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Wild character varieties, points on the Riemann
sphere and Calabi’s examples

Philip Boalch

Abstract.

We will give several descriptions of some basic examples of wild
character varieties, including a discussion of links to work of Sibuya,
Calabi and Euler, amongst others.

§1. Introduction

Wild character varieties are moduli spaces of monodromy data of
connections on bundles on smooth algebraic curves. They were shown
to admit holomorphic symplectic structures in [B99, B01a], to admit
(complete) hyperkähler metrics in [BB04], and to arise as finite dimen-
sional quasi-Hamiltonian quotients in [B02b, B07, B09b, B14a]. A simple
example was shown to underlie the Drinfeld–Jimbo quantum group in
[B01b] (as conjectured in [B99, B01a]) and further it was shown in [B02a]
that Lusztig’s symmetries (a.k.a. the quantum Weyl group generators)
are the quantisation of a simple example of a wild mapping class group
action on a wild character variety.

The wild character varieties generalise the tame character varieties,
which are moduli spaces of monodromy data of regular singular con-
nections, i.e. spaces of representations of the fundamental group. The
extra monodromy data, enriching the fundamental group representation,
needed to classify irregular connections is known as “Stokes data”. There
are at least two approaches to Stokes data. One approach “Stokes struc-
tures” (due to Deligne [Del78, Ber80, Mal83, BV89, Mal91, DMR07],
building on work of Malgrange, Sibuya and others) involves adding flags
on sectors at each pole, measuring the possible exponential growth rates
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of solutions. In general it is complicated to classify such flags. A dif-
ferent, but algebraically equivalent, approach was developed by Balser–
Jurkat–Lutz [Jur78, BJL79], Martinet–Ramis [MR91], Loday-Richaud
[LR94] and others. It involves canonical Stokes matrices and leads to
the notion of “Stokes local system”. This approach was extended to
arbitrary reductive groups G in [B02a] and used in the description of
the wild character varieties as multiplicative symplectic quotients.

The aim of this article is to describe a simple class of examples of
wild character varieties (studied in depth by Sibuya [Sib75]) from both
points of view, to illustrate this dichotomy. In these examples it is not
so difficult to directly bridge the gap between the two viewpoints. A key
point is that for connections on rank two bundles the flags amount to
points of the Riemann sphere, and so in simple cases the wild character
varieties are specific moduli spaces of points on P1, studied by Sibuya
when he considered the distinguished “subdominant” solutions in sectors
at the poles.

For example we will explain the following theorem. Let

MSibuya
2k = {p1, . . . , p2k ∈ P1(C)

∣∣ p1 �= p2 �= · · · �= p2k �= p1}/PSL2(C)

be the moduli space of 2k-tuples of points of the Riemann sphere such
that cyclically-consecutive points are distinct. The prescription

ϕ(p1, . . . , p2k) = (−1)k
(p1 − p2)(p3 − p4) · · · (p2k−1 − p2k)

(p2 − p3)(p4 − p5) · · · (p2k − p1)

gives a well-defined map ϕ : MSibuya
2k → C∗, generalising the cross-ratio,

and the subvarieties MSibuya
2k (q) := ϕ−1(q) have dimension 2k − 4 for

any q ∈ C∗.

Theorem 1. For any q ∈ C∗ the space MSibuya
2k (q) is a wild char-

acter variety (by [Sib75]), and it is complex symplectic (by [B01a]). If
q �= 1 it is smooth, and it admits a complete hyperkähler metric (by
[BB04]).

If k = 3 (i.e. 6-tuples of points) then each space MSibuya
2k (q) has real

dimension four. Physicists refer to such complete hyperkähler manifolds
as “gravitational instantons”. However these examples were not known
to physicists. On the other hand the underlying complex algebraic sur-
faces have appeared frequently, in relation to the second Painlevé equa-
tion, as will be explained.

The layout of this article is as follows. Section 2 gives the direct
“canonical Stokes matrices” approach to a simple class of wild character
varieties, and explains how they arise as finite dimensional multiplicative
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symplectic quotients. Section 3 then recalls the direct approach to the
spaces of points on P1 considered by Sibuya and then gives the direct
proof of the isomorphism between the two approaches. (A more sophis-
ticated approach is discussed in the appendix, which provides a brief
introduction to Stokes structures and Stokes local systems.) Next Sec-
tion 4 describes the quiver approach and shows that these wild character
varieties are multiplicative analogues of a family of hyperkähler mani-
folds introduced by Calabi. Finally Section 5 relates these examples to
a 1764 paper of Euler, and shows that Euler’s continuant polynomials
are group valued moment maps.

§2. Abelian Fission Spaces and Wild Character Varieties

The quasi-Hamiltonian approach involves constructing the wild char-
acter varieties as finite dimensional multiplicative symplectic quotients.
The symplectic/Poisson structure on the wild character variety then
arises algebraically from the quasi-Hamiltonian two-form upstairs. For
the present examples only some simple quasi-Hamiltonian spaces will be
needed.

Let G = GL2(C) and consider the following subgroups:

U+ =

(
1 ∗
0 1

)
⊂ B+ =

(∗ ∗
0 ∗

)
⊂ G ⊃ B− =

(∗ 0
∗ ∗

)
⊃ U− =

(
1 0
∗ 1

)
,

and T = B− ∩ B+ the diagonal subgroup. The wild character varieties
we will consider are as follows. Choose an integer k ≥ 1 and consider
the variety

(1) MB = {S ∈ (U+ × U−)k
∣∣ S2k · · ·S2S1 ∈ T}/T

where T acts by diagonal conjugation, and we take the affine geometric
invariant theory quotient (the affine variety associated to the ring of
T -invariant functions). Here S = (S1, . . . , S2k) with Seven ∈ U− and
Sodd ∈ U+. Further, for any fixed t ∈ T of determinant one, consider
the subvariety

(2) MB(t) = {S ∈ (U+ × U−)k
∣∣ S2k · · ·S2S1 = t}/T ⊂ MB

which has dimension 2k − 4. It is a hypersurface in MB.
To obtain these wild character varieties as multiplicative symplectic

quotients consider the smooth affine variety

A = GAk
T := G× (U+ × U−)k × T.

In this section we will explain and illustrate the following result.
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Theorem 2 ([B02b]1). The abelian fission space A = GAk
T is an

algebraic quasi-Hamiltonian G× T -space.

