propostion 9.2.2, we can regard B4 as a moduli space
of the affine arrangements which are combinatorially equivalent to A. When the
codimension of B4 in ((CP*)*)" is less than two, we can describe explicitly the
geometry of B4 and D 4.
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Codimension Zero

The moduli space B 4 has codimension zero in ((CP*)*)™ if and only if |7 (A )| = 0.
Recall that an affine arrangement A is in general position if J(A) = 0. Thus B4
is a moduli space of general position arrangements. In this case B 4 is a dense open

subset of ((CP*)*)" and
Da=JCry,
T

[n+1]
(+1
A7 = 0 and the determinant function is an irreducible polynomial (a special case
of Theorem 9.3.1), each Cyry is an irreducible hypersurface. Therefore D 4 is com-

posed of (?:_’11) irreducible components.
When ¢ =1, By = {(t1,...,t,) € C" | t; #t; (i # j)} is the pure braid space.

where T' runs over >> Since Cyry is defined by the single equation

Codimension One

We need the following fundamental result on determinantal ideals.

Theorem 9.3.1 (Hochster-Eagon[HE]). Let X = (X;;) be a matriz of indeter-
minates over an integral domain R of size m x n. Let I;(X) be the ideal in the
polynomial ring R[X;;] generated by the t-minors of X. Then I,(X) is a prime
ideal of height (m —t+1)(n —t+1). O

Recall the (/41) X (n+1)-matrix T. Let C[T] be the polynomial ring over C with
indeterminates {tgl)}0<i<[ 1<j<n. For S C [n+ 1], define Tg to be the submatrix

It R N

of T consisting of the columns corresponding to S. Recall that for |S| = £+ 1, we
defined Ag = det(Tg).

n+1]

!
Lemma 9.3.2. Let 5,5 € (( 041

Theorem 9.3.1.
(i) (cf. Andrade-Simis [AS, Corollary 1.2]) If|SNS'| =, then

I'=1(Tsns) N Ies1(Tsus).

(ii) If |SNS'| <€ —1, then I is a prime ideal of height two.

>> and I = (Ag,Ag/)C[T]. Define I; as in

Proof. (1) Let A= Tgng, B=Tgsyug . Write B = (bij)0§i§€,0§j§l+1- Define
Aj=(-1)Ydet(B;) (j=0,...,0+1),

where B; is obtained from B by deleting the jth column of B. We may assume that
Ag=Apand Ag = Apyq. Let Py = Ig(A) and P, = Ig+1(B) = (Ao, .. .,Ag_H).
We will show that I = PiNP,. If { = 1 and SNS’' = {n+1}, then P; = C[T]. In this
case I = P5 and (i) holds true. In the other cases, both P; and P; are prime ideals of
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0 (i=0,...,£). Thus ZﬁzlbijAj el (i=0,...,£). By applying Cramer’s
rule, we get Py P, C I. Since I is generated by two irreducible polynomials, every
associated prime of I is of height two or less. If P is an associated prime of I, then
PP, C I C P. Thus either Py C P or P, C P. So we have P € {P;, P,}. Write
a primary decomposition of I as [ = Q1 N Q2 with \/Q; = P; (i = 1,2). Note
that there is no inclusion relation between P; and P,. Since PP, C Q;, we have
P=Q; (i=12)

(i) We thank K. Kurano for the following argument. Case 1): Suppose n+1 ¢
SNS’. Choose 8" € ((%IF such that SNS" € " € SUS and [SNS"| = L.
Let A = Ag, A’ = Ag/, and A” = Agn. By abuse of notation, let a matrix also
denote the set of its entries. So the ring R = C [Tgn, (A”)™!] stands for the subring
of C(Ts) generated by (A”)~! and the entries of Tg» over C. Let Z = (Tgr) L.
Then each entry of Z lies in R. Let S = (SU S’) \ S”. Since the entries of Tg
are algebraically independent over C(Tg»), so are the entries of ZTg. Note that
there exists an entry of ZTg/» which is equal either to det(ZTg) or to —det(ZTg)
and that there exists a minor of ZT g~ which is equal either to det(ZTg/) or to
—det(ZTg/). Thus the ideal

height two by Theorem 9.3.1. By elementary linear algebra, we have Z§+(1) bijAj =

