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1. INTRODUCTION

Statistics is a science which studies methods of inference, from
observed data, concerning the probabilistic structure underlying such data.
The class of all the possible probability distributions is usually too wide to
consider all its elements as candidates for the true probability distribution
from which the data were derived. Statisticians often assume a statistical
model which is a subset of the set of all the possible probability distribu-
tions, and evaluate procedures of statistical inference assuming that the model
is faithful, i.e., it includes the true distribution. It should, however, be
remarked that a model is not necessarily faithful but is approximately so. In
either case, it should be very important to know the shape of a statistical
model in the whole set of probability distributions. This is the geometry of a
statistical model. A statistical model often forms a geometrical manifold, so
that the geometry of manifolds should play an important role. Considering that
properties of specific types of probability distributions, for example, of
Gaussian distributions, of Wiener processes, and so on, have so far been studied
in detail, it seems rather strange that only a few theories have been proposed
concerning properties of a family itself of distributions. Here, by the proper-
ties of a family we mean such geometric relations as mutual distances, flatness
or curvature of the family, etc. Obviously it is not a trivial task to define
such geometric structures in a natural, useful and invariant manner.

Only local properties of a statistical model are responsible for the
asymptotic theory of statistical inference. Local properties are represented

by the geometry of the tangent spaces of the manifold. The tangent space has a
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natural Riemannian metric given by the Fisher information matrix in the regular
case. It represents only a local property of the model, because the tangent
space is nothing but local linearization of the model manifold. In order to
obtain larger-scale properties, one needs to define mutual relations of the two
different tangent spaces at two neighboring points in the model. This can be
done by defining a one-to-one affine correspondence between two tangent spaces,
which is called an affine connection in differential geometry. By an affine
connection, one can consider local properties around each point beyond the
linear approximation. The curvature of a model can be obtained by the use of
this connection. It is clear that such a differential-geometrical concept pro-
vides a tool convenient for studying higher-order asymptotic properties of
inference. However, by connecting local tangent spaces further, one can obtain
global relations. Hence, the validity of the differential-geometrical method is
not limited within the framework of asymptotic theory.

It was Rao (1945) who first pointed out the importance in the
differential-geometrical approach. He introduced the Riemannian metric by using
the Fisher information matrix. Although a number of researches have been
carried out along this Riemannian line (see, e.g., Amari (1968), Atkinson and
Mitchell (1981), Dawid (1977), James (1973), Kass (1980), Skovgaard (1984),
Yoshizawa (1971), etc.), they did not have a large impact on statistics. Some
additional concepts are necessary to improve its usefulness. A new idea was
developed by Chentsov (1972) in his Russian book (and in some papers prior to
the book). He introduced a family of affine connections and proved their unique-
ness from the point of view of categorical invariance. Although his theory was
deep and fundamental, he did not discuss the curvature of a statistical model.
Efron (1975, 1978), independently of Chentsov's work, provided a new idea by
pointing out that the statistical curvature plays an important role in higher-
order properties of statistical inference. Dawid (1975) pointed out further
possibilities. Efron's idea was generalized by Madsen (1979) (see also Reeds

(1975)). Amari (1980, 1982a) constructed a differential-geometrical method in
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statistics by introducing a family of affine connections, which however turned
out to be equivalent to Chentsov's. He further defined a-curvatures, and point-
ed out *he fundamental roles of the exponential and mixture curvatures played in
statisticai inference. The theory has been developed further by a number of
papers (Ameyi (1982b, 1983a, b), Amari and Kumon (1983), Kumon and Amari (1983,
1984, 1985), Nagaoka and Amari (1982), Eguchi (1983), Kass (1984)). The new
developments were also shown in the NATO Research Workshop on Differential Geo-
metry in Statistical Inference (see Barndorff-Nielsen (1985) and Lauritzen
(1985)). They together seem to prove the usefulness of differential geometry as
a fundamental method in statistics. (See also Csiszar (1975), Burbea and Rao
(1982), Pfanzagl (1982), Beale (1960), Bates and Watts (1980), etc., for other
geometrical work.)

The present article gives not only a compact review of various
achievements up to now by the differential geometrical method most of which have
already been published in various journals and in Amari (1985) but also a pre-
view of new results and half-baked ideas in new directions, most of which have
not yet been published. Chapter 2 provides an introduction to the geometrical
method, and elucidates fundamental geometrical properties of statistical mani-
folds. Chapter 3 is devoted to the higher-order asymptotic theory of statisti-
cal inference, summarizing higher-order characteristics of various estimators
and tests in geometrical terms. Chapter 4 discusses a higher-order theory of
asymptotic sufficiency and ancillarity from the Fisher information point of
view. Refer to Amari (1985) for more detailed explanations in these chapters;
Lauritzen (1985) gives a good introduction to modern differential geometry. The
remaining Chapters 5, 6, and 7 treat new ideas and developments which are just
under construction. In Chapter 5 is introduced a fibre bundle approach, which
is necessary in order to study properties of statistical inference in a general
statistical model other than a curved exponential family. A Hilbert bundle and
a jet bundle are treated in a geometrical framework of statistical inference.

Chapter 6 gives a summary of a theory of estimation of a structural parameter
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in the presence of nuisance parameters whose number increases in proportion to
the number of observations. Here, the Hilbert bundle theory plays an essential
role. Chapter 7 elucidates geometrical structures of parametric and non-para-
metric models of stationary Gaussian time series. The present approach is use-
ful not only for constructing a higher-order theory of statistical inference on
time series models, but also for constructing differential geometrical theory of
systems and information theory (Amari, 1983 c). These three chapters are
original and only sketches are given in the present paper. More detailed theo-
retical treatments and their applications will appear as separate papers in the

near future.



2. GEOMETRICAL STRUCTURE OF STATISTICAL MODELS

Metric and a-connection

Let S = {p(x,6)} be a statistical model consisting of probability
density functions p(x,6) of random variable xeX with respect to a measure P on
X such that every distribution is uniquely parametrized by an n-dimensional
vector parameter 6 = (ei) = (e],...,e"). Since the set {p(x)} of all the den-
sity functions on X is a subset of the L] space of functions in x, S is consid-
ered to be a subset of the L] space. A statistical model S is said to be geo-
metrically regular, when it satisfies the following regularity conditions
A] ~ AG’ and S is regarded as an n-dimensional manifold with a coordinate system
9.

A]. The domain © of the parameter 6 is homeomorphic to an n-dimen-
sional Euclidean space R".

A2. The topology of S induced from R" s compatible with the
relative topology of S in the L1 space.

A3. The support of p(x,6) is common for all 60, so that p(x,8)
are mutually absolutely continuous.

A4. Every density function p(x,6) is a smooth function in o
uniformly in x, and the partial derivative a/aei and integration of log p(x,8)
with respect to the measure P(x) are always commutative.

A The moments of the score function (a/ae1)1og p(x,8) exist up to

5
the third order and are smooth in 6.

A The Fisher information matrix is positive definite.

6
Condition 1 implies that S itself is homeomorphic to R". It is
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Figure 1

possible to weaken Condition 1. However, only local properties are treated
here so that we assume it for the sake of simplicity. In a later section, we
assume one more condition which guarantees the validity of Edgeworth expansions.
Let us denote by 9; = a/aei the tangent vector e; of the i-th
coordinate curve ei (Fig. 1) at point 6. Then, n such tangent vectors e, = 34

i=1,..., n, span the tangent space Te at point 6 of the manifold S. Any tan-
gent vector AeT6 is a linear combination of the basis vectors ai,
A = A‘ai,

where Ai are the components of vector A and Einstein's summation convention is
assumed throughout the paper, so that the summation © is automatically taken
for those indices which appear twice in one term once as a subscript and once as
a superscript. The tangent space Te is a linearized version of a small neigh-
borhood at 6 of S, and an infinitesimal vector de = deiai denotes the vector
connecting two neighboring points ¢ and ¢ + do or two neighboring distributions
p(x,6) and p(x, o + do).

Let us introduce a metric in the tangent space Te' It can be done

by defining the inner product g..(8) = <dys 3j> of two basis vectors 3 and aj

ij
at 6. To this end, we represent a vector aiETe by a function ail(x,e) in x,
where 2(x,6) = log p(x,6) and 31(in 312) is the partial derivative 5/30.

Then, it is natural to define the inner product by

= = /
gij(e) <8505 Ee[aiz(x,e)aja(x,e)], (2.1)
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where Eq denotes the expectation with respect to p(x,6). This gij is the

Fisher information matrix. Two vectors A and B are orthogonal when

<A,B> = <A1ai,Bjaj> = alpdg, . = 0.

ij
It is sometimes necessary to compare a vector AeTe of the tangent
space Te at one point o with a vector BeTe. belonging to the tangent space Te'
at another point 6'. This can be done by comparing the basis vectors R at Te
with the basis vectors a% at Te" Since Te and Te‘ are two different vector
spaces, the two vectors R and a% are not directly comparable, and we need some
way of identifying Te with Te’ in order to compare the vectors in them. This
can be accomplished by introducing an affine connection, which maps a tangent

space T at o + do to the tangent space Te at 6. The mapping should reduce

p+de

to the identity map as de-0. Let m(aj) be the image of 335T mapped to Te'

p+do
It is slightly different from ajeTe. The vector

2, = Tim 4 (m(a!) - 2.}

v
i J  de>0 do J J

9

represents the rate at which the j-th basis vector ajeTe "intrinsically" changes
as the point o moves from 6 to 6+de (Fig. 2) in the direction 8. We call
vaiaj the covariant derivative of the basis vector 3j in the direction 95+

Since it is a vector of Te’ its components are given by

ijk " 3iaj’ak> , (2.2)

Figure 2
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and
_ k
vaiaj = Pij Bk N
where Fijk = Tijmgmk' We call Ty jk the components of the affine connection. An
affine connection is specified by defining Vo9 j or rijk' Let A(e) be a vector
i .
field, which assigns to every point 6eS a vector A(s) = A1(e)ai € Te‘ The

intrinsic change of the vector A(e) as the position e moves is now given by the

covariant derivative in the direction 3 of A(e) = Aj(e)aj, defined by

VaiA (31.A )aJ. + A (vai'aj) (aiA + T A )aj,
in which the change in the basis vectors as well as that in the components
A'(s) is taken into account. The covariant derivative in the direction B =

B1ai is given by

We have defined the covariant derivative by the use of the basis
vectors (R which are associated with the coordinate system or the parametriza-
tion 6. However, the covariant derivative VBA is invariant under any parametri-
zation, giving the same result in any coordinate system. This yields the trans-
formation law for the components of a connection Fijk' When another coordinate
system (parametrization) o' = 6'(6) is used, the basis vectors change from
{Bi} to {a'i'}’ where

>, = Bl
and Bg. = aei/ae'i| is the inverse matrix of the Jacobian matrix of the coor-
dinate transformation. Since the components F'i'j'k' of the connection are
written as

r' = <vai.aj.,ak.>

.iljlkl
in this new coordinate system, we easily have the transformation law

o, .., =8l BK Mot gi gk (2, BJ ).

i'j'k! itk ijk i k'ng
We introduce the a-connection, where o is a real parameter, in the

statistical manifold S by the formula
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rggz = Ee[{aiajz(x,e) + l%9-31.Q(x,e)ajﬁ(x,e)}akz(x,e)]. (2.3)
It is easily checked that the connection defined by (2.3) satisfies the trans-
formation law. In particular, the 1-connection is called the exponential con-
nection, and the -1-connection is called the mixture connection.

2.2 Imbedding and a-curvature

Let us consider an m-dimensional regular statistical model M =

{q(x,u)}, which is imbedded in S = {p(x,6)} by
q(x,u) = p{x,6(u)}.
Here, u = (u?) = (u],...,um) is a vector parameter specifying distributions of
M, and defines a coordinate system of M. We assume that 6 = 6(u) is smooth and
its Jacobian matrix has a full rank. Moreover, it is assumed that M forms an
m-dimensional submanifold in S. We identify a point ueM with the point
o = 6(u) imbedded in S. The tangent space Tu(M) at u of M is spanned by m
vectors aa’ a=1,..., m, where aa = a/aua denotes the tangent vector of the
coordinate curve u® in M. The basis aa can be represented by a function
aaz(x,u) in x as before, where 2(x,u) = log q(x,u). Since M is imbedded in S,
the tangent space Tu(M) of M is regarded as a subspace of the tangent space
Te(u)(s) of S at 6 = 8(u). The basis vector aaeTu(M) is written as a linear
combination of 9y
2, = Bl (u)a,,

where B; = 891(u)/aua. This can be understood from the relation
_ gl
3,4(x,u) = B o 2{x,6(u)}.

Hence, the tangential directions of M at u is represented by m vectors aa,
(a=1,...,m) or Ba = (B;) in the component form with respect to the basis 3
of Te(u)(S).

It is convenient to define n - m vectors 9.5 Kk =M+ 1,...5n 1n
Te(u)(s) such that n vectors {aa,aK}, a=1,...,m;y x=m+ 1,...,n, together
form a basis of Te(u)(s) and moreover 3K's are orthogonal to aa's, (Fig. 3),

gaK(u) = <9,,0 > = 0.
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The vectors 3 span the orthogonal complement of Tu(M) in Te(u)(s)‘ We denote

the components of aK with respect to the basis ai by aK = Bi(u)ai. The inner

products of any two basis vectors in {aa,aK} are given by

Figure 3
9,p(U) = <3,.3,> = B, Bbg1J ,
g . (u) = <3 ,0.> = BBKg, (2.4)
KA "0 koAZig :
= = i j
gaK(u) <aa,3K> BaBKgij .

