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Abstract.

We summarize some of the recent works, devoted to the study
of one-dimensional (pseudo)group actions and codimension one foli-
ations. We state a conjectural alternative for such actions (generaliz-
ing the already obtained results) and describe the properties in both
alternative cases. We also discuss the generalizations for holomorphic
one-dimensional actions. Finally, we state some open questions that
seem to be already within the reach.

§1. Introduction: the paradigm and its corollaries

The purpose of this text is to summarize some recent works ([5,
11, 7, 12]) of a joint project of the authors, devoted to the study of
one-dimensional (pseudo)group actions and codimension one foliations,
and to suggest a paradigm, that seems to arise from these works. This
paradigm, partially already proven, describes the properties of different
classes of such actions; establishing it in full generality, at least in the
analytic case, seems to be already within the reach.

Our study was motivated by the following questions, going back to
1980’s, that were asked by D. Sullivan, É. Ghys, and G. Hector; we’re
stating them both in the group actions and foliations setting:
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Question 1.1 (Ghys, Sullivan). Let G be a finitely generated group
of (C2-)smooth circle diffeomorphisms, acting on the circle minimally.
Is this action necessarily ergodic with respect to the Lebesgue measure?

Let F be a transversely (C2-)smooth codimension one foliation of
a compact manifold, which is minimal. Is it necessarily ergodic with
respect to the Lebesgue measure?

Question 1.2 (Ghys, Sullivan). Let G be a finitely generated group
of (C2-)smooth circle diffeomorphisms, acting on the circle with a Cantor
miminal set K. Is K necessarily of zero Lebesgue measure?

Let F be a transversely (C2-)smooth codimension one foliation of a
compact manifold, having an exceptional minimal set K. Is it necessarily
of zero Lebesgue measure?

Question 1.3 (Hector). Let G be a finitely generated group of
(C2-)smooth circle diffeomorphisms, acting on the circle with a Cantor
miminal set K. Does the action of G on the set of the connected com-
ponents of S1 \K necessarily have but a finite number of orbits?

Let F be a transversely (C2-)smooth codimension one foliation of a
compact manifold M , having an exceptional minimal set K. Does the
complement M \ K necessarily have at most finite number of connected
components?

Our results partially answer these questions; what is even more im-
portant, some general paradigm seems to turn up. Namely, it seems
that the correct way of distinguishing different types of behavior of
(non-measure-preserving) actions is not by their minimality vs excep-
tional minimal set presence, but by the (C1-)local discreteness vs non-
discreteness (properly understood for the case of foliations or pseudo-
groups; we will give precise definitions below). A short way of stating
this paradigm (once again, with the precise definitions to be given below)
is the following one:

Paradigm. For a finitely-generated subgroup of Diff2(S1), as well
as for a C2-codimension one foliation of a compact manifold, if there is
no (transverse) invariant measure, the following dichotomy holds:

• Either the action has local flows in its local closure,
• Or it admits a Markov partition (of the minimal set).

This is closely related to what was done and suggested as a generic
behavior for the case of an exceptional minimal set by Cantwell and
Conlon in [3, 4]. Though, for the case of an exceptional minimal set
we expect that Markov partition always exists, as the sense in which
we understand the Markov partition is slightly weaker than the one of



A paradigm for codimension one foliations 61

Cantwell–Conlon (and this covers also the type of behavior mentioned
in [4, §7] that did not fit in their definition).

This paradigm implies the following dichotomy for the properties of
a non-measure preserving action:

C1-locally discrete C1-locally non-discrete

admits a Markov partition
(on a minimal set)

has a local flow in
local closure,
is topologically rigid

either possesses non-expandable
points, or is non-minimal, or
satisfies EMD

is minimal and has
no non-expandable points

Table 1. Paradigm: alternative properties

The last possibility in the left column is a locally-discrete minimal
dynamics without non-expandable points (EMD = Expanding, Minimal,
Discrete); the full classification of such actions seem to be within the
reach, as we will discuss in Section 3.

Note also that one can consider the questions analogous to the ques-
tions asked above for the actions of general pseudo-groups in complex
dimension one. In the foliations setting, it corresponds to the study
of dynamics in a neighborhood of nonsingular minimal sets of complex
codimension one foliations (or simply transversely conformal foliations:
there is no need to assume a complex structure on the manifold or on the
leaves). Once again, for the case if there are no non-expandable points
on a minimal set, there is a natural full classification conjecture that
seems within the reach. Though, it is yet unclear to us what should be
the correct statement in full generality. Again, we will discuss all of this
below, in Section 3.