This result means there is an action of G × T on A, an invariant
algebraic two-form ω on A, and a group-valued moment map

μ = (μG, μT ) : A → G× T ;

μG(C,S, h) = C−1hS2k · · ·S2S1C ∈ G,

μT (C,S, h) = h−1 ∈ T

satisfying various axioms, which are multiplicative analogues of the usual
axioms for a Hamiltonian G×T -space. The formula for ω is deferred to
Remark 6 below. In particular we will consider the reduction by G

B = Bk := GAk
T //G = μ−1

G (1)/G,

which is a smooth affine variety of dimension 2k − 2, with a residual
action of T . Some immediate consequences of Theorem 2, and the gen-
eral quasi-Hamiltonian/quasi-Poisson yoga [AMM98, AKSM02], are as
follows.

Corollary 3. 1) The quotient

A/G ∼= (U+ × U−)k × T

is an algebraic Poisson manifold with symplectic leaves

A //
C
G = μ−1

G (C)/G
for conjugacy classes C ⊂ G,

2) B = A//G is an algebraic symplectic manifold,
3) The quotient by T

μ−1
G (C)/(G× T )

of any symplectic leaf from 1) is a Poisson variety with symplectic leaves
μ−1(C × {t})/(G× T ), for elements t ∈ T ,

4) For any t ∈ T the reduction B//t T ∼= μ−1({1} × {t})/G× T is a
symplectic variety.

1In fact [B02b] proves this for arbitrary complex reductive groups G (with

B± opposite Borels). The spaces A are denoted C̃/L in [B02b] Rmk 4 p.6. The
non-abelian extension appears in [B09b, B14a] (with B± replaced by arbitrary
opposite parabolics, and T by their common Levi subgroup).
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Proof. 1) is a general result about quasi-Poisson manifolds; the quo-
tient is a quasi-Poisson T -space, which means it is Poisson since T is
abelian. The leaves are the quasi-Hamiltonian reductions by G (and are
a priori quasi-Hamiltonian T -spaces, but this implies they are symplec-
tic since T is abelian). 2) is a special case of 1), taking C = {1} ⊂ G. 3)
follows the same pattern as in 1), considering the full action of G × T .
4) is a special case of 3). �

Now it is easy to obtain the wild character varieties from the fission
spaces. The action of G× T on A is given by

(g, t)(C,S, h) = (tCg−1, tSt−1, h)

where (g, t) ∈ G× T and tSt−1 = (tS1t
−1, . . . , tS2kt

−1). Thus

B = A//G = μ−1
G (1)/G

= {(S, h) ∈ (U+ × U−)k × T
∣∣ hS2k · · ·S2S1 = 1}(3)

∼= {S ∈ (U+ × U−)k
∣∣ S2k · · ·S2S1 ∈ T}

which is a quasi-Hamiltonian T -space with moment map h−1, and in
particular a symplectic manifold (as T is abelian). In turn MB = B/T
is thus a Poisson variety, with symplectic leaves

(4) MB(t) = B //
t
T = {(S, h) ∈ B ∣∣ h−1 = t}/T.

Equivalently if C ⊂ G×T is the conjugacy class containing 1×t ∈ G×T
then

MB(t) = A //
C
G× T = μ−1(C)/G× T.

As mentioned above, the general quasi-Hamiltonian yoga implies
that MB(t) is a symplectic variety: the restriction of ω to μ−1(C) ⊂ A
descends to give the symplectic form on MB(t).

The standard examples [AMM98] of quasi-Hamiltonian spaces are
the conjugacy classes C ⊂ G (with the inclusion being the moment map),
and the double D ∼= G × G, which are multiplicative analogues of the
coadjoint orbits O ⊂ g∗ and the cotangent bundle T ∗G in the usual
Hamiltonian world. Using the fusion and reduction processes these ex-
amples give a clean algebraic construction of the Atiyah–Bott symplec-
tic/Poisson structure on spaces of fundamental group representations of
Riemann surfaces [AMM98]. The fission spaces give an algebraic con-
struction of the more general irregular Atiyah–Bott symplectic/Poisson
structure of [B99, B01a] on spaces of monodromy/Stokes data. The
holomorphic symplectic manifolds in 3),4) above are examples of this
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general construction. In these examples the symplectic form was then
computed explicitly by Woodhouse [Woo01] and this led to the above
quasi-Hamiltonian approach (which works for arbitrary numbers of poles
on arbitrary genus Riemann surfaces).

In turn the irregular Atiyah–Bott complex symplectic quotients were
upgraded into hyperkähler quotients in [BB04]. In the present context
this implies:

Theorem 4 ([BB04]). If t �=1 then MB(t) is a complete hyperkähler
manifold of real dimension 4k − 8.

The condition t �= 1 implies that all the points are stable, and so
the spaces are smooth (cf. [BB04] §8). In the set-up of [B01a, BB04]
this class of examples appears by considering meromorphic connections
on rank two bundles on the Riemann sphere, having just one pole of
order k+1. We then use the irregular Riemann–Hilbert correspondence
to pass to the wild character variety. (In general the hyperkähler met-
ric will depend on the choice of irregular type of the connection at the
pole—cf. also [B12]). Note that in the context of compact Kähler man-
ifolds, it is known that any holomorphic symplectic manifold admits a
hyperkähler metric, but the situation is more subtle in the noncompact
case. In the case k = 3, MB(t) is a complete hyperkähler manifold of
real dimension four, i.e. a “gravitational instanton” in the physics ter-
minology. We will see below, when discussing quivers, that they may be
viewed as multiplicative analogues of the Eguchi–Hanson spaces (the A1

ALE spaces).

Remark 5. In the case k = 3 it is easy to describe the complex
surface MB(t) explicitly. It is isomorphic to the affine cubic surface

(5) x y z + x+ y + z = b− b−1

where b is a non-zero constant such that t = diag(q−1, q) and q = −b2.
These cubic surfaces appear in [FN80] (3.24). In more detail let si be the
nontrivial off-diagonal matrix entry of Si. Then (cf. (2)) the equation
S6 · · ·S1 = t is equivalent to the three equations: s1 = −q(s3s4s5 + s3 +
s5), s6 = −q(s2s3s4 + s2 + s4) (allowing to eliminate s1 and s6), and
s2s3s4s5 + s2s3 + s2s5 + s4s5 + 1 = 1/q. To quotient by T we pass to
invariants s23, s25, s34, s45 where sij = sisj , and thus find s25 = 1/q−(1+
s45+s23+s23s45). Substituting this in the relation s23s45 = s34s25 yields
the Flaschka–Newell surface (5) after relabelling s45 = x/b − 1, s23 =
y/b− 1 and s34 = −1− b z. Note that Flaschka–Newell find these cubic
surfaces as wild character varieties in a slightly different context (using a
non-standard Lax pair for the Painlevé 2 equation), but their approach is
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known to be equivalent to the usual approach (cf. [JKT09]), explaining
why the cubic surfaces are the same. See §5 for higher k.