(A, AR [Tgn] = (det(Ts), det(Ts ) R[Tsm] = (det(ZTs), det(ZTsr)) R [ZT ]
is a prime ideal of
R [ZTS“’] =R [TS/H} =C [TSUS’a (A//)_l]

by Theorem 9.3.1. On the other hand, the associated primes of (A, A")R [Tsug]
are I(Tsng) and Ip41(Tsus). Since (SN S”)\ S # 0 and |[(SUS")\ S| > 2,
we have A" ¢ I)(Tgngr) and A" & Ipy1(Tsusr). Therefore (A, A”) @ (A') =
(A, A”). This implies (A, A") : (A”) = (A, A’). Thus A” is a non-zero divisor of
C[Tsus'] /(A,A"). Since the factor ring C [Tsug/, (A”)‘l] /(A,A') is a domain,
so is the factor ring C [Tsus/] /(A, A’). This shows (ii).

Case 2): Suppose n+1 € SN S". Then this case reduces to Case 1).

Case 3): Suppose n+1 € S\ S’. Choose 5" € [Zi 11] such that SNS" C

ST cSUS|ISNS"| =4, and n+1 € S”. The rest of the proof is exactly the
same as Case 1). 0

Proposition 9.3.3. The moduli space B4 has codimension one in ((CP)*)" if
and only if |J (Ax)| = 1. Suppose J(Ax) = {S}. Write B =Ba, C = C(gy and
D =B\B. Then

(i) B = C is irreducible,

(ii) B is smooth,

(iii) the irreducible components of D are:
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type I: Cy5.9y for S’ € <<[Zi11]>> with |SNS'| <£-1,

type IL: Cs_, forp € S, where (S —p) = {S' € <<[21—11]>) | S" 2 S\{p}},

type III: Cig1q) forq € [n+1]\S, where (S +¢q) = {9’ € <<[T€Lill]>> | ' C

SU{g}}.

In all, there exist (?Ill) —U(n—{—1) irreducible components of D. When { =1,
type II does not appear and the number of irreducible components of D is equal to

n(n—1)/2.

Proof. Since A is essential and not in general position, £+ 1 < n.

(i) By Theorem 9.3.1, Ag is an irreducible polynomial. Thus C is irreducible
and B = C.

(i) Let n 4+ 1 ¢ S. Let J be the ideal generated by the partial derivatives of
Ag. Because of the Laplace expansion formula for det(Tg), J is generated by the (-
minors of Tg. Thus any singular point t of B lies in Cg/y for any S’ € <<[7gi 11 ]>>
with [SNS'| = £. Thus t ¢ B. We can similarly prove the assertion when n+1 € S.
(iii) Let S e <<[2111] ) \ {S}. Note Dy = C{S,S’}- If |SﬂSl| </{—1, then
(As,Agr) is a prime ideal by Lemma 9.3.2 (i). Thus Dy = Cyg g/} is irreducible.
If |S N S/| = {, then (As,AS/) = I[(TSQS/) N Ig_|_1(TSUs/) by Lemma 9.3.2 (ii).
If ¢ > 2, this is a primary decomposition of (Ag,Ag/). Let {p} = S\ S and
{¢} =9\ S. Then

Ds = Cis.51 = Cis—p) U Cisia
is the decomposition of Dg: into irreducible components. The cardinality of the set
[n+1] . 1
{s € (( (41 | [SNS'| <€—1}is equal to (’gjr’l) —1—(n—{¢)({+1). Thus
the total number of irreducible components of D = (Jg, T(Aw)e Do is equal to

(151)-1-e-nesn+ @+ e-0=(} 1) ~ta-c-,

(+1
If £ =1 =|5n9 then the ideal I;(Tsns) does not define a subvariety of
((CP“)*)". Thus Dgr = C(g4q) where {q} = "\ S. Therefore the total number of
irreducible components of D = (Jg, T(Ax)e Dy is equal to

(";1> ~1-2(n-1)+(n-1)=n(n-1)/2