To conclude this section, we would like to mention that the minimal
actions that are however locally discrete seem to form a thin boundary
between two “generic” types of behavior: the actions with an exceptional
minimal set and “rich” non-discrete dynamics (having local flows in the
local closure).

Acknowledgements. We are very grateful to É. Ghys, J. Rebelo,
L. Conlon, S. Matsumoto, Y. Mitsumatsu and M. Triestino for the inter-
esting and fruitful discussions.

We would also like to thank the organizers of the “Geometry and Fo-
liations” conference in Tokyo, 2013, thanks to which this text was born.
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§2. Definitions and the expansion procedures

Throughout this text, we will assume without specifying it explicitly
each time that the action under consideration is at least C2-smooth
(and often that it is analytic), and that for this action there is no
common invariant measure. The former assumption implies that the
well-developed distortion control technique can be applied to long com-
position of “basic” maps (we refer the reader, for instance, to [5, Sec-
tion 4] or to [11, Section 3] for a short introduction to this technique).
At the same time, the latter assumption implies (due to an extension
of Sacksteder’s theorem, see [6]) that there are maps having hyperbolic
fixed points belonging to the minimal set.

A promising way of studying the dynamics of an action is to apply
a local expansion procedure: conjugate the action by maps that expand
small intervals into large ones, while keeping the distortion bounded.
This idea goes back to Sullivan’s exponential expansion procedure (see,
e.g., [20], as well as [17]). Namely, assume that for any point x of a
minimal set there exists an element g of the (pseudo)group such that
g′(x) > 1. Due to the compactness arguments then there exist a finite
set of such elements g1, . . . , gk and a constant λ > 1, such that for any
point x of this minimal set for some i ∈ {1, . . . , k} one has g′i(x) > λ.
Hence, arbitrarily small intervals intersecting the minimal set can be
exponentially expanded by a composition of gi’s till they become of
size bounded away from zero, and the distortion of such composition
stays uniformly bounded. This rather easily allows to obtain, under this
assumption, the positive answers to the Questions 1.1–1.3.

Though, this strategy does not work in all the situations. An
obstacle to the application of this strategy is the presense of non-
expandable points:

Definition 2.1. A point x of a minimal set is non-expandable for
the action of a (pseudo)group G, if for any g ∈ G (defined in x) one has
|g′(x)| ≤ 1.

In the analytic setting, a presence of non-expandable points imme-
diately implies that the action is locally discrete in the sense of the
following (slightly weaker, than the usual one) definition:

Definition 2.2. A group G is C1-locally discrete if for any inter-
val I intersecting the minimal set the identity is the isolated point in
C1(I,S1) of the set of the restrictions on I of the maps of the group.
For the case of the foliation, one considers the holonomy maps that are
defined on I, with the intermediate lengths that stay bounded. For the
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case of finitely generated pseudogroups, one considers the composition of
generators, and does not allow the “gluing” of different pieces.

(We prefer to use this agreement in Definition 2.2, as it guarantees
that the pseudogroup action, corresponding to the doubling map x �→ 2x
mod 1, is also considered as locally discrete even though with gluing one
can obtain all the maps x �→ x+ 1

2n .)
Indeed, if a (pseudo)group is not locally discrete and its action does

not preserve a measure, the arguments of Scherbakov–Nakai–Loray–
Rebelo ([9, 16, 15, 18]) imply that it contains local flows in its local
closure. Roughly speaking, due to the absence of a preserved measure
there is a map with a hyperbolic fixed point; expanding the sequence
of maps C1-convergent to the identity with help of this map, one finds
local flows in the local closure of the (pseudo)group. That is, then there
exist two intervals, I ⊂ J , and a change of coordinates, after which the
C1-closure of the set of maps of the (pseudo)group that send I into J
contains all sufficiently small translations (see, e.g., [7, Proposition 2.8]).
We refer the reader to the works [9, 16, 15, 18], as well as to the short
reminder in [7, Section 2.2], for the details. We conclude this by mention-
ing that even though the cited papers use the analyticity assumption,
it seems that this assumption can be weakened. Namely, the main case
of the above arguments, that is, the hyperbolic fixed point being not
fixed by the maps that locally converge to the identity, can be handled
even for the C2-smooth dynamics. For the other cases, it seems that a
well-chosen weaker assumption would suffice, too.

On the other hand, the presence of non-expandable points implies
that these points cannot be sent near hyperbolic repelling ones without
too much contraction in the process (otherwise, the composition with
a power of the corresponding repelling map would be expanding at
such a point). And as having local flows in the local closure implies
that a point of a minimal set can be sent close to another point of
this set with a uniform bound on the derivative, the above arguments
imply that in presence of non-expandable points the action should be
(C1-)locally discrete.