Remark 6. An explicit formula for the algebraic two-form ω on A
is as follows. Define maps Ci : A → G by

Ci = Si · · ·S2S1C

so that C = C0, and let b = hS2k · · ·S2S1. Then

(6) 2ω = (γ,Adbγ) + (γ, β) + (γ2k, η)−
2k∑
i=1

(γi, γi−1)

where the brackets ( , ) denote a fixed bilinear form on g and the Greek
letters denote the following Lie algebra valued one-forms:

γi = C∗
i (θ), γi = C∗

i (θ), η = h∗(θT ), β = b∗(θ)

where θ = g−1dg, θ = dgg−1 are the left and right invariant Maurer–
Cartan forms respectively. This expression equals that in [B02b].

§3. Sibuya spaces

Sibuya [Sib75] studied the Stokes data at ∞ of differential equations
of the form

(7)
d2y

dz2
= p(z)y

for complex monic polynomials p(z) of degree m. In brief there are m+2
distinguished directions at ∞ (“Stokes directions”) and a preferred solu-
tion vi (the subdominant solution) on each sector between two consecu-
tive Stokes directions. More precisely only the ray 〈vi〉 spanned by vi is
canonically determined. Since the (rank two) local system of solutions
on the plane is trivial, this determines m+2 rays in C2, i.e. m+2 points
of P1. Sibuya thus considered the following spaces and related them to
Stokes matrices.

Let n = m+ 2 and let

XSibuya
n = {p1, . . . , pn ∈ P1(C)

∣∣ p1 �= p2 �= · · · �= pn �= p1}
be the configuration space of n-tuples of cyclically ordered points of P1

such that consecutive points are distinct. Let

MSibuya
n = XSibuya

n /PSL2(C)
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be the geometric invariant theory quotient, which has dimension n− 3.
Note that there is an inclusion

M0,n ⊂ MSibuya
n

where M0,n is the moduli space of genus zero curves with n distinct
marked points.

Suppose now that n is even and set n = 2k. Consider the function

ϕ : XSibuya
2k → C∗

defined by

ϕ(p1, . . . , p2k) = (−1)k
(p1 − p2)(p3 − p4) · · · (p2k−1 − p2k)

(p2 − p3)(p4 − p5) · · · (p2k − p1)
.

Up to a sign this is the “multiratio” of the 2k points (see e.g. [KS03]).
It is invariant under diagonal Möbius transformations.

Choose an element q ∈ C∗ and let

MSibuya
2k (q) = ϕ−1(q)/PSL2(C) ⊂ MSibuya

2k

be the subvariety of points with fixed multiratio. It has dimension 2k−4.
The stability condition for tuples of points on P1 is well-known

([Mum62]) and leads to the following

Lemma 7. If q �= 1 then all the points are stable, and so MSibuya
2k (q)

is the set of PSL2(C)-orbits in ϕ−1(q) ⊂ XSibuya
2k .

Proof. A 2k tuple p is stable if no point has multiplicity k or more.
In the current set-up (with consecutive points distinct) the multiplicity
is at most k. Clearly if k of the points are equal (e.g. podd = 0) then
ϕ(p) = 1. �

Remark 8. Note that if k = 3 then the condition ϕ(p) = 1 means
that the multiratio of the 6 points is −1, which is a condition much-
studied, even classically (see [KS03] and references therein).

Our aim now is to explain the following (which follows easily from
[Sib75]).

Proposition 9. The Sibuya moduli space MSibuya
2k is algebraically

isomorphic to the Poisson wild character variety MB in (1), and the

multi-ratio function cuts out the symplectic leaves : MSibuya
2k (q) is al-

gebraically isomorphic to the wild character variety MB(t), where t =
diag(q−1, q).
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As discussed in the previous section, standard results on wild char-

acter varieties then imply that MSibuya
2k (q) is a symplectic variety, and

even a complete hyperkähler manifold whenever q �= 1.
Proof. Write n = 2k and consider the affine variety

V = Vn := {v1, . . . , vn ∈ C2 \ {0} ∣∣ v1 ∦ v2 ∦ · · · ∦ vn ∦ v1}
where the symbol ∦ means “is not parallel to”. The torus (C∗)n acts on
V by scaling the vectors, and G := GL2(C) acts diagonally. The quotient
is MSibuya

n . Viewing the vi as column vectors define 2× 2 matrices

Ψi = (vivi+1)

(where the indices are taken modulo n). By assumption these are all
invertible matrices. Thus following Sibuya we can define some matrices
(“Stokes matrices”):

Bi := Ψ−1
i Ψi−1

so that (vi−1vi) = (vivi+1)Bi (cf. [Sib75] 21.32 p.86). Clearly, by con-
struction,

(8) Bn · · ·B2B1 = 1

(cf. [Sib75] 21.31) and moreover

Bi ∈ W :=

{(∗ 1
∗ 0

)}
⊂ G

(as in [Sib75] 21.30). This leads to the space

W := {B1, . . . , Bn ∈ W
∣∣ Bn · · ·B2B1 = 1}

and the procedure above defines a map π : V → W.

Lemma 10. The map π : V → W is a trivial principal G-bundle.
In other words the action of G on V is free, has quotient W and admits
a global slice ; V ∼= G×W.

Proof. Define an extended map π̃ : V → G × W by setting C =
(v1, v2) = Ψ1 ∈ G. The formula Ψi = Ψi+1Bi+1 shows that each
Ψi is determined by C = Ψ1 and the Stokes matrices, and in turn
the Ψi determine the vi, so π̃ is an isomorphism. Specifically Ψi =
CB1BnBn−1 · · ·Bi+1. The condition (8) ensures this holds for all i mod-
ulo n. �

This lemma holds even if n is odd. To get to MB we adjust the
ordering of some of the basis vectors to put the Stokes data in alternating
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Borels. Suppose we swap the order of the columns of Ψ2i, i.e. we redefine
Ψ2i as Ψ2i = (v2i+1, v2i) (and leave Ψodd unchanged). Then if we set
Gi = Ψ−1

i Ψi−1 we have G2i ∈ B−, G2i+1 ∈ B+. More precisely

G2i = PB2i ∈ W− :=

{(∗ 0
∗ 1

)}
,

G2i+1 = B2i+1P ∈ W+ :=

{(
1 ∗
0 ∗

)}
where P = ( 0 1

1 0 ). This allows to rewrite Lemma 10, showing that

V/G = W ∼= W ′ := {G1, . . . , G2k ∈ (W+ ×W−)k
∣∣ G2k · · ·G2G1 = 1}.