The basis vector aa may change in its direction as point u moves in
M. The change is measured by the a-covariant derivative Vaé“)aa of 3, in the
direction ab, where the notion of a connection is necessary, because we need to
compare two vectors 3 and 3; belonging to different tangent spaces Te(u)(s) and

(u )(S) The a-covariant derivative va(“)aa is calculated in S as

(o), _ pi(a)/pd
Vab 3, = Bbvai (Baaj)
= (3 BJ + 81 F( )J)

b ik J :

When the directions of the tangent space Tu(M) of M do not change as point u
moves in M, the manifold M is said to be a-flat in S, where the tangent direc-
tions are compared by the a-connection. Otherwise, M is curved in the sense of

the o-connection. The a-covariant derivative va(a)aa is decomposed into the
b
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tangential component belonging to Tu(M) and the normal component perpendicular
to Tu(M)‘ The former component represents the way 3, changes within Tu(M),
while the latter represents the change of aa in the directions perpendicular to

Tu(M), as u moves in M. The normal component is measured by

(a) o o (a) - J ipk (a)dypm
Habe <Vaa 35 3K> = (abBa + BbBarﬁk )BKgmj, (2.5)

which is a tensor called the a-curvature of submanifold M in S. It is usually
called the imbedding curvature or Euler-Shouten curvature. This tensor repre-
sents how M is curved in S. A tensor is a multi-linear mapping from a number of

tangent vectors to the real set. In the present case, for A = AaaaeTu(M)

B = BbabeTu(M) and C = CKaK belonging to the orthogonal complement of Tu(M), we
have the multi-linear mapping H(“),
(a) _ () papbak
HY™/(A,B,C) = HabK A"BC".

(o)

This H(“) is the a-curvature tensor, and HabK are its components. The sub-

manifold M is a-flat in S when Hégz = 0 holds. The m x m matrix

H(a)H(OL) kx_cd

(a)42
[ ]ab ack bdrd 9

M

d are the inverse

represents the square of the a-curvature of M, where gKA and gC
matrix of 9oy and 9ed? respectively. Efron called the scalar

R U e

the statistical curvature in a one-dimensional model M, which is the trace of
the square of the exponential- or T-curvature of M in our terminology.

Let 6 = o(t) be a curve in S parametrized by a scalar t. The curve
c: g = g(t) forms a one-dimensional submanifold in S. The tangent vector A of

the curve is represented in the component form as

or shortly by &, where - denotes d/dt. When the direction of the tangent
vector 8 = 6 does not change along the curve in the sense of the a-connection,
the curve is called an a-geodesic. By choosing an appropriate parameter, an

a-geodesic 6(t) satisfies the geodesic equation
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(a)s _
vig'e = 0
or in the component form
il s r(j“k)’éJék =0. (2.6)

2.3 Duality in o-flat manifold

Once an affine connection is defined in S, we can compare two
tangent vectors AeTe and A'eTe. belonging to different tangent spaces Te and
Te' by the following parallel displacement of a vector. Let c: 6 = o(t) be a
curve connecting two points 6 and 6'. Let us consider a vector field A(t) =
Ai(t)aieTe(t) defined on each point 8(t) on the curve. If the vector A(t) does
not change along the curve, i.e., the covariant derivative of A(t) in the
direction § vanishes identically

vAE) = A() + r AN )8 = 0,

the field A(t) is said to be a parallel vector field on c. Moreover,
A(t')sTe(t.) at e(t') is said to be a parallel displacement of A(t)sTe(t) at
8(t). We can thus displace in parallel a vector AeTe at o to another point o'
along a curve 6(t) connecting 6 and ', by making a vector field A(t) which
satisfies the differential equation véA(t) = 0, with the boundary conditions

o =06(0), 6'=06(1), and A(0) = AeT The vector A' = A(])eTe. at 8' = 0(1) is

0"
the parallel displacement of A from 6 to 6' along the curve c: o = o(t). We
denote it by A' = nCA. When the a-connection is used, we denote the a-parallel
displacement operator by néu). The parallel displacement of A from 6 to 6' in
general depends on the path c: 6(t) connecting 6 and 6'. When this does not
depend on paths, the manifold is said to be flat. It is known that a manifold
is flat when, and only when, the Riemann-Christoffel curvature vanishes identi-
cally (see textbooks of differential geometry). A statistical manifold S is
said to be a-flat, when it is flat under the a-connection.

The parallel displacement does not in general preserve the inner

product, i.e., <nCA,nCB> = <A,B> does not necessarily hold. When a manifold has

two affine connections with corresponding parallel displacement operators T
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and ng and moreover when

<ncA,n:B> = <A,B> (2.7)

holds, the two connections are said to be mutually dual. The two operators me
and wz are considered to be mutually adjoint. We have the following theorem
in this regard (Nagaoka and Amari (1982)).

Theorem 2.1. The a-connection and -a-connection are mutually dual.
When S is a-flat, it is also -a-flat.

When a manifold S is o-flat, there exists a coordinate system (61)

such that

véj)aj =0 or rgga(e) =0
identically holds. In this case, a basis vector 81 is the same at any point 6
in the sense that aiETe is mapped to aieTe. by the a-parallel displacement
irrespective of the path connecting 6 and 6'. Since all the coordinate curves
ei are a-geodesics in this case, 6 is called an a-affine coordinate system. A
Tinear transformation of an a-affine coordinate system is also a-affine.

We give an example of a 1-flat (i.e., o = 1) manifold S. The

density functions of exponential family S = {p(x,6)} can be written as
p(x,8) = exp{e1xi - (e)}

with respect to an appropriate measure, where ¢ = (61) is called the natural or
canonical parameter. From

aiz(x,e) =X - aiw(e), aiajz(x,e) = -aiajw(e) ,
we easily have

955(6) = 8;95u(e), T f;‘,z(e) alr REICICUAR

Hence, the 1-connection F(]a vanishes identically in the natural parameter,
showing that e gives a 1-affine coordinate system. A curve ei(t) = ait + bi,
which is linear in the o-coordinates, is a 1-geodesic, and conversely.

Since an o-flat manifold is -a-flat, there exists a -a-flat coor-
dinate system n = (”i) = (”1""’"n) in an o-flat manifold S. Let

ai = 3/9n; be the tangent vector of the coordinate curve n; in the new coordin-
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ate system n. The vectors {ai} form a basis of the tangent space Tﬁ (i.e. at
Te where 6 = 6(n)) of S. When the two bases {ai} and {31} of the tangent space
Te satisfy
<ai,3j> = 62

at every point o (or n), where 62 is the Kronecker delta (denoting the unit
matrix), the two coordinate systems 6 and n are said to be mutually dual.
(Nagoaoka and Amari (1982)).

Theorem 2.2. When S is a-flat, there exists a pair of coordinate
systems 6 = (ei) and n = (”i) such that i) e is a-affine and n is -a-affine,
ii) 8 and n are mutually dual, iii) there exist potential functions y(e) and

#(n) such that the metric tensors are derived by differentiation as

g::(e) = <05,05> = 3;350(8) »

ij J

i3 .. ..
g (n) = «a",8%> = 3'a3(n)
where gij and g Y are mutually inverse matrices so that
£ 9133 , 9 g aJ
holds, iv) the coordinates are connected by the Legendre transformation

o' = a'u(n), ;= 23u(0) (2.8)

where the potentials satisfy the identity
p(e) + ¢(n) - 6on =0, (2.9)
where 6.n = eini.
In the case of an exponential family S, y becomes the cumulant
generating function, the expectation parameter n = (”i)
nj < Ee[xi] = 3i¢(9)
is -1-affine, 6 and n are mutually dual, and the dual potential ¢(n) is given
by the negative entropy,
¢(n) = E[Tog p] ,

where the expectation is taken with respect to the distribution specified by n.
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2.4 a-divergence and o-projection

We can introduce the notion of a-divergence Da(e,e') in an o-flat
manifold S, which represents the degree of divergence from distribution p(x,6)
to p(x,06'). It is defined by

D,(858") = w(6) + ¢(n') - 0-n' , (2.10)

where n' = n(e') are the n-coordinates of the point 6', i.e., the -a-coordinates
of the distribution p(x,6'). The a-divergence satisfies Da(e,e') > 0 with the
equality when and only when 8 = 8'. The -a-divergence satisfies D_a(e,e') =
Da(e',e). When S is an exponential family, the -1-divergence is the Kullback-

Leibler information,
N o= . - p(x,6)
D_y(8,0") = 1Lp(x,0') 5 p(x.)] = [ p(x,6)l0g By cp.

As a preview of later discussion, we may also note that, when
S = {p(x)} is the function space of a non-parametric statistical model, the

a-divergence is written as

D {p(x),a(x)} = 42 (- Jp(x)("a)/2 q(x) (1+)/2 4p)

T-o
when o # 1, and is the Kullback information or its dual when o = -1 or 1.

When 8 and 6' = 6 + do are infinitesimally close,

g”(e)de‘deJ (2.11)

Nf —

Da(e,e + do) =

holds, so that it can be regarded as a generalization of a half of the square
of the Riemannian distance, although neither symmetry nor the triangular
inequality holds for Da. However, the following Pythagorean theorem holds
(Efron (1978) din an exponential family, Nagaoka and Amari (1982) in a general
case).

Theorem 2.3. Let c be an a-geodesic connecting two points 6 and
o', and let ¢' be a -a-geodesic connecting two points o' and 6" in an o-flat
S. When the two curves c and c¢' intersect at o' with a right angle such that

6, 6' and 8" form a right triangle, the following Pythagorean relation holds,
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Da(e,e') + Da(e',e") = Da(e,e") . (2.12)

Let M = {q(x,u)} be an m-dimensional submanifold imbedded in an
a-flat n-dimensional manifold S = {p(x,6)} by 6 = 6(u). For a distribution
p(x,eo)eS, we search for the distribution q(x,u)eM, which is the closest dis-
tribution in M to p(x,eo) in the sense of the a-divergence (Fig. 4a),

min D {6,6(u)} = Da{eo,e(ﬁ)} .

ueM
We call the resulting G(eo) the a-approximation of p(x,eo) in M, assuming such
exists uniquely. It is important in many statistical problems to obtain the
a-approximation, especially the -1-approximation. Let c(u) be the a-geodesic
connecting a point o(u)eM and 80> c(u) : 8 = o(tzu), o(u) = o(0,u), 0 = 6(1,u)
(Fig. 4b). When the a-geodesic c(U) is orthogonal to M at e(U), i.e.,

<é(0;ﬁ),aa> =0

where aa = a/aua are the basis vectors of Tu(M), we call the U the a-projection
of 8g ON M. The existence and the uniqueness of the a-approximation and the
a-projection are in general guaranteed only locally. The following theorem was
first given by Amari (1982a) and by Nagaoka and Amari (1982) in more general

form.
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S
P ol-geodesic

Figure 4

Theorem 2.4. The o-approximation ﬁ(eo) of 8 in M is given by the

a-projection u(%o) of 64 on M.

37



3, HIGHER-ORDER ASYMPTOTIC THEORY OF STATISTICAL INFERENCE IN
CURVED EXPONENTIAL FAMILY

Ancillary family

Let S be an n-dimensional exponential family parametrized by the
natural parameter 6 = (61) and let M = {q(x,u)} be an m-dimensional family
parametrized by u = (u?), a =1,..., m. M is said to be an (n,m)-curved expo-

nential family imbedded in S = {p(x,6)} by 6 = 6(u), when q(x,u) is written as
a(x,u) = exple’ (u)x; - wio(u)1l.

The geometrical structures of S and M can easily be calculated as follows. The

quantities in S in the 6-coordinate system are
- a) o 1-a
g-ij(e) = 313j\l’(9) s 'iJk 2 T.ijk ’

T = a.ajakw(e) .

ijk i

The quantities in M are

- - pind
9ap(U) = <35> = BBp9y5 »
(@) - o(a). - airpde  dea
Tabc = “za %b°%c” = (%aBp)B9i5 * 7 Tabe’
_ ninink i
Tac = BABIBET 5+ B = 3,0'(u) .

Here, the basis vector 3 of Tu(M) is a vector

_ gl
aa BaB_i

in Te(u)(s)‘ If we use the expectation coordinate system n in S, M is repre-

sented by n = n(u). The components of the tangent vector 3, are given by

38
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= = j
Bai 3ani(u) Bagji ?

Al = i i =
where Baia , 9 a/ani.
Let x(]), X(Z)""’X(N) be N independent observations from a distri-

bution q(x.")eM. Then, their arithmetic mean

)-( = (l;.l X(J))/N

j=1

is a minimal sufficient statistic. Since the joint distribution q(x(]),...,

X(N); u) can be written as

jg] alx 5yu) = exolNEe! W%, - wlo(w))],

the geometrical structure of M based on N observations is the same as that

based on one observation except for a constant factor N. We treat statistical
inference based on X. Since a point x in the sample space X can be identified
with a point n = x in S by using the expectation parameter n, the observed suf-
ficient statistic x defines a point n in S whose n-coordinates are given by X,

n = X. In other words, we regard X as the point (distribution) n in S whose
expectation parameter is just equal to x. Indeed, this n is the maximum likeli-
hood estimator in the exponential family S.