In [5], it was noticed that in all the known examples possessing
non-expandable points belonging to a minimal set satisfy an additional
assumption: any such point is an isolated fixed point for one of the maps
of the group. This condition was called condition (�) for the case of a
minimal action and condition (Λ�) for the action with an exceptional
minimal set Λ. For the case of C2-actions, a slightly weaker definiton
was given:
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Definition 2.3 ([5]). A minimal action of a finitely generated
(pseudo)group G has property (�), if any non-expandable fixed point is
right- and left- isolated fixed point for some maps g+, g− ∈ G.

An action of a finitely generated (pseudo)group G with a Cantor
minimal set K has property (Λ�), if any non-expandable fixed point x ∈
K is right- and left- isolated fixed point for some maps g+, g− ∈ G.

Though the non-expandable points are an obstacle to the “fast”
expansion procedure, when this assumption is satisfied, one can modify
the Sullivan’s exponential expansion strategy to obtain a “slow” one,
that still allows a uniform control on the distortion. Namely, if a point
is sufficiently near a non-expandable one, one iterates the corresponding
g± (or their inverses) till the point leaves the neighborhood of a non-
expandable point. Such a modification has allowed us in [5] to obtain
under this assumption the positive answers to Questions 1.1–1.3.

The following (courageous) conjecture (going back to [5, Ques-
tion 3.1]), says that such property holds for all the C2 (finitely
generated, no measure preserving) actions:

Conjecture 2.4. Any finitely generated C2-(pseudo)group of one-
dimensional transformations (for instance, a finitely generated subgroup
of Diff2(S1) or a holonomy pseudogroup corresponding to a codimension
one foliation of a compact manifold) that does not have an invariant
measure, satisfies property (�) or (Λ�).

§3. Results: obtained and nearby goals

As we have already mentioned, under the assumption of the prop-
erty (�) or (Λ�), one can construct a bounded-distortion expansion pro-
cedure, and hence obtain positive answers to Questions 1.1–1.3; it was
done in [5]. Moreover, the same “slow” expansion procedure allows to
establish all the properties listed (in the respective cases) in Table 1.

Indeed, if there is at least one non-expandable point, it was shown
in [11, Theorem 1] that the action admits a Markov partition (on a
minimal set). The proof is based on the following idea: one can use
as endpoints of the partition the non-expandable points and a finite
sufficiently dense set of their images. Then, outside the non-expandable
point works the expansion procedure, thus on the complement to this set
one can provide an expansion, and any image of a non-expandable point
after a finite number of iterations is sent to a non-expandable point.

Moreover, it was shown in [11, Theorem 2] that using the expansion
procedure associated to this Markov partition to “magnify” any map
from the group, under a sufficiently strong magnification one sees but
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a finite number of elementary “bricks”. This is a corollary of a local
discreteness of the group: the expansion procedure has a bounded dis-
tortion, and the distortion coming from the map under magnification
tends to zero, because it is applied on smaller and smaller intervals.
This justifies the application of a term “Markov partition” (in a sense
that is weaker, than in [3], but only up to a “finite index”). Finally, if
the dynamics is locally discrete, but there are no non-expandable points,
the Markov partition can be constructed with help of the (sufficiently
dense set of) repelling fixed points: again, expanding them and their
neighborhoods, one ends up with a finite set of endpoints due to the
local discreteness.

On the other hand, for a C1-locally non-discrete action, as we have
already discussed earlier, there are vector fields in the local closure (what
is a theorem in the analytic setting and plausible statement in sufficiently
smooth one). Their presence implies the minimality of the action (as a
Cantor minimal set cannot be preserved by a flow), absence of non-
expandable points. It also implies topological rigidity: very roughly
speaking, a topological conjugacy between two such actions should send
one local vector field to the other one, and thus would be smooth. This
idea goes back to the study of polynomial foliations of C

2 (see, e.g.,
[9, 16, 15])—and in this setting was realized by A. Eskif and J. Rebelo
in [10].

The last line of Table 1 requires a short comment: it is formally
a triviality (a locally discrete action either possesses a non-expandable
point, or is non-minimal, or is a EMD: a minimal, locally discrete action
without non-expandable points). Though, the last case is quite close
to be fully classifiable. That is, for the case of analytic group actions
on the circle an unpublished result of B. Deroin states that such an
action is analytically conjugate to a finite cover of a Fuchsian group,
corresponding to a compact Riemannian surface. For the case of pseudo-
groups or foliations, it is quite natural to conjecture that a similar result
will hold, with one more opportunity: the action can be conjugate to the
pseudogroup corresponding to an expanding circle endomorphism. (For
the case of foliations, such holonomy is realized by a Hirsch foliation;
see, e.g., [8].)