Now it is easy to compute the formal monodromy, and discover the
multi-ratio.

Lemma 11. The formal monodromy is diag(q, q−1) ∈ T where q =
ϕ(p1, . . . , p2k) is (−1)k times the multi-ratio of the points pi = 〈vi〉 ∈ P1.

Proof. The formal monodromy is the monodromy of the associated
graded local system (as in [Del78]), which here means we ignore the off-
diagonal entries of the Gi and only consider their diagonal entries. If we
set d(i, j) = det(vivj) then these nontrivial diagonal entries are

det(Gi) =
d(i− 1, i)

d(i+ 1, i)

so that the formal monodromy is diag(q, q−1) where

q = det(G2k) det(G2k−2) · · · det(G2) =
d(2k − 1, 2k) · · · d(3, 4)d(1, 2)

d(1, 2k) · · · d(5, 4)d(3, 2)
= (−1)k

(p1 − p2)(p3 − p4) · · · (p2k−1 − p2k)

(p2 − p3)(p4 − p5) · · · (p2k − p1)
= ϕ(p1, . . . , p2k).

�

Finally we need to consider the induced action of the torus T̃ :=
(C∗)2k on W ′ and show it reduces to an action of T ∼= (C∗)2 as in the
definition of MB.

Write an element of T̃ as c = (c1, . . . , c2k). This acts by scaling the
vi, and the induced action on the Gi is:

c ·G2i = diag(c2i+1, c2i)G2i diag(c2i−1, c2i)
−1,

c ·G2i+1 = diag(c2i+1, c2i+2)G2i+1 diag(c2i+1, c2i)
−1.
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Thus in all cases the action on the nontrivial diagonal entry of Gi is
by multiplication by ci+1/ci−1. We can thus use up most of this torus
action by setting most of the Gi to be unipotent: Namely we can restrict

to the subtorus T ∼= (C∗)2 ⊂ T̃ where

c1 = c3 = · · · = c2k−1 and c2 = c4 = · · · = c2k

and restrict to the subset W ′′ ⊂ W ′ where G2, G3, · · · , G2k−1 are unipo-

tent (i.e. det(Gi) = 1 if i �= 1, 2k). Then the quotient W ′/T̃ is identified
with the quotient W ′′/T . If we write

G1 = S1diag(1, q
−1)

with S1 ∈ U+, and
G2k = diag(q, 1)S2k

with S2k ∈ U− and set Si = Gi ∈ U± otherwise, then the relation
G2k · · ·G1 = 1 becomes

hS2k · · ·S2S1 = 1

where h = diag(q, q−1) is the formal monodromy, so that

W ′′ ∼= {S ∈ (U+ × U−)k
∣∣ S2k · · ·S1 ∈ T} = B.

Moreover the T -action on W ′′ matches the T -action in the definition (1)
of MB, and so the proof is complete. �

Remark 12. This algebraic isomorphism is an example of the equiv-
alence of categories between Stokes structures and Stokes local systems
(both of which are equivalent to a category of connections, cf. [Del78],
[B14a] Thm A.3). It is a consequence of the simple analytic fact that
the columns of the canonical fundamental solutions (used to define the
canonical Stokes matrices, as in [BJL79] Thm A) are consecutive sub-
dominant solutions (when suitably scaled and ordered), cf. Appendix
A. Loday-Richaud’s algorithm [LR94] gives an algebraic procedure for
translating between Stokes structures and Stokes local systems in gen-
eral.

Remark 13. Note that Sibuya related the spaces MSibuya
r to

Nevanlinna’s theory of Riemann surfaces (see [Sib75] p.ix).
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§4. Multiplicative quiver varieties

There is a standard way to associate hyperkähler manifolds to graphs
[Kro89, Nak94], known as additive/Nakajima quiver varieties. Here we
will briefly recall the algebraic approach to the underlying holomorphic
symplectic varieties (cf. also [CS98, CB01]) and then discuss the mul-
tiplicative version relevant to the present examples. Let Γ be a graph
with nodes I. Suppose we are given a vector space Vi for each node
i ∈ I. Then we can consider the vector space

Rep(Γ, V ) =
⊕
a∈Γ

Hom(Vt(a), Vh(a))

of maps along each edge of the graph in both directions. We will call
this the space of representations of the graph on the I-graded vector
space V =

⊕
Vi. Here Γ is the set of oriented edges of Γ, i.e. the set

of pairs (e, o) where e is an edge of Γ and o is one of the two possible
orientations of e. Given an oriented edge a ∈ Γ, the head h(a) ∈ I and
tail t(a) ∈ I are well-defined.

The group H :=
∏

GL(Vi) acts on Rep(Γ, V ) via its natural action
on V preserving the grading. Further a choice of orientation of the
graph Γ determines a holomorphic symplectic structure on Rep(Γ, V ),
and then the action of H is Hamiltonian with a moment map

μ̆ : Rep(Γ, V ) → h∗ = Lie(H)∗ ∼=
∏
i∈I

End(Vi).

The Nakajima quiver varieties are defined by choosing a central value
λ ∈ CI of the moment map and taking the symplectic quotient:

N (Γ, d, λ) = Rep(Γ, V ) //
λ

H = {ρ ∈ Rep(Γ, V )
∣∣ μ̆(ρ) = λ}/H

where λ is identified with the central element
∑

λiIdVi of Lie(H)∗. Here
d ∈ ZI denotes the dimension vector, with components di = dim(Vi),
and the spaces are empty unless

∑
λidi = 0. The quotient is the affine

quotient, taking the variety associated to the ring of H invariant func-
tions (although often one adds an extra parameter choosing a nontrivial
linearisation as well—for simplicity here we won’t do this).

If Γ is an affine Dynkin graph and d is the minimal imaginary root,
then as discovered in [Kro89], N (Γ, d, λ) has complex dimension two,
and is a deformation of the Kleinian singularity C2/G(Γ), where G(Γ) ⊂
SL2(C) is the McKay group of Γ. For type A, these hyperkähler four-
manifolds were known before: for A1 they are the Eguchi-Hanson spaces
[EH78] which in one complex structure are generic coadjoint orbits of
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SL2(C) (and in another they are T ∗P1). Just after this example was
found Calabi [Cal79] found examples in all dimensions: In one complex
structure Calabi’s examples are minimal semisimple coadjoint orbits of
SLn(C) (and in another they are T ∗Pn−1). As quiver varieties, Calabi’s
examples arise by considering the simple graph in Figure 1, with two
nodes and n edges (with dimension vector d = (1, 1)).