Let us attach an (n-m)-dimensional submanifold A(u) of S to each
point ueM, such that all the A(u)'s are disjoint (at least in some neighborhood
of M, which is called a tubular neighborhood) and the union of A(u)'s covers S
(at least the tubular neighborhood of M). This is called a (local) foliation of
S. Letv=(v), c=m+ 1,..., n be a coordinate system in A(u). We assume
that the pair (u,v) can be used as a coordinate system of the entire S (at
least in a neighborhood of M). Indeed, a pair (u,v) specifies a point in S such
that it is included in the A(u) attached to u and its position in A(u) is given
by v (see Fig. 5). Let n = n(u,v) be the n-coordinates of the point specified
by (u,v). This is the coordinate transformation of S from w = (u,v) to n,
where w = (u,v) = (wS) is an n-dimensional variable, g = 1,..., n, such that its

first m components are u = (ua) and the last n - m components are v = (v©).
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A (u)

A (u')

Figure 5

Any point n (in some neighborhood of M) in S can be represented uniquely by

w = (u,v). We assume that A(u) includes the point n = n(u) on M and that the
origin v = 0 of A(u) is put at the point ueM. This implies that n(u,0) is the
point n(u)eM. We call A = {A(u)} an ancillary family of the model M.

In order to analyze the properties of a statistical inference
method, it is helpful to use the ancillary family which is naturally determined
by the inference method. For example, an estimator U can be regarded as a map-
ping from S to M such that it maps the observed point n = x in S determined by
the sufficient statistic X to a point G(Xx)eM. Its inverse image ﬁ'](u) defines

an (n-m)-dimensional subspace A(u) attached to ueM,
A(u) = 671 (u) = (neS | G(n) = u} .

Obviously, the estimator U takes the value u when and only when the observed x
is included in A(u). These A(u)'s form a family A = {A(u)} which we will call
the ancillary family associated with the estimator U. As will be shown soon,
large-sample properties of an estimator U are determined by the geometrical
features of the associated ancillary submanifolds A(u). Similarly, a test T
can be regarded as a mapping from S to the binary set {r,r}, where r and r

imply, respectively, rejection and acceptance of a null hypothesis. The
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inverse image T'](r)<: S is called the critical region, and the hypothesis is
rejected when and only when the observed point n = XeS is in T'](r). In order
to analyze the characteristics of a test, it is convenient to use an ancillary
family A = {A(u)} such that the critical region is composed of some of the
A(u)'s and the acceptance region is composed of the other A(u)'s. Such an
ancillary family is said to be associated with the test T.

In order to analyze the geometrical features of ancillary submani-
folds, let us use the new coordinate system w = (u,v). The tangent of the

coordinate curve wB

is given by 38 = a/awB. The tangent space Tn(S) at point

n = n(w) of S is spanned by {as}, 8 =1,..., n. They are decomposed into two

parts {36} = {ea,aK}, B=1l,...,n3a=1,...,my ck=m+1,...,n. The former
part o, = 3/3u® spans the tangent space Tu(M) of M at u and the latter 5 =

3/ave spans the tangent space Tu(A) of A(u). Their components are given by

Bsi = aBni(w) in the basis 3'. They are decomposed as
- i _ i
aa - Baia ? BK N BKia i
with Byi = aani(u,v), B ; = aKni(u,v). The metric tensor in the w-coordinate
system is given by
= = i‘j=ij
9up = “047% Baistg BuBSgij (3.1)
where
i_ i = apl a
Ba g Baj 30 (u,v)/ow .

The metric tensor is decomposed into three parts:

gab(u) = <aasab> = BaiBbjg1J (3.2)
is the metric tensor of M,
QKA(U) = <359,> = BKiBAjg1J (3.3)
is the metric tensor of A(u), and
- - ij
Ja T %20 BaiBKjg (3.4)

represents the angles between the tangent spaces of M and A(u). When gaK(u,O)

= 0, M and A(u) are orthogonal to each other at M. The ancillary family
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A = {A(u)} is said to be orthogonal, when gaK(u) = 0, where f(u) is the abbre-
viation of f(u,0) when a quantity f(u,v) is evaluated on M, i.e., at v = 0.

We may treat an ancillary family AN which depends on the number N of observa-
tions. In this case gaB also depends on N. When Yax = <aa,aK> is a quantity of
order N-]/2 converging to 0 as N tends to infinity, the ancillary family is

said to be asymptotically orthogonal.

The a-connection in the w-coordinate system is given by

(a)= (a) - i T+a
Tagy <v3a 92 9y (aaBﬁi)Bv T2 TaBY
_ i 1-a
=(8,Bg)B s + 5 T g » (3.5)
- nipdpk _ (o) _ _
where Tasy BuBBBYTijk' The M-part Tabc gives the components of the a-connec

tion of M and the A-part FKiz gives those of the a-connection of A(u). When A

is orthogonal, the wa-curvatures of M and A(u) are given respectively by

H(a) - r(OL) H(Q) - F(u) (3.6)

abk abk KAa kaa -’

The quantities gaK(u), H(u) and H( ) are fundamental in evaluating asymptotic

o

abk KAa

properties of statistical inference procedures. When o = 1, the 1-connection is
called the exponential connection, and we use suffix (e) instead of (1). When
a = -1, the -1-connection is called the mixture connection, and we use suffix

(m) instead of (-1).

3.2 Edgeworth expansion

We study higher-order asymptotic properties of various statistics
with the help of Edgeworth expansions. To this end, let us express the point
n = x defined by the observed sufficient statistic in the w-coordinate system.

The w-coordinates w = (u,v) are obtained by solving
X = n(w) = n(u,v) . (3.7)

The sufficient statistic X is thus decomposed into two parts (u,v) which to-
gether are also sufficient. When the ancillary family A is associated with an

estimator or a test, U gives the estimated value or the test statistic,
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respectively. We calculate the Edgeworth expansion of the joint distribution of
(u,v) in geometrical terms. Here, it is necessary further to assume a condition
which guarantees the Edgeworth expansion. We assume that Cramér's condition is
satisfied. See, for example, Bhattacharya and Ghosh (1978).

When Ug is the true parameter of distribution, X converges to n(uo,
0) in probability as the number N of observations tends to infinity, so that the

random variable w also converges to Wy = (uO,O). Let us put

X = MNix - n(ug,0)} , W= /Nw - wg)

3=mﬁ-u&, Vv=/mNv. (3.8)

Then, by expanding (3.7), we can express W in the power series of X. We can
obtain the Edgeworth expansion of the distribution p(W;uO) of W= (U,v). How-
ever, it is simpler to obtain the distribution of the one-step bias-corrected
version w* of w defined by
Wr =W - Ea[W] ,
where Ew denotes the expectation with respect to p(x,w). The distribution of W
is obtained easily from that of w*. (See Amari and Kumon (1983).)

Theorem 3.1. The Edgeworth expansion of the probability density

p(W*,uo) of w*, where q(x,uo) is the underlying true distribution, is given by

p(W*,ug) = n(ixsg )00 + L Kag h*EY 4 %’AN(W*) +o(N3/2)y
¢ 6N Y (3.9)

vy o Va2 0B 1 aBys | 1 aBySed
AyWE) = 7 Cogh ™ + 27 Koy * 77 KagyKoeo" ’

where n(W*;gaB) is the multivariate normal density with mean O and covariance

gotB = (gaB)'], h*BY etc. are the tensorial Hermite polynomials in w* and

_ _ an(-1/3)
KaBY 3TGBY ’
2 _ _(m) .(m) ye_so
CaB = PYGQ FecB g'g  , etc.

The tensorial Hermite polynomials in w with metric 9up are defined

by
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a]...

o o o
h k(w) = (—1)k{D 1 ...D kn(w;gas)}/n(w;gas) s

where D% = g“s(a/aws), cf. Amari and Kumon (1983), McCullagh (1984). Hence,
h =1 h* = w® h*® = wowh - g8

h*BY = WWByY - By - g®WB - BV | etc.

1

Theorem 3.1 shows the Edgeworth expansion up to order N™' of the

joint distribution of U* and V*, which together carry the full Fisher informa-
tion. The marginal distribution can easily be obtained by integration.

Theorem 3.2. When the ancillary family is orthogonal, i.e., gaK(u)
= 0, the distribution p(ﬁ*,uo) of U* is given by

1 -1/2

= . L abc
p(U*auo) = n(U*’gab){1 + 6 N Kabch

1

+ Ny (%)) + o(N32y (3.10)

_ 3p(-1/3)

where Kabc = abc

1.2 .ab
Ag(u*) = 7 Coph

+ terms common to all the orthogonal ancillary families,

2 _ (M2 ey2 my2
Cap = (T)gp *+ 2(Hy)ap + (Ha)gp (3.11)

m2 _ _(m)_.(m) ce df
(r )ab charefb 99

e\2 _ ,(e) ,(e) cd kx
(HM)ab = Hice Ppan 979 »

m2 _ o (m) p(m) kx ovu
(HA)ab HKva Hkub 99 -

3.3 Higher-order efficiency of estimation

Given an estimator u : S»M which maps the observed point n = Xe$ to

i(x)eM, we can construct the ancillary family A = {A(u)} by
Aw) = 67T (u) = tnes | (n) = u} .

The A(u) includes the point n(u) = n(u,0), when and only when the estimator is

consistent. (We may treat a case when A(u) depends on N, denoting an ancillary
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family by AN(u). In this case, an estimator is consistent if kim AN(u)+n(u,0).)
[->c0
Let us expand the covariance of the estimation error ¥ = /N(u - uo) as

¥ ,4by - gab + qaby-1/2

-3/2
92 + g3 N + O(N / ) .

cov[u

A consistent estimator is said to be first-order efficient or simply efficient,

when its first-order term g?b

(u) is minimal among all the consistent estimators
at any u, where the minimality is in the sense of positive semidefiniteness of
matrices. The second- and third-order efficiency is defined similarly.

Since the first-order term g?b is given from (3.9) by

97" = (95 = 998"
the minimality is attained, when and only when Jae = 0, i.e., the associated
ancillary family is orthogonal. From this and Theorem 3.2, we have the follow-
ing results.

Theorem 3.3. A consistent estimator is first-order efficient, iff
the associated ancillary family is orthogonal. An efficient estimator is always
second-order efficient, because of ga 0.

There exist no third-order efficient estimators in the sense that
ggb(u) is minimal at all u. This can be checked from the fact that ggb includes
a term linear in the derivative of the mixture curvature of A(u), see Amari
(1985). However, if we calculate the covariance of the bias-corrected version
U* = U - Ea[a] of an efficient estimator u, we see that there exists the third-
order efficient estimator among the class of all the bias-corrected efficient

estimators. To state the result, let 932 ~ g3dgcagbd be the lower index

version of g3b.

Theorem 3.4. The third-order term 93ab of the covariance of a bias-
corrected efficient estimator U* is given by the sum of the three non-negative
geometric quantities

_1(m)2 +(He

= 2 )2
93ab ~ 2 ab M

m
b §'(HA)ab . (3.12)
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The first is the square of mixture connection components of M, and depends on
the parametrization of M but is common to all the estimators. The second is

the square of the exponential curvature of M, which does not depend on the
estimator. The third is the square of the mixture curvature of the ancillary
submanifold A(u) at n(u), which depends on the estimator. An efficient estima-
tor is third-order efficient, when and only when the associated ancillary family
is mixture-flat at n{u). The m.l.e. is third-order efficient, because it is
given by the mixture-projection of n to M.

The Edgeworth expansion (3.10) tells more about the characteristics
of an efficient estimator U*. When HETg vanishes, an estimator is shown to be
mostly concentrated around the true parameter u and is third-order optimal
under a symmetric unimodal loss function. The effect of the manner of paramet-
rizing M is also clear from (3.10). The a-normal coordinate system (parameter)
in which the components of the o-connection become zero at a fixed point is very
important (cf. Hougaard, 1983; Kass, 1984).

3.4 Higher-order efficiency of tests

Let us consider a test T of a null hypothesis H0 : ueD against the
alternative H1 : ugD in an (n,m)-curved exponential family, where D is a region
or a submanifold in M. Let R be a critical region of test T such that the
hypothesis H0 is rejected when and only when the observed point n = X belongs to
R. When T has a test statistic A(x), the equation A(n) = const. gives the
boundary of the critical region R. The power function PT(u) of the test T at
point u is given by

SOESRICOE S

where p(Xx;u) is the density function of X when the true parameter is u.
Given a test T, we can compose an ancillary family A = {A(u)} such
that the critical region R is given by the union of some of A(u)'s, i.e., it

can be written as

A(u) ,



Differential Geometrical Theory of Statistics 47

where RM is a subset of M. Then, when we decompose the observed statistic
n =X into (,v) by X = n(d,v) in terms of the related w-coordinates, the hypo-
thesis Ho is rejected when and only when GERM. Hence, the test statistics r(X)
is a function of only u. Since we have already obtained the Edgeworth expansion
of the joint distribution of (U,v) or of (u*,v*), we can analyze the character-
istics of a test in terms of geometry of associated A(u)'s.