The situation of absence of non-expandable points in a minimal set
also looks very promising for the study of the holomorphic dynamics. For
this case, one can state an analogue of the real one-dimensional action
conjecture: a locally discrete action either comes out of a Kleinian group
action, or corresponds to a Julia set of a holomorphic map. At the same
time, if an action is locally non-discrete, the minimal set is (due to the
local flows argument) real-analytic.
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This conjecture is partically proven: in an unpublished work by
B. Deroin, it is shown that in the locally discrete case the orbits of
the action, equipped with the metric coming from the generators of the
action, are Gromov-hyperbolic. Also, their boundaries at infinity are
locally homeomorphic, hence the topological dimension of the boundary
does not depend on the orbit. If this dimension is positive, in the same
work it is shown that the minimal set comes out of a Kleinian group
after an analytic change of coordinates. On the other hand, if it is zero,
namely if the orbits are quasi-isometric to a tree, it is quite natural to
expect that the minimal set comes out of a Julia set for a holomorphic
map, though this is not yet proven.

We conclude the discussion on the holomorphic pseudo-groups acting
by noticing that there are much more examples of actions in the com-
plex dimension one (for instance, those constructed using the mating
procedure [2]), than in the real dimension one. Due to all of this, it is
not even yet clear to us how the characterization conjecture should be
stated in this case.

Returning back to the real dimension one and adding up what
was said, we see that to establish the main paradigm, as well as
Conjecture 2.4, it suffices to get a contradiction in the case on which
a lot is known already. Namely, one assumes that there is a non-
expandable point that is not an isolated fixed point for any acting
element, and that the action is C1-locally discrete. Then, a next—
though a bit technical—idea is to consider the possible “close return”
of such a non-expandable point. If the image is sufficiently close
to the initial point, the non-expansivity property implies that such
composition is close to a translation. Taking a chain of commutators
starting with two such almost-translations, one can eventually obtain
local non-discreteness (and hence the desired contradiction).

This idea was realized in [7] for the case of a (virtually) free group
of analytic circle diffeomorphisms:

Theorem 3.1 ([7]). Let G be a (virtually) free finitely generated
subgroup of the group of analytic circle diffeomorphisms, such that the
action G does not have finite orbits. Then, G satisfies property (�)
or (Λ�) (depending on whether the action is minimal or possesses an
exceptional minimal set).

Remark 3.2. Recall, that due to a result by Ghys [14], a finitely
generated group of analytic circle diffeomorphisms, acting with a Cantor
minimal set, is always virtually free. Hence, Theorem 3.1 implies posi-
tive answers for Questions 1.2 and 1.3 for the case of an analytic group
action on the circle.
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On the other hand, finitely generated groups acting on the circle can
have one, two or a Cantor set of ends. For the latter case, it looks quite
promising1 to generalize the arguments of Theorem 3.1. The second case
is of no interest to us: in this case, the group would be quasi-isometric
to Z, in particular would be amenable, hence for its action there would
be an invariant measure. Finally, the former case with two additional
assumptions can be also handled using the same idea:

Theorem 3.3 ([12]). Let G be a finitely generated subgroup of the
group of analytic circle diffeomorphisms, acting minimally, that has one
end, is finitely presented, and in which one cannot find elements of ar-
bitrarily large finite order. Then, G satisfies property (�).

This is the up-to-date state of the project. There are different dir-
ections in which an attack can be continued:

• It is tempting to generalize Theorem 3.1 to the case of the
transversely analytic foliations. Though, to do so one would
require the appropriate generalization of the freeness of the
group (as there is no more group, but only a pseudogroup of
holonomies). Also, in a general setting of an exceptional min-
imal set in a foliation there is Duminy’s theorem, saying that
semiproper leaves have infinitely many ends, but there is no
Ghys’ theorem on the freeness of the group (as there is no
more group).

• It is very interesting to handle the case of minimal analytic
actions on the circle completely. The case of groups with in-
finitely many ends perhaps can be handled2 with the help of
the same methods as the case of a free group acting. On the
other hand, perhaps one can get rid of additional assumptions
in Theorem 3.3.

• It is also very interesting to find out the correct generaliza-
tion of the above descriptions to the case of holomorphic one-
dimensional actions.

• Most of the technique used in the cited works does not use too
much the analyticity; almost all of it can be generalized to the
C2 setting (perhaps, with some technical difficulties). Though,
passing to the smooth maps one will have to consider germs
instead of global maps (as maps can coincide locally, but not
globally), and thus perhaps use the understanding from the
generalization to the foliations.

1After this paper was completed, this was indeed achieved in [1].
2See the previous footnote.
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