Fig. 1. The graph Γ.

In this example Rep(Γ, V ) has dimension 2n and N is the symplectic
reduction by a torus H = (C∗)2, and has complex dimension 2n−2 (the
diagonal subgroup ofH acts trivially). The aim of the rest of this section
is to explain the following statement:

The wild character varieties MB(t) in (2) are multiplicative ana-
logues of Calabi’s examples.

First of all note that if we set k = n + 1 then dim(MB(t)) =
dim(N (Γ, d, λ)) = 2n− 2 = 2k − 4.

Secondly note that dim(B) = dim(Rep(Γ, V )) = 2n, and moreover:

Lemma 14 (cf. [B15] Rmk 5.4). The space B = Bk may be identi-
fied with a Zariski open affine subset of Rep(Γ, V ).

Proof. In brief V = V1⊕V2 with both V1, V2 one dimensional complex
vector spaces, and ρ ∈ Rep(Γ, V ) consists of n maps V1 → V2 and n
maps V2 → V1. Suppose we label these maps

s2, s4, . . . s2n : V1 → V2, s1, s3, . . . s2n−1 : V2 → V1.

Then we may identify Rep(Γ, V ) with (U−×U+)
n ⊂ GL(V )2n by setting

S2i =

(
1 0
s2i 1

)
∈ U− and S2i+1 =

(
1 s2i+1

0 1

)
∈ U+.

Now recall from (3) that, with k = n+ 1

B = {S ∈ (U+ × U−)k
∣∣ (S2n+2S2n+1)S2n · · ·S2S1 ∈ T}

∼= {S ∈ (U+ × U−)n
∣∣ S2n · · ·S2S1 ∈ G◦}(9)
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where G◦ = U+TU− = U+U−T ⊂ G is the opposite Gauss cell. Thus
(9) and the Gauss decomposition says that

B ∼= {ρ = (s1, . . . s2n) ∈ Rep(Γ, V )
∣∣ (S2n · · ·S2S1)22 �= 0}

so that B is indeed a Zariski open affine subset of Rep(Γ, V ). �

Now define the invertible representations of the graph Γ to be this
open subset:

Rep∗(Γ, V ) = {ρ ∈ Rep(Γ, V )
∣∣ S2n · · ·S2S1 ∈ G◦} ⊂ Rep(Γ, V ).

Thus, noting that H = T is the maximal torus of G = GL(V ), and
that B is a quasi-Hamiltonian T -space (cf. (3)), there is a group-valued
moment map

(10) μ : Rep∗(Γ, V ) → H

defined by taking the T component of S2n · · ·S2S1 ∈ G◦. Beware μ is
not the restriction of the usual moment map μ̆ : Rep(Γ, V ) → Lie(H).

In turn it is natural to define the multiplicative quiver varieties of Γ
to be the multiplicative symplectic reductions of Rep∗(Γ, V ) at central
values of the moment map. Namely we choose q ∈ (C∗)I and define

M(Γ, d, q) = Rep∗(Γ, V ) //
q
H = μ−1(q)/H.

These will be empty unless qd :=
∏

qdi

i = 1, which in the current setup
means q1q2 = 1. Of course, this is just a rephrasing of the construction
of the wild character variety MB(t) in (4), with t = diag(q1, q2), so that

M(Γ, d, q) ∼= MB(t)

but now we see the link to graphs, and thus to Kac–Moody root systems.
(Many other examples appear in [B15].) In the simplest nontrivial ex-
ample k = 3 the graph Γ is the affine A1 Dynkin graph (with two edges)
and so the corresponding wild character varieties are multiplicative ana-
logues of the Eguchi–Hanson spaces. Note that Okamoto [Oka92] already
related the second Painlevé equation to the affine A1 Weyl group (cf.
also [B09a] Exercise 3 and [B08] Appendix C).

If we are prepared to work analytically then a more direct link
between the additive and multiplicative quiver varieties is available.
Namely the Riemann–Hilbert–Birkhoff map plays a role analogous to
the exponential map:
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Theorem 15. The Riemann–Hilbert–Birkhoff map, taking a con-
nection to its monodromy data, gives a holomorphic map from the addi-
tive quiver varieties for the graph Γ to the corresponding multiplicative
quiver varieties. It relates the holomorphic symplectic structures (but
not the hyperkähler metrics).

Proof. This follows from [B01a] Thm 6.1 modulo relating both sides to
quivers: on the multiplicative side this follows from the discussion above
plus the quasi-Hamiltonian approach in [B02b] (see especially Cor. p.3).
The general dictionary relating the additive side to Nakajima quiver
varieties was written down (and established in some cases) in [B08] Ap-
pendix C and justified in general in [HY14].

In more detail recall the diagram of moduli spaces (from [B01a] (29)
p.181):

(11)

M̃DR

∼=−→ Ãfl/G1⋃ ⏐⏐�∼=

Õ1 × · · · × Õm//G ∼= M̃∗
DR

ν̃−→ M̃B.

Here M̃∗
DR is a moduli space of framed meromorphic connections on

the trivial bundle on the Riemann sphere with m poles, and M̃B is
the corresponding space of monodromy/Stokes data. (See [B01a] for
the full definitions.) Thm 6.1 of [B01a] says that the map ν̃ taking

monodromy/Stokes data is symplectic. In turn in [B02b] the space M̃B

is identified (as a symplectic manifold) with a fusion product

M̃B
∼= C̃1 � · · · � C̃m//G

for certain quasi-Hamiltonian G × T spaces C̃i. Thus the (framed)
Riemann–Hilbert–Birkhoff map is a symplectic map

Õ1 × · · · × Õm//G
ν̃−→ C̃1 � · · · � C̃m//G.