We first consider the case where M = {q(x,u)} is one-dimensional,
so that u = (ua) is a scalar parameter, indices a, b, etc becoming equal to 1.
We test the null hypothesis H0 PU = Uy against the alternative H] tu i ug -
Let uy be a point which approaches up as N tends to infinity by

= u, + t(Ng) V2,

Uy 0 (3.13)

i.e., the point whose Riemannian distance from Ug is approximately tN_]/Z,

where g = gab(uo). The power PT(ut’N) of a test T at uy is expanded as

Pr(ugsN) = Py (t) + F’Tz(t)N'”2 4 PT3(t)N_] s o3y

A test T is said to be first-order uniformly efficient or, simply, efficient,
if the first-order term PT1(t) satisfies PT1(t) > PT'1(t) at all t, compared
with any other test T' of the same level. The second- and third-order uniform
efficiency is defined similarly. Let P(ut,N) be the envelope power function of

P ut,N)'s defined by

o
P(ut,N) = s¥p PT(ut’N) . (3.14)

Let us expand it as

It is clear that a test T is i-th order uniformly efficient, iff
Pr(8) = P(t)
holds at any t for k = 1,...,1.
An ancillary family A = {A(u)} in this case consists of (n-1)-
dimensional submanifolds A(u) attached to each u or n(u)eM. The critical

region R is bounded by one of the ancillary submanifolds, say A(u+), in the
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one-sided case, and by two submanifolds A(u+) and A(u_) in the two-sided unbias-
ed case. The asymptotic behavior of a test T is determined by the geometric
features of the boundary 3R, i.e., A(u+)[and A(u_)]. In particular, the angle
between M and A(u) is important. The angle is given by the inner product

gaK(u) = <3.,0 > of the tangent % of M and tangents 3, of A(u). When gaK(u) =
0 for all u, A is orthogonal. In the case of a test, the critical region and

hence the associated ancillary A and gaK(u) depend on N. An ancillary family is

said to be asymptotically orthogonal, when gaK(u) is of order N_]/z. We can
assume gaK(uO) = 0, and gaK(ut) can be expanded as
_ -1/2
95, (ug) = t Qup (Ng) , (3.15)

where Qp = aagbK(uO). The quantity QabK represents the direction and the
magnitude of inclination of A(u) from being exactly orthogonal to M. We can
now state the asymptotic properties of a test in geometrical terms (Kumon and
Amari (1983), (1985)).

Theorem 3.5. A test T is first-order uniformly efficient, iff the
associated ancillary family A is asymptotically orthogonal. A first-order
uniformly efficient test is second-order uniformly efficient.

Unfortunately, there exist no third-order uniformly efficient test
(unless the model M is exponential family). An efficient test T is said to be
third-order to-efficient, when its third-order power PT3(t) is minimal among
all the other efficient tests at tys i.e., when PT3(t0) = P3(t0), and when
there exist no tests T' satisfying PT.3(t) > PT3(t) for all t. An efficient
test is third-order admissible, when it is tg - efficient at some to. We define
the third-order power loss function (deficiency function) APT(t) of an efficient
test T by

PT(t) = Tim N{P(ut,N) - PT(ut,N)} = P3(t) - PT3(t) . (3.16)

Nooo

It characterizes the behaviors of an efficient test T. The power loss function
can be explicitly given in geometrical terms of the associated ancillary A

(Kumon and Amari (1983), Amari (1983a)).
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Theorem 3.6. An efficient test T is third-order admissible, only
when the mixture curvature of A(u) vanishes as N+ and the A(u) is not exactly
orthogonal to M but asymptotically orthogonal to compensate the exponential
curvature Hgg) of model M such that

= CH(e)

abk abk (3.17)

Q

holds for some constant c. The third-order power loss function is then given by

oPo(t) = a(tia)ic - 3. (ta) 52, (3.18)

o
where ai(t,a) is some fixed function of t and a, a being the level of the test,

2

2 gole) y(e) cacpd (3.19)

abc cdx

is the square of the exponential curvature (Efron's curvature) of M, and
Jy(tsa) =1 - t/{2u](a)},

J(tya) =1 - t/[2u2(a)tanh{tu2(a)}],

2
i =1 for the one-sided case and i = 2 for two-sided case, n being the standard
normal density function, and U](a) and Uz(a) being the one-sided and two-sided
100a% points of the normal density, respectively.

The theorem shows that a third-order admissible test is character-
ized by its c value. It is interesting that the third-order power loss function
(3.18) depends on the model M only through the statistical curvature yz, so that
APT(t)/y2 gives a universal power loss curve common to all the statistical
models. It depends only on the value of c. Various widely used tests will next
be shown to be third-order admissible, so that they are characterized by c
values as follows.

Theorem 3.7. The test based on the maximum likelihood estimator
(e.g. Wald test) is characterized by ¢ = 0. The likelihood ratio test is char-
acterized by ¢ = 1/2. The locally most powerful test is characterized by c = 1
in the one-sided case and ¢ = 1 - 1/{2u§(a)} in the two-sided case. The con-
ditional test conditioned on the approximate ancillary statistic a = HéEZVK

is characterized also by ¢ = 1/2. The efficient-score test is characterized by
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c =1, and is inadmissible in the two-sided case.

We show the universal third-order power loss functions of various
tests in Fig. 6 in the two-sided case and in Fig. 7 in the one-sided case,
where o = 0.05 (from Amari (1983a)). It is shown that the likelihood ratio test
has fairly good performances throughout a wide range of t, while the locally
most powerful test behaves badly when t > 2. The m.1.e. test is good at around
t = 3~4.

We can generalize the present theory to the multi-parameter cases
with and without nuisance parameters. It is interesting that none of the
above tests are third-order admissible in the multi-parameter case. However, it
is easy to modify a test to get a third-order to-efficient test by the use of
the asymptotic ancillary statistic a (Kumon and Amari, 1985). We can also
design the third-order to-most-powerful confidence region estimators and the
third-order minimal size confidence region estimators.

It is also possible to extend the present results of estimation and
testing in a statistical model with nuisance parameter ¢. In this case, a set
M(uo) of distributions in which the parameter of interest takes a fixed value
Ug> but ¢ takes arbitrary values, forms a submanifold. The mixture curvature
and the exponential twister curvature of M(uo) are responsible for the higher-
order characteristics of statistical inference. The third-order admissibility

of the 1ikelihood ratio test and others is again proved. See Amari (1985).
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4. INFORMATION, SUFFICIENCY AND ANCILLARITY
HIGHER ORDER THEORY

Information and conditional information

Given a statistical model M = {p(x,u)}, u = (ua), we can follow
Fisher and define the amount gab(T) of information included in a statistic
T = t(x) by

9,p(T) = E[3 a(t,u)a e (t,u)] (4.1)

where 2(t,u) is the logarithm of the density function of t when the true para-
meter is u. The information gab(T) is a positive-semidefinite matrix depending
on u. Obviously, for the statistic X, gab(X) is the Fisher information matrix.
Let T(X) and S(X) be two statistics. We similarly define, by using the joint
distribution of T and S, the amount gab(T,S) of information which T and S to-
gether carry. The additivity

9ap(T58) = 95 (T) + 94 (5)

does not hold except when T and S are independent. We define the amount of

conditional information carried by T when S is known by
gab(TIS) = ESETls[aai(t|s,u)abl(t|s,u)] , (4.2)

where 2(t|s,u) is the logarithm of the conditional density function of T con-

ditioned on S. Then, the following relation holds,
6,5(T>S) = 9, (T) + g, (SIT) = g, (S) + g, (T]S) .

From gab(S|T) = gab(T’S) - gab(T), we see that the conditional information
denotes the amount of loss of information when we discard s from a pair of

statistics s and t, keeping only t. Especially,

52
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8,5(T) = 9,5 (X) = g, (T) = g, (X|T) (4.3)

is the amount of loss of information when we keep only t(x) instead of keeping

the original x. The following relation is useful for calculation,
Agab(T) = ETCov[aal(x,u),abz(x,u)]t] . (4.4)
gab(SIT) = gab(T) - gab(T’S) > (4.5)

where Cov[.|t] is the conditional covariance.

A statistic S is sufficient, when gab(S) = gab(X) or Agab(S) = 0.
When S is sufficient, gab(T[S) = 0 holds for any statistic T. A statistic a is
ancillary, when gab(A) = 0. When A is ancillary, gab(T,A) = gab(T[A) for any T.
It is interesting that, although A itself has no information, A together with

another statistic T recovers the amount
gab(AlT) = gab(T’A) - gab(T)

of information. An ancillary statistic carries some information in this sense,
and this is the reason why an ancillarity is important in statistical inference.
We call gab(AlT) the amount of information of ancillary A relative to statistic
T.

When N independent observations X e eaXy are available, the Fisher
information gab(XN) is Ngab(X), N times that of one observation. When M is a
curved exponential family, X = zxi/N is a sufficient statistic, keeping the
whole information, gab(i) = Ngab(X). Let t(x) be a statistic which is a func-

tion of x. It is said to be asymptotically sufficient of order q, when
80, (T) = 9,5 (X) = g, (T) = o(N"*T) (4.6)
Similarly, a statistic t(x) is said to be asymptotically ancillary of order g,
when
9,,(T) = 0(N"%) (4.7)
holds. (The definition of the order in the present article is different from

that by Cox (1980) etc.)
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4.2 Asymptotic efficiency and ancillarity

Given a consistent estimator u(X) in an (n,m)-curved exponential
family M, we can construct the associated ancillary family A. By introducing
an adequate coordinate system v in each A(u), the sufficient statistic x is de-
composed into two statistics (u,v) by X = n(d,v). The amount Agab(ﬁ) of inform-
ation loss of estimator u is calculated from (4.4) by using the stochastic ex-
pansion of aaﬁ(i,u) as

8g,, (V) = Ng, g, g +0(1) .
Hence, when and only when A is orthogonal, i.e., gaK(u) = 0, u is first-order
sufficient. In this case, u is (first-order) efficient. The loss of informa-
tion of an efficient estimator u is calculated as
29,5 (0) = (K2, + (1/2)(HDZ, +o(nT) (4.8)

ﬁ)z is the square of the exponential curvature of the model M and (HR)2

where (H
is the square of the mixture curvature of the associated ancillary family A at
v = 0. Hence, the loss of information is minimized uniformly in u, iff the
mixture curvature of the associated ancillary family A(u) vanishes at v = 0 for
all u. In this case, the estimator u is third-order efficient in the sense of
the covariance in §3. The m.l.e. is such a higher-order efficient estimator.

Among all third-order efficient estimators, does there exist one
whose loss of information is minimal at all u up to the term of order N']? Is
the m.1.e. such a one? This problem is related to the asymptotic efficiency of
estimators of order higher than three. By using the Edgeworth expansion (3.9)
and the stochastic expansion of aal(i,u), we can calculate the terms, which

depend on the estimator, of the information loss of order N-‘|

in geometrical
terms of the related ancillary family. The loss of order N'] includes a term
related to the derivatives of the mixture curvature HETg of A in the direction
of au and aa (unpublished note). From this formula, one can conclude that
there exist no estimators whose loss Agab(ﬁ) of information is minimal up to

the term of order N-] at all u among all other estimators. Hence, the loss of

information of the m.1.e. is not uniformly minimal at all u, when the loss is
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evaluated up to the term of order N

We have already obtained the Edgeworth expansion up to order N_] of
the joi -t distribution of (u,v), or equivalently (ﬁ*,V*) in (3.9). By integra-

tion, we have the distribution of V*,
p(¥su) = n(¥sg )01 + £ K WM s o)y, (4.9)

where gKA(u) and KKAu(u) depend on the coordinate system v introduced to each
A(u). The information gab(ﬁ*) of V* can be calculated from this. It depends on
the coordinate system v, too. It is always possible to choose a coordinate
system v in each A(u) such that {aK} is an orthonormal system at v = 0, i.e.,
gKA(u) =8, Then, V* is first-order ancillary. It is always possible to
choose such a coordinate system that KKAu(u) = 0 further holds at v = 0 in every
A(u). This coordinate system is indeed given by the (¢« = - 1/3)-normal coor-
dinate system at v = 0. The V* is second-order ancillary in this coordinate
system. By evaluating the term of order N'] in (4.9), we can prove that there
exists in general no third-order ancillary v.

However, Skovgaard (1985), by using the method of Chernoff (1949),
showed that one can always construct an ancillary Qq of order q for any q by
modifying v successively. The g-th order ancillary Gq is a function of X
depending on N. Hence, our previous result implies only that one cannot in
general construct the third-order ancillary by using a function of X not depend-
ing on N, or by relying on an ancillary family A = {A(u)} not depending on N.
There is no reason to stick to an ancillary family not depending on N, as
Skovgaard argued.

4.3 Decomposition of information

Since (u,v) together are sufficient, the information lost by sum-

marizing X into U is recovered by knowing the ancillary v. The amount of

recovered information gab(ﬁlﬂ) is equal to Agab(U). Obviously, the amount of
information of v relative to u does not depend on the coordinate system of A(u).