It is injective and intertwines the T -actions changing the framings. (This
injectivity is due to [JMU81]—it was extended to a bijective correspon-

dence M̃DR
∼= M̃B in [B01a] Cor. 4.9.) Now if we specialise to the case

m = 1 with just one pole and use [B01a] Lem. 2.4 to “decouple”

Õ1
∼= OB × T ∗G

the space Õ1, then we obtain a T -equivariant symplectic map

OB
ν̃−→ C̃1//G.
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Here OB is a coadjoint orbit of the (unipotent) group of based jets of
bundle automorphisms, and thus has global Darboux coordinates (as
noted in [B01a] p.190). The conjecture of [B08] Appendix C proved in
[HY14] identifies OB (as a Hamiltonian T -space) with a space of graph
representations, and thus the reduction by T with a Nakajima quiver
variety. If the group G is GL2 then the graph is the graph Γ of Figure 1
if the connections have poles of order k + 1. On the other side we now

just need to identify the T reductions of C̃1//G with the T reductions of

B, which is immediate from the definitions. Indeed, the space C̃1 is a
cover of the fission space A used to define B. �

§5. Eulerian hypersurfaces

On p.55 of Euler’s 1764 article “Specimen Algorithmi Singularis”
[Eul64] the reader will find the list of polynomials:

(a) = a

(a, b) = ab+ 1

(a, b, c) = abc+ c+ a

(a, b, c, d) = abcd+ cd+ ad+ ab+ 1

(a, b, c, d, e) = abcde+ cde+ ade+ abe+ abc+ e+ c+ a

etc.

They appear when computing continued fractions and nowadays they
are known as “Euler’s continuants”. The latter monomials in the nth
continuant arise by forgetting all possible pairs of consecutive letters
from the first monomial. Recalling Remark 5 we thus see that, for
k = 3, the space MB(t) is the quotient of the “Eulerian hypersurface”

(s2, s3, s4, s5) = 1/q

by the action of C∗, and the expressions for s1, s6 involve continuants of
degree one less. Moreover the quasi-Hamiltonian T -space B is isomorphic
to the open subset

(s2, s3, s4, s5) �= 0

of C4 and the continuant (s2, s3, s4, s5) is a group-valued moment map
for the C∗ action on this subset. The aim of this section is to point out
that this all holds for any k:
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Proposition 16. For any k the quasi-Hamiltonian T -space B = Bk

is isomorphic to the open subset

(s2, s3, . . . , s2k−1) �= 0

of C2k−2, the continuant (s2, s3, · · · , s2k−1) is a group-valued moment
map for the C∗ action on this subset and the wild character variety
MB(t) is the quotient of the Eulerian hypersurface

(s2, s3, · · · , s2k−1) = 1/q

by the action of C∗.

Proof. The continuants can be defined (see e.g. [Knu98]) by the re-
currence

(x1, x2, . . . , xn) = x1(x2, x3, . . . , xn) + (x3, x4, . . . , xn)

and using this one can easily show
(12)(

x1 1
1 0

)(
x2 1
1 0

)
· · ·

(
xn 1
1 0

)
=

(
(x1, . . . , xn) (x1, . . . , xn−1)
(x2, . . . , xn) (x2, . . . , xn−1)

)
.

Now using the Gauss decomposition B is isomorphic to

{(S2, . . . , S2k−1) ∈ (U− × U+)
k−1

∣∣ (S2k−1 · · ·S2)11 �= 0}.
Thus the key point is to show that (S2k−1 · · ·S2)11 = (s2, s3, . . . , s2k−1)
where si is the active off-diagonal entry of Si. But this is a direct
consequence of (12), upon noting that PS2 =

(
s2 1
1 0

)
and S3P =

(
s3 1
1 0

)
etc., where P = ( 0 1

1 0 ). �

Remark 17. Although it is beyond the scope of this article let us
mention that this gives a presentation of the fission algebra Fq(Γ) of the
graph Γ: it is isomorphic to the quotient of the path algebra P(Γ) of the
quiver Γ by the relations

(a1, b1, a2, b2, . . . , an, bn)e1 = q1e1

(bn, an, . . . , b2, a2, b1, a1)e2 = q−1
2 e2

where qi ∈ C∗, the a’s are the arrows to the left, the b’s are the arrows to
the right and e1/e2 is the idempotent for the left/right node respectively.
Here the ordering of the symbols in the continuants is as written by
Euler. For n = 1 one gets the multiplicative preprojective algebra Λq of
[CBS06] (which in this case is isomorphic to a deformed preprojective
algebra), but in general Fq �∼= Λq (cf. [B15] Rmk 6.10).
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Conclusion
We have described four ways to think about a simple class of wild

character varieties. In these examples the structure group was GL2(C)
and the underlying curve was the complex plane—the connections just
had one singularity, at ∞, and we assumed there was an even number of
Stokes directions at the singularity. Clearly these spaces admit lots of
generalisations, and we hope they serve as a helpful introduction to the
more general moduli spaces constructed in [B01a, B02b, BB04, B09b,
B14a], complementing the survey [B14b]. As mentioned above, Loday-
Richaud’s algorithm [LR94] gives an algebraic procedure for translating
between Stokes structures and Stokes local systems in general. Note that
under this dictionary the spaces constructed in [B01a, B02b] involve full
flags, whereas the spaces constructed in [BB04, B09b, B14a] involve
arbitrary partial flags. In a subsequent article we will describe in detail
the “odd” case (also considered by Sibuya)—this is in some sense simpler

since the spaces MSibuya
2k+1 are smooth symplectic varieties directly, with

the same expression for the two-form ω. Moreover the analysis of [BB04]
extends directly (as pointed out in [Sab02, Wit08]) to show they are
complete hyperkähler manifolds. In another direction a nice class of
examples generalising the present ones come from the following graphs
(bearing in mind the dictionary in [B08] Apx C, [B15] §3.3). In this case
the additive quiver varieties are arbitrary coadjoint orbits of GLn(C)
(and in special complex structures they are cotangent bundles of flag
varieties via [Nak94] §7, deframed in the sense of [CB01] p.261).

Acknowledgments. Thanks are due to Alistair Scott MacLeod for
providing a copy of [Knu98] at an opportune moment.

§Appendix A. Stokes structures and Stokes local systems

This appendix briefly recalls the notions of Stokes structure and
Stokes local system in the present context. This is more sophisticated
than the presentation in the body of the text, and we will explain how the
data there appears from the data here. Suppose (V,∇) is an algebraic
connection on a rank two vector bundle V on the complex plane, with
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unramified formal normal form at infinity. In a global trivialisation such
a connection takes the form

∇ = d−A

where A is a 2 × 2 matrix of algebraic one-forms on C, i.e. if z is a
coordinate on C then A = Bdz with

B =
m∑
0

Biz
i

a polynomial matrix. Thus horizontal sections of ∇ correspond to solu-
tions of the differential equation

dv

dz
= Bv

for vectors v(z) of holomorphic functions on C. For example a polyno-
mial differential equation y′′ = p(z)y as in (7) determines the connec-
tion with B =

(
0 1
p 0

)
. Changing the trivialisation of V corresponds to

the gauge action A �→ g[A] = gAg−1 + (dg)g−1 for g ∈ G(C[z]), where
G = GL2. Restricting to the formal neighbourhood of ∞ amounts to

considering the orbit of A under the larger group Ĝ = G(C((z−1))). The
condition of having unramified formal normal form at infinity means

that the Ĝ orbit of A contains an element of the form

A0 = dQ+ Λ
dz

z

for some element Q =
∑k

1 Qiz
i where each Qi is a diagonal matrix. We

will suppose Q is not central (i.e. at least one of the Qi is not a scalar
matrix). Then there is no loss of generality assuming Λ is a (constant)
diagonal matrix. For example this occurs if the leading coefficient of A
is regular semisimple. (In general one can take a root of z to reduce any
connection to one with unramifed formal normal form.) The element Q
is the “irregular type” of ∇. Thus by assumption

A = F̂ [A0]

for some F̂ ∈ Ĝ. Without loss of generality (tensoring by a connection
on a line bundle) we may assume Qk is not a scalar matrix. (Note
that the leading coefficient of A does not need to be semisimple—for
example the polynomial differential equation (7) has unramified normal
form if and only if p has even degree.) The connection ∇0 = d−A0 has
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fundamental solution zΛeQ and so ∇ has formal fundamental solution

F̂ zΛeQ. Note that in general F̂ will not be convergent.

Stokes structures. This rests on the local asymptotic existence the-
orem, which says that any real direction d heading towards ∞ has
a sectorial neighbourhood Sectd on which there is an analytic map

F : Sectd → G asymptotic to F̂ with F [A0] = A. In general F is
not uniquely determined by these conditions. Nonetheless, given such F
we get a fundamental solution Φd = FzΛeQ of ∇ on Sectd (which we can
then freely analytically continue as a solution). Now suppose we write
Q = diag(q1, q2) with qi ∈ zC[z], Λ = diag(λ1, λ2), and F = (f1, f2)
with fi : Sectd → C2. Let vi = fiz

λieqi be the columns of Φd. Then
on Sectd any horizontal section of ∇ is a linear combination of the hor-
izontal sections v1 and v2. Now the growth/decay of vi is dominated

Stokes diagram with Stokes directions

Halo at ∞ with singular directions

Fig. 2

by the exponential factor eqi so we should examine how this varies as a
function of the direction d. Thinking about ez and then exp(zk) shows
there are 2k sectors where they alternately grow and decay. This is
nicely encoded in the Stokes diagram of the irregular type: draw a small
dashed circle around ∞ and for each i draw a wiggly curve around ∞
that is near ∞ when exp(qi) grows and crosses the circle when exp(qi)
changes to exponential decay. In other words for each exponential factor
and for each direction plot the possible growth rates, so the ordering of
the intersections of these curves with any given direction corresponds
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to the dominance ordering. A typical picture is as on the left of Figure
2 (for the case k = 3). In the current setting the Stokes diagram has
two components. The Stokes diagram for the Airy equation appears in
Stokes’ paper [Sto57] p.116. Define the Stokes directions to be the di-
rections where the dominance ordering of the functions eqi changes (i.e.
where the wiggly curves cross).

Now suppose we choose a direction d which is not a Stokes direc-
tion. Then the exponential factors have a definite dominance ordering
along d and so one of the vi will be the least dominant solution (i.e.
“subdominant”). Suppose it is v1 (for this d). Any other solution will
be of the form av1 + bv2 so that if b �= 0 it will not be subdominant.
Thus the ray 〈v1〉 is uniquely determined by ∇. If we move d slightly
(so we don’t cross a Stokes direction) then the same solution will remain
subdominant.

The idea of a Stokes structure is to axiomatise the rays that appear
in this way (and prove that the resulting topological objects classify the
original connections): Suppose we take d to be a Stokes direction in the
local asymptotic existence theorem. Then v1 will be the subdominant
solution on one side of d and v2 will be the subdominant solution on
the other side. So the corresponding rays are tranverse (when continued
across d).

Let Σ = (P1,∞, Q) be the wild Riemann surface consisting of the
Riemann sphere with the point∞marked and the irregular type Q fixed.
Let Σ◦ = P1 \∞ = C and draw the Stokes diagram of Q on Σ◦.

Definition 18. A “Stokes structure” for Σ consists of : a rank two
local system L → Σ◦ plus, for each sector Secti ⊂ Σ◦ at ∞ bounded by
consecutive Stokes directions, a rank one sublocal system Li ⊂ L∣∣

Secti
such that Li and Li+1 are transverse (when extended across the Stokes
direction between them).

More generally one takes the filtration of sublocal systems corre-
sponding to the exponential growth rates of solutions (see [Del78, Ber80,
Mal83, BV89, Mal91, DMR07]). The associated graded local system
corresponds to the formal normal form, and the tranversality condition
may be expressed as saying that locally (around the circle of directions)
the filtration is isomorphic to that determined by the associated graded
(using the dominance ordering of the exponential factors).

Now it is easy to classify the Stokes structures that appear in the
current setting. Note that L is trivial (as C is simply connected). Thus
H0(L) is a two-dimensional complex vector space and each Li extends
uniquely to a global rank one subsystem of L and so gives a one dimen-
sional subspace H0(Li) ⊂ H0(L). Thus we get a 2d vector space with



88 P. Boalch

a cyclically ordered collection of 1d subspaces, such that consecutive
subspaces are transverse, as studied in the body of this article following
Sibuya.

As explained in [BV89] in general it is not so easy to classify Stokes
structures: in general one passes via the Malgrange–Sibuya nonabelian
cohomology space and must parameterise that. However it turns out
there are preferred cocycles and so a nice parameterisation is possible
[BJL79, MR91, LR94]. This leads to the notion of Stokes local system,
which are topological objects that are simpler to classify. They may be
approached directly (without first passing through Stokes structures) as
follows.

Stokes local systems. This is an alternative way to extract topo-
logical data from an irregular connection and rests (in general) on the

multisummation theorem, that any formal isomorphism F̂ between con-
vergent connections may be summed along any non-singular direction
to yield a canonical analytic isomorphism.

Let π : Σ̂ → P1 denote the real oriented blow-up of P1 at ∞, so
∂ := π−1(∞) is the circle of real oriented directions emanating from

∞ ∈ P1. Let H ⊂ Σ̂ be a tubular neighbourhood of the boundary circle
∂. We will call H the halo—it is the annulus shaded grey on the right
of Figure 2. On H we put the rank two local system L∞ of solutions of
the formal normal form A0. This is a graded local system (since A0 is
diagonal). In the interior of Σ (the white disc in the middle of the figure)
we consider the local system L of solutions of the original connection ∇.