In order to recover the information of order 1 in Agab(U), not all the compo-

nents of v are necessary. Some functions of v can recover the full information
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of order 1. Some other functions of v will recover the information of order N']

and some others further will recover the information of order N'z. We can de-
compose the whole ancillary v into parts according to the order of the magnitude
of the amount of relative information.

The tangent space Tu(A) of the ancillary subspace A(u) associated
with an efficient estimator u is spanned by n - m vectors 3. The ancillary v
can be regarded as a vector v = QKaK belonging to Tu(A). Now we decompose Tu(A)

as follows. Let us define

=~
i

. L (vge)...vge) B; ), p>2 (4.10)
1" 7p 1 p-1 “p

which is a tensor representing the higher-order exponential curvature of the

(e)i

model. When p = 2, it is nothing but the exponential curvature Hab , and when

(e)d

p=3,K 1 represents the rate of change in the curvature H , and so on.
abc ab

For fixed indices IR K T is a vector in T (S), and its projection
P’ Tay...a, u

to Tu(A) is given by

Let Tu(A)p (p > 2) be the subspace of Tu(A) spanned by vectors Ky ax?

172
A ..
Ka]a2a3n""’Ka]...a o and let PK,p be the orthogonal projection from Tu(A) to

p
Tu(A)p‘ We call

(e) - (1} . p
Ha]...a K (IK B PK’p—])Ka]...apK (4.11)

the p-th order exponential curvature tensor of the model M, where I = (Iz) is

the identity operator. The square of the p-th order curvature is defined by

b a_ .b
2yp . yle) (e) A 01°1 %p-17p-1
()", = H H g"g ' T.ig . (4.12)
M® ab a a]...ap_]K b b]...bp_]x
There exists a finite Po such that Hée) a vanishes for p > Po:
100

Now Tlet us consider the following sequence of statistics,
-0 - ule) oyox
T] = {u}, T2 Ha a K(u)v yeos
172
Moreover, let ta = aaz(i,ﬁ), which vanishes if U is the m.1.e. Obviously, the

sequence Ty, Ty, ... gives a decomposition of the ancillary statistic v = (V)
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into the higher-order curvature directions of M. Let

= T], Ty = {t,T],TZ},...,T = {Tp_],Tp} .

p
Then, we have the following theorems (see Amari (1985)).
Theorem 4.1. The set of statistics rp is asymptotically sufficient

of order p. The statistic Tp carries information of order p relative to Tp-1°

= N P¥2u2ypP
N (HM)ab . (4.13)

gab(Tp[Tp-l)
Theorem 4.2. The Fisher information gab(i) = Ngab(X) is decomposed
into
9p(%) = o3y 95 (Tpltpq) = 95 (0) + T, NP200P (4.14)
The theorems imply the following. An efficient estimator U carries
all the information of order N. The ancillary v, which together with U carries
the remaining smaller-order information, is decomposed into the sum of p-th

order curvature-direction components a = H(e) v
a a ay...aK

2 1% p
the missing information of order N p+2 relative to To-1" The proof is obtained

, Which carries all

by expanding aam(i,u), where U = u - u, as

a
A A ) i L
aaz(x,u) 3a1(x,u) + o1 T aaaa]...aapz(x,u)u 1 ...u
and by calculating gab(TpITp71)‘ The 1nzo;mat1on carried by aa3a1...aap2(x’u)
. . 1 AK e ~K .
is equivalent to (aaBa]...ap )BKiV or Ha a1...apKv relative to rp_] up to the

necessary order.

4.4. Conditional inference

When there exists an exact ancillary statistic a, the conditionality
principle requires that statistical inference should be done by conditioning on
a. However, there exist no non-trivial ancillary statistics in many problems.
Instead, there exists an asymptotically ancillary statistic Q, which can be
refined to be higher-order ancillary. The asymptotic ancillary statistic car-
ries information of order 1, and is very useful in improving higher-order
characteristics of statistical inference. For example, the conditional covari-

ance of an efficient estimator is evaluated by
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N Cov[ﬁa,ﬁle] = + Héb) )'] + higher order terms ,
where 9p * H;E)VK = - aaabz(i,ﬁ) is the observed Fisher information. When two

groups of independent observations are obtained, we cannot get a third-order
efficient estimator for the entire set of observations by combining only the two
third-order efficient estimators ﬁ] and 02 for the respective samples. If we
can use the asymptotic ancillaries Hgg) ; and H(b) ;, we can calculate the
third-order efficient estimator (see Chap. 5). Moreover, the ancillary Hgbsz
can be used to change the characteristics of an efficient test and of an
efficient interval estimator. We can obtain the third-order to-efficient test
or interval estimator by using the ancillary for any given tO' It is interest-
ing that the conditional test conditioned on the asymptotic ancillary v is
third-order admissible and its characteristic (deficiency curve) is the same as
that of the likelihood-ratio test (Kumon and Amari (1983)).

In the above discussions, it is not necessary to refine v to be a
higher-order asymptotic ancillary. The curvature-direction components H§EZQK
are important, and the other components play no role. Hence, we may say that
HégZQK is useful not because it is (higher-order) ancillary but because it re-
covers necessary information. It seems that we need a more fundamental study on
the invariant structures of a model to elucidate the conditionality principle
and ancillarity (see Kariya (1983), Barndorff-<Nielsen, (19387).) There are
many interesting discussions in Efron and Hinkely (1978), Hinkley (1980), Cox

(1980), Barndorff-Nielsen (1980). See also Amari (1985).



5. FIBRE-BUNDLE THEORY OF STATISTICAL MODELS

Hilbert bundle of a statistical model

In order to treat general statistical models other then curved
exponential families, we need the notion of fibre bundle of a statistical model.
Let M = {q(x,u)} be a general regular m-dimensional statistical model parametr-
ized by u = (ua). To each point ueM, we associate a linear space Hu consisting

of functions r(x) in x defined by

H, = (r([ELr(0] = 0, £ [r8(x)]<=), (5.1)

where Eu denotes the expectation with respect to the distribution q(x,u).
Intuitively, each element r(x)eHu denotes a direction of deviation of the dis-
tribution q(x,u) as follows. Let eq(x) be a small disturbance of q(x,u), where
e is a small constant, yielding another distribution q(x,u) + €q(x), which does
not necessarily belong to M. Here, Jq(x)dP = 0 should be satisfied. The

logarithm is written as

Tog{q(x,u) + eq(x)} + 2(x,u) + ¢ q_?% ,

where 2(x,u) = log q(x,u). If we put

r(x) =q—?¥%y ,
it satisfies Eu[r(x)] = 0. Hence, r(x)eHu denotes the deviation of q(x,u) in
the direction q(x) = r(x)g(x,u). The condition Eu[r2]<m implies that we con-
sider only deviations having a second moment. (Note that given r(x)eHu, the
function

q(x,u) + er(x)q(x,u)

59
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does not necessarily represent a probability density function, because the
positivity condition
q(x,u) + er(x)g(x,u) > 0
might be broken for tc even when ¢ is an infinitesimally small constant.)
We can introduce an inner product in the linear space Hu by

<r(x),s(x)> = £ [r(x)s(x)]

for r(x), s(x)sHu. Thus, H, is a Hilbert space. Since the tangent vectors
aaz(x,u), which span Tu(M), satisfy E[aazj =0, E[(aaz)z] =gaa(u)<w, they belong
to Hu. Indeed, the tangent space Tu(M) of M at u is a linear subspace of Hu,
and the inner product defined in Tu is compatible with that in Hu' Let Nu be

the orthogonal complement of Tu in Hu' Then, Hu is decomposed into the direct

sum
Hu = Tu + Nu .
The aggregate of all Hu's attached to every ueM with a suitable
topology,
= U
H(M) ueM Hu s (5.2)

is called the fibre bundle with base space M and fibre space H. Since the fibre
space is a Hilbert space, it is called a Hilbert bundle of M. It should be
noted that Hu and Hu' are different Hilbert spaces when u % u'. Hence, it is
convenient to establish a one-to-one correspondence between Hu and Hu., when u
and u' are neighboring points in M. When the correspondence is affine, it is
called an affine connection. Let us assume that a vector r(x)aHu at u corres-

ponds to r{x) + dr(x)eH at a neighboring point u + du, where d denotes

u+du
infinitesimally small change. From

Eu+du[r(x) + dr(x)] = J{q(x,u) + dq(x,u)}{r(x) + dr(x)}dP

= Eu[r] + Eu[dr(x) + aal(x,u)r(x)dua] =0
and Eu[r] = 0, we see that dr(x) must satisfy
_ a
Eu[dr] = - E[aaﬁr] du® ,

where we neglected higher-order terms. This leads us to the following defini-
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tion of the a-connection: When dr(x) is given by

1+a,

dr(x) = - == E[aalr] du? - llg-aasu'dua , (5.3)

2
the correspondence is called the o-connection. More formally, the a-connection

()

is given by the following a-covariant derivative v Let r(x,u) be a vector
field, which attaches a vector r(x,u) to every point ueM. Then, the rate of
the intrinsic change of the vector r(x,u) as u changes in the direction R is

given by the a-covariant derivative,

(o), - _ I+ 1-a
vaa r aar(x,u) 5 Eu[aar] * 5o, (5.4)
where E[&azr] = - E[aar] is used. The o-covariant derivative in the direction

A= AaaaaTu(M) is given by

v&“)r = pagledy
a

The T-connection is called the exponential connection, and the -1-connection is
called the mixture connection.

When we attach the tangent space Tu(M) to each point ueM instead of
attaching the Hilbert space Hu’ we have a smaller aggregate

= U
(M) uaM.Tu(M) i

which is a subset of H called the tangent bundle of M. Ve can define an affine
connection in T(M) by introducing an affine correspondence between neighboring
Tu and Tu.. When an affine connection is given in H(M) such that reHu corres-
ponds to r + dreH ., it naturally induces an affine connection in T(M) such

that reTu(My:Hu corresponds to the orthogonal projection of r + dreH )

u+du t

T M). It can easily be shown that the geometry of M is indeed that of T(M),

u+du(
so that the a-connection of T(M) or M, which we have defined in Chapter 2, is
exactly the one which the present a-connection of H(M) naturally induces.
Hence, the a-geometry of H(M) is a natural extension of that of M.

Let u = u(t) be a curve in M. A vector field r(x,t)eHu(t) defined

along the curve is said to be a-parallel, when

(0). o o J¥a copeq g oo o
vgor=r 5 Eu[r] + e 0 (5.5)
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is satisfied, where r denotes 3r/st, etc. A vector P](x)eHu is the a-parallel
shift of ro(x)eHu along a curve u(t) connecting ug = u(to) and up = u(t]), when
ro(x) = r(x,to) and ry(x) = r(x,t1) in the solution r(x,t) of (5.5).

The parallel shift of a vector r(x) from u to u' in general depends
on the curve u(t) along which the parallel shift takes place. When and only
when the curvature of the connection vanishes, the shift is defined independent-
1y of the curve connecting u and u'. We can prove that the curvature of H(M)
always vanishes for a = %1 connections, so that the e-parallel shift (a« = 1) and
the m-parallel shift (« = - 1) can be performed from a point u to another point
u' independently of the curve. Let (e)wﬂ' and (m)"3| be the e- and m-parallel
shift operators from u to u'. Then, we can prove the following important
theorem.

Theorem 5.1. The exponential and mixture connections of H(M) are

curvature-free. Their parallel shift operators are given, respectively, by

(e)

mr(x) = r(x) - EuDr(a)] (5.6)
(m)ng'r(x) = g i::? r(x) . (5.7)

The e- and m-connections are dual in the sense of

[}
e) u (m) u'q, .
u u u

1
ro,

<r,s> =
where <oy is the inner product at u.

Proof. Let c: u(t) be a curve connecting two points u = u(0) and u' = u(1).
Let r(a)(x,t) be an a-parallel vector defined along the curve c. Then, it

satisfies (5.5). When o = 1, it reduces to
#e)(x,t) = Eu(t)[r"(e)(x,t)].

Since the right-hand side does not depend x, the solution of this equation with
the initial condition r(x) = r(e)(x,O) is given by
r(e)(x,t) = r(x) + a(t) .

where a(t) is determined from

Eu(t)[r(e)(x,t)] =0
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as
a(t) = - Eu(t)[r(x)] .

This yields (5.6), where we put u(t) = u'. Since Eu,[r(x)] does not depend on
the path connecting u and u', the exponential connection is curvature free.

Similarly, when o = -1, (5.5) reduces to

F ) + v ™G t)iu(t)) = o .
The solution is
fM(x,t)alx,u(t)) = alx) ,
which yields (5.7). This shows that the mixture connection is also curvature
free. The duality relation is directly checked from (5.6) and (5.7).

We have defined the imbedding a-curvature H;gz of a curved exponen-
tial family. The concept of the imbedding curvature (which sometimes is called
the relative or Euler-Schouten curvature) can be defined for a general M as
follows. Let PE be the projection operator of Hu to Nu which is the orthogonal

subspace of Tu(M) in Hu' Then, the imbedding a-curvature of M is a function in

x defined by

which is an element of Nu<: Hu‘ The square of the a-curvature is given by

(a)y2 _ _yla) (o) cd
(HM )ab = <Hac (x), Hbd (x)> g " . (5.8)
2 _ ab,,(e)\2 R . .
The scalar v~ =g (HM )ab is the statistical curvature defined by Efron in the

one-dimensional case.

5.2. Exponential bundle

Given a statistical model M = {q(x,u)}, we define the following

elements in Hu,

X]a = aaz(x,u) s
= ()
X2ab = 73, X1 >
_ ola)
X =V X H)
ka].. a 3ai ka2 -a
(a5k)

and attach to each point ueM the vector space T spanned by these vectors,

u
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where we assume that they are linearly independent. The aggregate

R = gy 7,0 .0

with suitable topology is then called the o-tangent bundle of degree k of M.
A11 the a-tangent bundles of degree 1 are the same, and are merely the tangent
bundle T(M) of M. In the present paper, we treat only the exponential (i.e.,
o = 1) tangent bundle of degree 2, which we call the local exponential bundle
of degree 2, although it is immediate to generalize our results to the general
a-bundle of degree k. Note that when we replace the covariant derivative v(“)
by the partial derivative 3, we have the so-called jet bundle. Its structures

are the same as the exponential bundle, because v(e) reduces to 3 in the

logarithm expression aaz(x,u) of tangent vectors.

The space Tu(]’z), which we will also more briefly denote by Téz),
is spanned by vectors X] and X2’ where X] consists of m vectors

Xa(x,u) = aal(x,u), a=1,...,m
and X2 consists of m(m + 1)/2 vectors

Xab(x,u) = vé:)ab = saabz(x,u) + gab(u), a, b=1,...,m.

(See Fig. 8.) We often omit the indices a or a, b in the notation Xa or Xab’

briefly showing them as X] or X2. Since the space Téz) consists of all the

Tinear combinations of X] and X2, it is written as

T(z) = {eixi(x,u)}

u
where the coefficients 8 = (e],ez) consist of e] = (ea), 62 = (eab), and
i, - .1 2, _ .a ab
8 Xi =9 X] + 0 X2 8 Xa + 0 Xab .

(2)

is
u

The set Xi forms a basis of the linear space Téz). The metric tensor of T
then given by

95 = <Xi’Xj> = Eu[Xi(x,u)Xj(x,u)] .

Here, 911 denotes an m x m matrix

97 = XXy = EL,20,80 = g,y
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Figure 8

which is the metric tensor of the tangent space Tu(M) of M. The component

991 = 92 represents o
e

<X abc -’

X> =
c T

921 % 9abc T “Mab’

Similarly, 990 is a quantity having four indices

= <X, »X

922 ab**cd” -

The exponential connection can be introduced naturally in the local
exponential fibre bundle I‘Z)(M) of degree 2 by the following principle:

.. 2 .
1) The origin of T5+3u corresponds to the point
2)

- a_(
X]du = Xa(x,u)du sTu

. 2 .
2) The basis vector Xi(x,u + du)eTé+gu is mapped to TSZ) by 1-

parallely shifting it in the Hilbert bundle H and then projecting it to Téz).

We thus have the affine correspondence of elements in Téfgu and Téz),

- J a
Xi(u + du) «— Xi(u) + dXi = Xi(u) + Faixj(u)du .

where ng are the coefficients of the exponential affine connection in 1(2)(M).
The coefficients are given from the above principle (2) by

1 2 _.cd i _ ij
Ty = 0, Ta1 = 8a84> Tap = 9 E[xjaaabacz(x,u)] . (5.10)

We remark again that the index i = 1 stands for a single index b, for example,

and i = 2 stands for a pair of indices, for example b, c.
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Let o(u) = 61(u)Xi(x,u)eT§2) be a point in Tﬁz). We can shift the

point e(u)eTﬁz) to point e(u')sTS?) belonging to another point u' along a curve
u = u(t). Since the point ei(u)Xi(u)eTéz) corresponds to the point ei(u + du)

(Xi + dXi) + X]dUETézgu, where dXi is determined from the affine connection and
the last term X]du corresponds to the change in the origin, we have the follow-

ing equation
6v + 1030 + 0%

i_
aj a 0. (5.11)

(2)

whose solution 6(t) represents the corresponding point in Tu(t)’ where éi =
ﬁaaaei(u). Note that we are here talking about the parallel shift of a point in
affine spaces, and not about the parallel shift of a vector in Tinear spaces
where the origin is always fixed in the latter case.

Let u' be a point close to u. Let 6(u';u) be the point in Téz)
corresponding to the origin e(u') = 0 of the affine space TS?). The map depends
in general on the curve connecting u and u'. However, when |u' - u| is small,

the point o(u';u) is given by

el(u';u) = di(u'-u) + %-6; (u'-u)2 + O(|u'-u|3) .
Hence, if we neglect the term of order lu'-u|3, the map does not depend on the
route. In the component form,

e](u';u) = ea(u';u) =u “-u" ,
ez(u';u) = ebc(u';u) = % (u'b—ub)(u'c-uc) , (5.12)

where we neglected the term of order [u'-uI3. Since the origin 6(u') = 0 of
Tﬁ?) can be identified with the point u' (the distribution g(x,u')) in the model

M, this shows that, in the neighborhood of u, the model M is approximately re-

(2)

presented in Tu

as a paraboloid given by (5.12).
Let us consider the exponential family Eu = {p(x,63u)} depending

on u, whose density function is given by
p(x,03u) = q(x,u)exp{e'X;(x,u) - v, (8)} , (5.13)

where 6 is the natural parameter. We can identify the affine space Tsz) with

(2)

u represent the

the exponential family Eu’ by letting the point o = e1XieT
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Figure 9

distribution p(x,e;u)eEu specified by 6. We call Eu the local exponential
family approximating M at u. The aggregate

U
ueM Eu

E(M) =
with suitable topology is called the fibre bundle of local exponential family of
degree 2 of M. The metric and connection may be defined from the resulting identi-
fication of E(M) with 1(2)(M). The distribution q(x,u) exactly corresponds to
the distribution p(x,03u) in E,» i.e., the origin e = 0 of Eu or TSZ). Hence,
the point 6 = o(u';u) which is the parallel shift of 6(u') = 0 at Eu" is the
counterpart in E, of the q(x,u')eM, i.e., the distribution p{x,6(u',u); uleE,
is an approximation in E, of q(x,u')eM. For a fixed u, the distributions
ﬁu = {4(x,u'3u)} ,

g(x,u'su) = pix,6(u'su); u}
form an m-dimensional curved exponential family imbedded in Eu (Fig. 9). The
point of this construction is that M is approximated by a curved exponential
family ﬁu in the neighborhood of u. The tangent spaces Tu(M) of M and Tu(ﬁu)
of ﬁu exactly correspond at u, so that their metric structures are the same at

u. Moreover, the squares of the imbedding curvatures are the same for both M

and Mu at u, because the curvature is obtained from the second covariant
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derivative of X1 = 9,0, This suggests that we can solve statistical inference
problems in the curved exponential family ﬁu instead of in M, provided u is suf-
ficiently close to the true parameter Ug-

5.3. Statistical inference in a local exponential family

Given N independent observations X(])""’X(N)’ we can define the

observed point ﬁ(u)eEu, for each u, by

N
X

ne(u) = X (u) =% B X5 (xggy00) (5.14)

We consider estimators based on the statistics n(u). We temporarily fix a point
u, and approximate model M by ﬁu’ which is a curved exponential family imbedded
in E,- Let e be a mapping from E  to “u that maps the observed )—((u)sEu to the
estimated value e(u) in ﬁu when u is fixed, by denoting it as

e(u) = e{X(u)su} .
The estimated value depends on the point u at which M is approximated by ﬁu’
The estimator e defines the associated ancillary family Au = {Au(u'), u'eﬁu}
for every u, where

Au(u') = e'](u';u) = {neEule(n;U) =u'}

When the fixed u is equal to the true parameter Ug> ﬁuo approximates M very
well in the neighborhood of Ug- However, we do not know Ug- To get an estima-
tor u from e, let us consider the equation

e{X(u)su} = u .
The solution U of this equation is a statistic. It implies that, when M is
approximated at U, the value of the estimator e at Eﬁ is exactly equal to

The characteristics of the estimator u associated with the estimator e in are

e <>
= .

given by the following geometrical theorems, which are direct extensions of the
theorems in the curved exponential family.

Theorem 5.2. An estimator u derived from e is first-order efficient
when the associated ancillary family Au is orthogonal to ﬁu‘ A first-order
efficient estimator is second-order efficient.

Theorem 5.3. The third-order term of the covariance of a bias cor-

rected efficient estimator is given by
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1 (r(m))Z

93ab ~ 2 Bt D 3 o)

M ‘ab A ’ab -’
The bias corrected maximum 1ikelihood estimator is third-order efficient,
because the associated ancillary family has vanishing mixture curvature.

The proof is obtained in the way sketched in the following. The
true distribution q(x,uo) is identical with the distribution q(x,e(uo);uo) at
Uy of the curved exponential family ﬁuo. Moreover, when we expand q(x,u) and
q(x,e(u);uo) at ug in the Taylor series, they exactly coincide up to the terms
of u-u and (u-u0)2, because Eu is composed of X] and X2. Hence, if the estima-
tion is performed in Eu , we can easily prove that Theorems 5.2 and 5.3 hold,
because the Edgeworth expansion of the distribution u is determined from the
expansion of g£(x,u) up to the second order if the bias correction is used. How-
ever, we do not know the true Ug» SO that the estimation is performed in EG'

In order to evaluate the estimator u, we can map Eﬁ (and ﬁa) to Muo by the
exponential connection. In estimating the true parameter, we first summarize N
observations into X(u) which is a vector function of u, and then decompose it
into the statistics X(u) = {X](G),iz(ﬁ)}, where e(X(d);d) = 4. The iz(ﬁ) be-
comes an asymptotic ancillary. When the estimator is the m.1l.e., we have i](ﬁ)
= 0 and iz(ﬁ) = HéﬁzQK in ﬁﬁ. The theorems can be proved by calculating the
Edgeworth expansion of the joint distribution of X(u) or (G,v). The result is
the same as before.

We have assumed that our estimator e is based on X(u). When a
general estimator

u's= f(x(]),...,x(N))
is given, we can construct the related estimator given by the solution of
ef(i(u);u) = u, where

ef(X;u) = Eu[f(x(1),...,x(N))[i(u) =X] .
Obviously, ef(X;u) is the conditional expectation of U' given R(u) = X. By
virtue of the asymptotic version of the Rao-Blackwell theorem, the behavior of

er is equal to or better than G' up to the third-order. This guarantees the
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validity of the present theory.

The problem of testing the null hypothesis HO:u = U against
H] Tu ¥ ug can be solved immediately in the local exponential family Eu' When
H0 is not simple, we can also construct a similar theory by the use of the
statistics U and X(G). It is possible to evaluate the behaviors of various
third-order efficient tests. The result is again the same as before.

We finally treat the problem of getting a better estimator u by
gathering asymptotically sufficient statistics i(ﬁ)'s from a number of indepen-
dent samples which are subject to the same distribution q(x,uo) in the same
model. To be specific, let X(])]""’X(I)N and X(Z)]""’X(Z)N be two indepen-
dent samples each consisting of N independent observations. Let Uy and U, be
the m.1.e. based on the respective samples. Let i(i)(ai) be the observed point
in EA‘, i =1, 2. The statistic i(i) consists of two components X(i)] =
(X (]);) and X( )2 = (R(i)ab)‘ Since u1 is the m.1.e.,

K ly) = 0

is satisfied. The statistic ﬁi carries the whole information of order N
included in the sample and the statistic iz(ﬁi), which is asymptotically ancil-
lary, carries whole information of order 1 together with ﬁ] Obviously i(.)z

H(e)

is the curvature-direction component statistic, i(i)z v(1) in the curved

exponential family EG .
i - - .
Given two sets of statistics (ui, X(i)z(ui))’ i=1, 2, which

summarize the original data, the problem is to obtain an estimator G, which is
third-order efficient for the 2N observations. Since the two statistics i(ﬁi)

give points ﬁ(i) = i(ﬁi) in the different E;.» in order to summarize them it is

necessary to shift these points in parallel to a common Eu.. Then, we can
average the two observed points in the common Eu' and get an estimator 4 in
this Eu" The parallel affine shift of a point in Eu to a different Eu' has

already been given by (5.11) in the s-coordinate system. This can be rewritten

in the n-coordinate system. In particular, when du = u - u' is of order N']/2

-1/2

and n(u) is also of order N , the parallel affine shift of n(u)eEu to Eu' is
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given in the following expanded form for n = (ﬁ],ﬁz), ﬁ] = (aa) and 52 = (aab)’

C b - b, 1 b -3/2
na(u ) = na(u) + gabdu - nab(u)du t5T écgdu du + O(N / )

k]

Aap(U') = Ay (u) + O(NTT)

Now, we shift the two observed points i(i)(ai) to a common Eu.,
where u' may be any point between Uy and Ups because the same estimator G is
obtained up to the necessary order by using any Eu" Here, we simply put
u' = (u] + u2)/2, and let s be

§ = (u] - u2)/2 .
Then, the point i(i)(ai) is shifted to %(i)(u') of E , as

X = X by b, 1 b -3/2
X(a = X()a * %ap(U")8 - X(1)ap® * 7T lgce)lé o+ oV,
Y - ¥ -1
X(1)ab = *(1)ab ¥ OV )

A"
and we get similar expressions for X(Z) by changing ¢ to -6. Since ﬁi is the

- N o . .
m.1l.e., X( = 0. The average of X(]) and X(z) in the common Eu' gives the

i)a
N N -

N
estimated observed point X(u') = (X1,X2) from the pooled statistics (Gi,X(i)
(uy)),

><Q
._4

1 ( 2ab ~ 1ab) 2 b ’

-—

+ X

>

2 =7 Xoap + Xpgp) -
By taking the m.l.e. in Eu' based on (%],%2), we have the estimator

~a _ ,a 1 ab.; 5 c, 1 ab_(m).c.d
T =t - 5 9 (Xgpe = K8 5 T TS S

which indeed coincides with that obtained by the equation e(u) = u up to the
third order. Therefore, the estimator u is third-order efficient, so that it
coincides with the m.1.e. based on all the 2N observations up to the necessary
order.