Now multisummation yields certain preferred isomorphisms between
∇ and∇0, and thus between L and L∞. The resulting topological object
is the Stokes local system, and can again be axiomatised to classify
the original connections. For this we just need to specify the singular
directions and the conditions on the resulting local system.

The singular directions A ⊂ ∂ at ∞ determined by the irregular type
Q are the directions of maximal decay of one of the ratios exp(q1 − q2)
or exp(q2 − q1) of the exponential factors. They interlace the Stokes
directions and are sometimes called “anti-Stokes directions”. This is
purely combinatorial: if q =

∑k
1 aiz

i then exp(q) has maximal decay on
the directions where akz

k is real and negative.
The multisummation theorem (see e.g. [BBRS91]) says that if d ∈

∂ \ A is a nonsingular direction then F̂ determines a preferred analytic
isomorphism Fd between A and A0 in a sectorial neighbourhood of d,
and these isomorphisms fit together as d varies provided d does not cross
a singular direction. (In fact in the present set-up only k-summation is
needed rather than more general multisummation.)
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To encode this, let Σ̃ be the surface obtained by deleting a point

e(d) ∈ Σ̂ on the interior boundary ∂′ �= ∂ of H for each singular direction
d ∈ A. (These “tangential punctures” e(d) are the small white circles
in the figure.) Thus on each component U ⊂ ∂′ \ {e(d) ∣∣ d ∈ A} of
the interior circle there is a preferred analytic isomorphism FU between
∇0 and ∇. Thus we can glue the local systems L∞ and L along these

components to yield a rank two local system L on Σ̃.
To characterise the properties of L note that L

∣∣
H
= L∞ is graded (by

the exponents q1, q2), and for each singular direction d ∈ A there is a def-
inite dominance ordering of the exponential factors: either exp(q1 − q2)
has maximal decay or exp(q2 − q1) does. This can be encoded by saying
“the root (12) supports d” or “the root (21) supports d”, respectively
(see [B02a] for more on the “rootiness” of Stokes data). In turn we can
consider the corresponding subgroups(

1 ∗
0 1

)
, respectively

(
1 0
∗ 1

)

of automorphisms of the fibre of L at d ∈ ∂. These are the Stokes
groups Stod for d ∈ A. (Intrinsically these groups correspond to adding
multiples of the smaller solution on to the larger one, using the grading
of L over H.)

Now let γd be a small loop in Σ̃ around e(d) based at d ∈ A ⊂ ∂.
The key fact then is that the monodromy of L around γd is in Stod,

and this characterises the local systems on Σ̃ that arise from irregular
connections in this way.

Definition 19. A Stokes local system for Σ is a rank two local sys-

tem L on Σ̃ such that i) the restriction of L to H is graded (by {q1, q2})
and ii) the monodromy of L around γd is in Stod for all singular direc-
tions d ∈ A.

In turn it is easy to classify Stokes local systems. For example sup-
pose we choose a basepoint b ∈ H and consider the set B of isomorphism
classes of Stokes local systems together with a framing of the fibre at b
(i.e. a graded isomorphism Lb

∼= C2). Choosing suitable loops generat-

ing π1(Σ̃, b) and taking the monodromy then yields the description of B
given in (3). Changing the framing corresponds to the action of T , and
the moment map is the monodromy around ∂ (the formal monodromy
of ∇).

Finally we can revisit the proof of Prop. 9. Given a connection ∇
(and thus the data A,A0, F̂ ) as above we get both a Stokes structure
and a Stokes local system, and want to relate them. Let SectU be a
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sector at ∞ bounded by two consecutive singular directions, and let d be
the (unique) Stokes direction in this sector. Now choose a fundamental
solution zΛeQ of ∇0 on SectU (it is well defined upto right multiplication
by a constant diagonal matrix). Let Φ := FUz

ΛeQ = (v1, v2) be the

fundamental solution of ∇ obtained by summing F̂ on SectU . The key
relation is now immediate:

Lemma 20. The column v1 of Φ is a subdominant solution on one
side of d and v2 is subdominant on the other side.

(More precisely v1 is subdominant on the side of d where exp(q1)
decays.) Thus we see how to relate the bases Φ used to define the canon-
ical Stokes matrices with the bases Ψ used by Sibuya, whose columns
are consecutive subdominant solutions (and e.g. explain why we needed
to reorder some of the columns in the proof of Prop. 9).

Fig. 3. Stokes local system from Stokes structure

More topologically, if we start with a Stokes local system then near
each singular direction we can continue the subdominant graded piece
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(in the halo) into the interior passing either side of the tangential punc-
ture, to give a well defined ray in the interior, and thus a Stokes struc-
ture. Conversely given a Stokes structure in the interior we can take
the associated graded local system in the halo, and then use the natural
projection maps to obtain a Stokes local system. See Figure 3, where
all the maps are isomorphisms (but note that not everything is globally
defined). This is local at the singularity (at infinity here) so we could
have an arbitrary curve in the interior (glued to the central circle drawn
here).
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metries: From the Neolithic Scots to John McKay, CRM Proc.
Lecture Notes, vol. 47, AMS, 2009, 25–51, arXiv:0706.2634.

[B09b] , Through the analytic halo: Fission via irregular singulari-
ties, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 7, 2669–2684,
Volume in honour of B. Malgrange.

[B12] , Hyperkähler manifolds and nonabelian Hodge theory of (ir-
regular) curves, 2012, text of talk at Institut Henri Poincaré,
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École Norm. Sup. (4) 12 (1979), no. 2, 269–294.
[CB01] W. Crawley-Boevey, Geometry of the moment map for representa-

tions of quivers, Compositio Math. 126 (2001), no. 3, 257–293.
[CBS06] W. Crawley-Boevey and P. Shaw, Multiplicative preprojective alge-

bras, middle convolution and the Deligne-Simpson problem, Adv.
Math. 201 (2006), no. 1, 180–208.

[CS98] H. Cassens and P. Slodowy, On Kleinian singularities and quivers,
In: Singularities, Progress in Mathematics, vol. 162, Birkhauser,
1998, pp. 263–288.

[Del78] P. Deligne, letter to B. Malgrange, 2pp., 19 April, 1978.
[DMR07] P. Deligne, B. Malgrange, and J.-P. Ramis, Singularités irrégulières,
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