The above result can be generalized in the situation where k
asymptotically sufficient statistics (u1, (1)2 ) are given in EA1, i=1,...,k,
ﬁi being the m.1.e. from Ni independent observations. Let

u' = sNuy /N,

Moreover, we define the following matrices
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- . 1 (m),c iy
Giab = Nil9gp(u') * 7 Tpea(uy = u™) - X5, 1
k

_ aby _
ab _151 (677) = (@

-1
G G ba) -

iab °
Then, we have the following theorem.

Theorem 5.4. The bias corrected version of the estimator defined by

~a _ .ab ~C
ut = 6Ly Gyp 0]

is third-order efficient.
This theorem shows that the best estimator is given by the weighted
average of the estimators from the partial samples, where the weights are
given by Giab' It is interesting that Giab is different from the observed
Fisher information matrix
Jiab = -zaaBbQ(x(i),u').
They are related by

= 1 (m) ~C _ €
Giab = J5ab * §'Nirbca(ui u'v) .

See Akahira and Takeuchi [1981] and Amari [1985].



6. ESTIMATION OF STRUCTURAL PARAMETER IN THE PRESENCE
OF INFINITELY MANY NUISANCE PARAMETERS

Estimating function and asymptotic variance

Let M = {p(x;6,£)} be a family of probability density functions of
a (vector) random variable x specified by two scalar parameters 6 and £. Let
X1 XopseeesXy be a sequence of independent observations such that the i-th
observation X; is a realization from the distribution p(x;e,gi), where both 6
and £; are unknown. In other words, the distributions of x; are assumed to be
specified by the common fixed but unknown parameter e and also by the unknown
parameter £ whose value changes from observation to observation. We call o
the structural parameter and ¢ the incidental or nuisance parameter. The prob-
lem is to find the asymptotic best estimator éN = éN(x],xz,...,xN) of the

structural parameter 6, when the number N of observations is large. The asymp-

totic variance of a consistent estimator is defined by

AV(8,2) = 1im VI/N(Sy, - 0)] (6.1)
Norco
where V denotes the variance and = denotes an infinite sequence = = (g],gz,...)

of the nuisance parameter. An estimator 6 is said to be best in a class C of
estimators, when its asymptotic variance satisfies, at any o,
AV[6,2] < AV[6',=]
for all allowable = and for any estimator 6'e¢ C. Obviously, there does not
necessarily exist a best estimator in a given class C.
Now we restrict our attention to some classes of estimators. An
estimator 6 is said to belong to class CO, when it is given by the solution of

the equation

73
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N
£, y(x,6) = 0,

where y(x,6) is a function of x and o only, i.e., it does not depend on £. The

1

function y is called the estimating function. Let C] be a subclass of CO’ con-
sisting of all the consistent estimators in CO' The following theorem is well
known (see, e.g., Kumon and Amari [1984]).

Theorem 6.1. An estimator 6500 is consistent if and only if its

estimating function y satisfies

By, ely(o)l =0, E [ay(x.0)]40,

where Ee £ denotes the expectation with respect to p(x;6,£) and 9y = 3/36. The

asymptotic variance of an estimator 5€C] is given by
AV(5,2) = Tim N tV[y(x;,6)] /{(Zaey)}2 ,

where zsey(xi,e)/N is assumed to converge to a constant depending on 6 and =.

Let He g(M) be the Hilbert space attached to a point (6,£)eM,
= = 2 o
H . (M) = {a(x) | Ee,g[a] 0, Ee,g[a ] < =}

The tangent space T, _(M) = He g(M) is spanned by u(x;6,£) = aez(x;e,g) and

0,¢
v(x36,8) = 3g2(x;e,g) . Let w be

<u,v>
W(X;G,E) =u - —,?_V s
<y~>

where <v2> = <v,v>. Then, the partial information gee is given by

_ 2 o2
990 = oo " Io¢ /ggg = W,

where 9o = <u2>, ggg = <v2>, geg = <u,v> are the components of Fisher informa-

tion matrix. The theorem shows that the estimating function y(x,e) of a con-

sistent estimator belongs to He,g for any ¢£. Hence, it can be decomposed as
y(x,8) = a(e,¢)u(x;e,e) + ble,e)v(x;e,e) + n(x30,8) »

where n belongs to the orthogonal complement of Te inH _, i.e.,

N3 0,8
<U,n> = <v,n> = 0 .

The class C, is often too large to guarantee the existence of the

1
best estimator. A consistent estimator is said to be uniformly informative
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(Kumon and Amari, 1984) when its estimating function y(x,6) can be decomposed as
y(x,8) = w(x;6,€) + n(x;6,¢) .
The class of the uniformly informative estimators is denoted by CUI' A uniform-

1y informative estimator satisfies

= <yl = q
YW o T W = gga(6,E)

Let CIU be the class of the information unbiased estimators introduced by
Lindsay [1982], which satisfy a similar relation,
= <y2>

<YW

€ 8,8 °

Note that <y,w> = <y,u> holds.

Let us define the two quantities

°(z) = Tim %—<zn(x;e,€i)2> ,
Norco
which depends on the estimating function y(x,6) and
- L1 -
)

=]1mNZg (9951) >

06
which latter is common to all the estimators. Then, the following theorem gives
a new bound for the asymptotic variance in the class CIU (see Kumon and Amari
(1984)).

Theorem 6.2. For an information unbiased estimator &

AV[B3s] = g7 + 5750 .

We go further beyond this theory by the use of the Hilbert bundle theory.

6.2. Information, nuisance and orthogonal subspaces

We have already defined the exponential and mixture covariant de-

rivatives v(e) and v(m) in the Hilbert bundle H = g(e g)He E(M)' A field
r(x;e,g)eHe g(M) defined at all (e,£) is said to be e-invariant, when vge)r =0
’ g€

holds. A field r(x;0,£) is said to be strongly e-invariant (se-invariant),
when r does not depend on £. A se-invariant field is e-invariant. An estimat-
ing function y(x,e) belonging to C] is an se-invariant field, and conversely,
an se-invariant y(x,6) gives a consistent estimator, provided <u,y> # 0.

Hence, the problem of the existence of a consistent estimator in CO reduces to
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the problem of the existence of an se-invariant field in the Hilbert bundle

H(M).
T

We next define the subspace He £ of He £ by
T . (m) &
He,g gﬁ. { nE.a(x) | a(X)ETe,g'} ,

i.e., the subspace composed of all the m-parallel shifts to (0,£) of the vectors

belonging to the tangent space T. _, at all (e,£')'s with common 6. Then,

0,¢
H9 . is decomposed into the direct sum
T o0
Ho,e = Mo, ePHg e
where Hg £ is the orthogonal complement of Hg £ We call Hg £ the orthogonal
] k] t]
subspace at (6,£). We next define the nuisance subspace W at (8,£) spanned

0,8
by the m-parallel shifts (m)ng.v from (6,£') to (6,£) of the g-score vectors

v(x;0,') = agz for all ¢'. It is a subspace of Hg g SO that we have the

decomposition

T _ N
H £ H

I
6, P H s

9,¢ 9,8

I . N T
where He £ is the orthogonal complement of He £ in He £

bl s E]

It is called the

information subspace at (s8,£). Hence,

Ny H0

H 6,6 Mo,e

1
6,c - Moe o H

Any vector r(x;e,a)eHe £ can uniquely be decomposed into the sum,

r(x36,) = ri(x30,) + rN(x3,6) + r0(xz0.¢) , (6.2)
where rIeHé £ rNng £ and roeHg . are called respectively the I-, N- and O-

parts of r.

We now define some important vectors. Let us first decompose the

I

into the three components. Let uI(X;G,E)sHe £

p-score vector u = BGQQTG,E

be the I-part of the e-score ueT We next define the vector

(m)

8,¢"

U(x30,636") = wé.u(x;e,s') (6.3)

in H. _, which is the m-shift of the 6-score vector ueT from (e,£') to

0,8 8,8

(6,£). Let DI be its I-part. The vectors EI(x;e,g;g') in Hé’g

fixed, form a curve parametrized by £' in the information subspace Hg £ When

where (6,%) is
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I s o0
0,¢ 1ie in a hyperplane in He,g

that GI are coplanar. In this case, there exists a vector wIeH; £ for which

’

all of §;é(€')al(x;9,€;€')eH for all ¢', we say
il (xs0,e561)> = 3 (") (6.4)

holds for any £'. The vector WI(W;G,E)eHé . is called the information vector.
t]
When it exists, it is unique.

6.3. Existence theorems and optimality theorems

It is easy to show that a field r(x;6,&) is se-invariant if its
nuisance part rN vanishes identically. Hence, any estimating function

y(x,e)sC] is decomposed into the sum

I 0
y(x,0) = y (x;0,£) + y (x;8,8) .
We can prove the following existence theorems.

Theorem 6.3. The class C] of the consistent estimators is nonempty

I
8,5¢

Theorem 6.4. The class CUI of the uniformly informative estimators

if the information subspace H includes a non-zero vector.
in C] is nonempty, if GI(x;e,g;g') are coplanar. A1l the uniformly informative
estimators have the identical I-part yI(x;e,g), which is equal to the informa-
tion vector wI(x;e,g).

Outline of proof of Theorem 6.3. When the class C] is nonempty,

there exist an estimating function y(x,8) in C]. It is decomposed as

I 0
y(x,8) = y (x36,8) + y (x30,8) .
Since yO is orthogonal to the tangent space Hg £ we have
<y0,u> =0.

By differentiating <y(x,6)> = 0 with respect to &, we have

0 <aey>-+<y,u>

<3ey> + <yI,u> .

Since <aey> = 0, we see that yI(x;e,E) $ 0, proving that Hg £
£ ]
includes a non-zero vector. Conversely, assume that there exists a non-zero

I

6, ¢ for some £. Then, we define a vector

ey = (@) & - .
ylxe,e') = *¥n2 alx,0) = a(x,0) - E, .. [a]

vector a(x,0) in H
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in each H by shifting a(x,6) in parallel in the sense of the exponential

8¢
connection. By differentiating ax £ = Ee E[a] with respect to £, we have

9.<a> = <3.a> + <a,v> =0
13 13 ’ ’

N

6.6 This proves

because a does not include ¢ and a is orthogonal to H
Ee’g.[a] =0 .
Hence, the above y(x;6,£') does not depend on &' so that it is an estimating
function belonging to C]. Hence,C] is nonempty, proving theorem 6.3.
Outline of proof of Theorem 6.4. Assume that there exists an
estimating function y(x,6) belonging to CUI' Then, we have
<Ysu(x38,8)>g o = gg () »
because of <y,v> = 0. Hence, when we shift y in exponential paraliel and we
shift u in mixture parallel along the g-axis, the duality yields
<(e)“_y, (m)ﬂ_(a‘]u)> = -l s
or
L. =T, . el Ys= q '
<Y (x30,£), U (x30,856")>= g (') .

I

This shows that GI are coplanar, and the information vector w™ is given by

I I
0,8'"
information vector wIe Hg £ We can extend it to any ¢' by shifting it in ex-

E ]

projecting y to H Conversely, when u~ are coplanar, there exists the

ponential parallel,

y(x,8) = (e)wg'wI ,

which yields an estimating function belonging to CUI’

The classes C] and CUI are sometimes empty. We will give an
example later. Even when they are nonempty, the best estimators do not neces-
sarily exist in C] and in CIU' The following are the main theorems concerning
best estimators. (See Lindsay (1982) and Begun et al. (1983) for other

approaches to this problem.)

Theorem 6.5. A best estimator exists in C], iff the vector field
uI(x;e,g), which is the I-part of the s-score u, is e-invariant. The best
estimating function y(x,0) is given by the e-invariant uI, which in this case

is se-invariant.
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Theorem 6.6. A best estimator exists in CUI’ iff the information
vector wI(x;e,g) is e-invariant. The best estimating function y is given by
the e-invariant wI, which in this case is se-invariant.

Qutline of proofs. Let 6 be an estimator in C] whose estimating

function is y(x,8). It is decomposed into the following sum,

y(x,6) = c(e,£) ul + aI(x;e,e) + yo(x;e,a) ,

where uI(x,e) is the projection of u(x;6,£) to Hg . c(e,z) is a scalar, and

aIeH; £ is orthogonal to uI in H; £ The asymptotic variance of 6 is calculated
as
A qs 2 2
AV[e8;2] = Tim N{z(ci Ai + Bi)}/{(zciAi) },
Noo
where = = (51,52,...), ¢y = c(e,gi), and
I 1

A, = <u,u>

i .
&

B, = <(a‘(x))"‘>lE + <(y

; e
1

&y

From this, we can prove that, when and only when Bi = 0, the estimator is
uniformly best for all sequences =. The best estimating function is uI (x36,£)
for = = (£,£,6, ...). Hence it is required that uI is se-invariant. This
proves Theorem 6.5. The proof of Theorem 6.6 is obtained in a similar manner
by using wI instead of uI.

6.4. Some typical examples: nuisance exponential family

The following family of distributions,
p(x38,8) = expis(x,8)e + r(x,8) - v(6,£)} (6.5)
is used frequently in the literature treating the present problem. When ¢
is fixed, it is an exponential family with the natural parameter g, admitting
a minimal sufficient statistic s(x,e) for £. We call this an n-exponential
family. We can elucidate the geometrical structures of the present theory by
applying it to this family. The tangent vectors are given by

= + - = - .
u EaeS 36Y‘ 3811» s v S Z)EIIJ

The m-parallel shift of a(x) from (6,£') to (s8,&) is
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(m)ng. a(x) = a(x)exp{(g - €')s - p(g) + y(g')} .

From this follows a useful Lemma.
Lemma. The nuisance subspace Hg £ is composed of random variables

of the following form,

Hy o = (fLs(x,0) = c(8,6)]
where f is an arbitrary function and c(e,t) = Eq E[f(s)]. The I-part aI of
a(x) is explicitly given as
al(x) = alx) - £, [alx) | s(x,0)], (6.6)

by the use of the conditional expectation E[a|s]. The information subspace

I

He,i

is given by
I _ .
Ho e = {h(s;6,£)(3,s)

for any f, where h = asf + £f.

De f(s30,0)(0,r) 1)

We first show the existence of consistent estimators in C] by
applying Theorem 6.3.

Theorem 6.7. The class C] of consistent estimators is nonempty in
an n-exponential family, unless both s and r are functionally dependent on s,
i.e., unless

(3,)' = (3, f = 0.

On the other hand, a consistent estimator does not necessarily exist

in general. We give a simple example: Let x = (x],xz) be a pair of random

variables taking on two values 0 and 1 with probabilities

n

1/(1 + exp{e + £}) ,

n

P(x] 0)

1/7(1 + expik(g)})

P(x2 = 0)

where k is a known nonlinear function. The family M is of n-exponential type

I
6,5€

linear. This proves that there are no consistent estimators in this problem.

only when k is a linear function. We can prove that H = {0}, unless k is

Now we can obtain the best estimator when it exists for

n-exponential family. The I-part of the e-score u is given by
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ul(xse,8) = (3,8)0 + (a,0)] .

It is e-invariant, when and only when (aes)I = 0.

Theorem 6.8. The optimal estimator exists in C] when and only when
(aes)I =0, i.e., aes(x,e) is functionally dependent on s. The optimal
estimating function is given in this case by the conditional score uI = (aer)I =
3" - E[aer | s], and moreover the optimal estimator is information unbiased in
this case.

According to Theorem 6.4, in order to guarantee the existence of

uniformly informative estimators, it is sufficient to show the coplanarity of

EI(x;e,g;g'), which guarantees the existence of the information vector

I
8,8"

integral-differential equation in f,

w(x;6,£)eH By putting w = h(s)(aes)I + f(s)(aer)l, this reduces to the

ang' (3s) + ()b, = 5 (e (6.7)
When the above equation has a solution f(s;e,£), GI are coplanar and the inform-
ation vector wI exists. Moreover, we can prove that when (aer)I = 0, the
information vector wI is e-invariant.

Theorem 6.9. The best uniformly informative estimator exists when
(aer)I = 0. The best estimating function is given by solving

Eg i [h(s)Vlags | s1] =g, (e')/e" s (6.8)

where h(s;e) does not depend on ¢' and V[aes | s] is the conditional covariance.

We give another example to help understanding. Let x = (x],xz) be
a pair of independent normal random variables, x]mN(g,1), xsz(eg,l). Then,
the logarithm of their joint density is

%+ (x, - 05)% - Tog(2n)]

2(x:0,8) = - 3 [(x - ¢)
gs(x,0) + r(x,0) - y(e,g) ,

where s(x,0) = x; *+ 0%y, T(x,0) = = (] + x5)/2, w(e,5) = €2(1 + 67)/2 +

log(2n). From 35S = Xps 31 = 0, we have

(3, = (x, - ex))/(1 6%, (3)! = 0.
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Hence, from Theorems 6.7 and 6.8, the class C] is nonempty, but the best
estimator does not exist in C]. Indeed, we have

ul(x58,6) = €lx, - 0x))/(1 + o%)

which depends on ¢ so that it is not e-invariant. Since any vector w in H; £

can be written as

W= h(s)(aes)I

for some h(s;6,£), the information vector wI(x;e,g)eHé .

solving (6.4) or (6.7), which reduces in the present case to

can be obtained by

£y [n(s)(x, - ox)] = €(1 + 6%)

Hence, we have

h(s) = s/(1 + o) ,

which does not depend on ¢. Therefore, there exists a best uniformly informa-
tive estimator whose estimating function is given by

y(x,8) = whix,8) = h(s)(a,8)T = (x, = 0x))(x; + 0x,)/ (1 + 677

or equivalently by (x2 - ex])(x] + exz). This is the m.1.e. estimator. This is

not information unbiased.



7. PARAMETRIC MODELS OF STATIONARY GAUSSIAMN TIME SERIES

a-representation of spectrum

Let M be the set of all the power spectrum functions S(w) of
zero-mean discrete-time stationary regular Gaussian time series, S(w) satisfy-
ing the Paley-Wiener condition,

J1og S(w)du > - .
Stochastic properties of a stationary Gaussian time series {xt}, t=..., -1, 0,
1, 2, ..., are indeed specified by its power spectrum S(w), which is connected

with the autocovariance coefficients Ct by

™
Cy = -211}- J’-WS(m) coswtdw , (7.1)
- z
S(w) = ¢ ¥ 2 50 St coswt , (7.2)
where
€t © E[err+t]

for any r. A power spectrum S(w) specifies a probability measure on the
sample space X = {xt} of the stochastic processes. We study the geometrical
structure of the manifold M of the probability measures given by S(w). A
specific parametric model, such as the AR model MQR of order n, is treated as a
submanifold imbedded in M.

Let us define the a-representation 2(“)(m) of the power spectrum
S(w) by

- —{S(w))™%, 40,
() (w) - i (7.3)

Tog S(w) , a

Q |—

n
o
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(Remark: It is better to define the a-representation by - (1/a)[S(w)™%- 1].
However, calculations are easier in the former definition, although the follow-
ing discussions are the same for both representations.) We impose the regular-
ity condition on the members of M that 2(“) can be expanded into the Fourier
series for any o as

z(a)(w) =£éa) +2.1, E£Q)C05wt R (7.4)

where
(a) 71; Jz(“)(w)cosmdm , t=01,2,..

5t
(“)(w) specified by £ = {gia)} by k(u)(w;i(u)). An

infinite number of parameters {gt“)} together specify a power function by

We may denote the ¢

[-aal® (selely Ve 40
S(ue(®)y = (7.5)
exp{ﬁ(o)(w;g(o))}, o=0.

Therefore, they are regarded as defining an infinite-dimensional coordinate

(

ta) the a-coordinate system of M. Obviously, the -1-

system in M. We call ¢

coordinates are given by the autocovariances, gi'l) = Cye The negative of the
1-coordinates gé]), which are the Fourier coefficients of S-](w), are denoted
by 3£ and are called the inverse autocovariances, gé]) = - gt'

7.2. Geometry of parametric and non-parametric time-series models

Let Mn be a set of the power spectra S(wj;u) which are smoothly
specified by an n-dimensional parameter u = (ua), a=1,2, ..., n, such that
Mn becomes a submanifold of M., e.g., Mn could be an autoregressive process.
This Mn is called a parametric time-series model. However, any member of M can
be specified by an infinite-dimensional parameter u, e.g., by the a-coordinates
g(a) = {gia)}, t=0,1, ... in the form S(w,g(“)). The following discussions
are hence common to both the parametric and non-parametric models, irrespective
of the dimension n of the parameter space.

We can introduce a geometrical structure in M or Mn in the same

manner as we introduced before in a family of probability distributions on
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sample space X, except that X = {xt} is infinite-dimensional in the present
time-series case (see Amari, 1983 c). Let pT(x],...,xT; u) be the joint prob-
ability density of the T consecutive observations XqseeesXg of a time series
specified by u. Let
zT(x],...,xT;u) = log p(x],...,xT;u) .
Then, we can introduce in M or Mn the following geometrical structures as
before,
e 1
gab(u)-}1m T-E[aanTabe] ,
—>00

1-a

(o) _ 5. 1
r: ./ = }1m T E[{3 8,87 - -
el

abc aaQTabQT}aclT] :
However, the limiting process is tedious, and we define the geo-
metrical structure in terms of the spectral density S(w) in the following.
Let us consider the tangent space Tu at u of Mor Mn’ which is
spanned by a finite or infinite number of basis vectors aa = a/aua associated

with the coordinate system u. The a-representation of aa is the following func-

tion in w,
3, = (3/0u%)2() (u3u) .
Hence, in M, the basis aia) associated with the o-coordinates gﬁ“) is
1, t=0
aia) =

2coswt , t40.
Let us introduce the inner product 9ab of aa and Bb in Tu by
- - (a)g . (o) .
gab(”) = <959 Ea[aaz (w,u)abz (wsu)]
where Ea is the operator defined at u by
(
E[a(u)] = J{S(w;u)}zaa(m)dw .
The above inner product does not depend on o, and is written as
003> = | 3,[109 S(0,u) 3, {109 S () Jdus (7.6)

We next define the o-covariant derivative Vga)ab of ab in the
a



86 Shun-ichi Amari

direction of aa by the projection of aaabl(“) to Tu' Then, the components of

the a-connection are given by

Fggg (u) = <vg:)8b’3c> N J 52Otgaabsl(m)ac;zm)d“’ . (7.7)

If we use O-representation, it is given by

rggg(u) = J(3a8b1og S - 3,109 S3,Tog S)3 _log S du .

From (7.4) and (7.7), we easily see that the a-connection vanishes in M
identically, if the a-coordinate system g(a) is used. Hence, we have
Theorem 7.1. The non-parametric M is a-flat for any a. The

(o)

a-affine coordinate system is given by g(a). The two-coordinate systems ¢

and g('a) are mutually dual.
Since M is a-flat, we can define the a-divergence from S](w) to
Sz(w) in M. It is calculated as follows.

Theorem 7.2. The o-divergence from S] to 52 is given by

/e [ (50175, ()1% - 1 - aloglsy/s,Tido » a 40
D_(87,S,) =
(1/2) I [log S, () - Tog Sy(w)1%du a=0.

7.3. a-flat models

An a-model Mz of order n is a parametric model such that the
a-representation of the power spectrum of a member in Mz is specified by n + 1
parameters u = (uk), k=0,1,...,n, as

() .0y = 1
2 % (w3u) = ug + 2 Iy u cos ko .
Obviously, Mz js a-flat (and hence -a-flat), and u is its a-affine coordinate

system.

The AR-model MQR of order n consists of the stochastic processes

defined recursively by
n

X =
k=0 qXt-k T St

where {et} is a white noise Gaussian process with unit variance and a = (ao,
a],...,an) is the (n+1)-dimensional parameter specifying the members of MﬁR.
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Hence, it is an (n+1)-dimensional submanifold of M. The power spectrum S(w;a)

of t"e process specified by a is given by

We can calculate the geometric quantities of MQR in terms of the AR-coordinate
system a the above expression.

Similarly, the MA-model MﬂA of order n is defined by the pro-

cesses
n
= I
Xt = k=0 PkEt-k
where b = (bO, b]""’bn) is the MA-parameter. The power spectrum S(w;b) of

the process specified by b is

S(wsb) = |7 be'k[Z
EXP

The exponential model Mn of order n introduced by Bloomfield (1973) is com-

posed of the following power spectra S(w;e) parameterized by e = (eo, €ysenns

e,)s )
S(w;e) = exp{ey + ZkEO e,cos kol .
It is easy to show that the 1-representation of S(w;a) in MﬁR is
given by
¥ oo 3
Ck T 2k Aok k=0, 1,...,n
¢ =0, k>n
where
YW (wsa) = - s (wsa) = J ek

AR

This shows that Mn is a submanifold specified by 8k =0, (k > n) in M. Hence,

)

, although the coordinate system a is

not 1-affine but curved. Similar discussions hold for MgA.

it coincides exactly with a one-model Mél

Theorem 7.3. The AR-model MQR coincides with Mgl), and hence is

+1-flat. The MA-model MﬂA coincides with Mg']), and hence is also #1-flat.

The exponential model MEXP

coincides with M%), and is 0-flat. Since it is
self-dual, it is an (n+1)-dimensional Euclidean space with an orthogonal

Cartesian coordinate system e.
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7.4. a-approximation and a-projection

Given a parametric model Mn = {S(w;u)}, it is sometimes necessary
to approximate a spectrum S(w) by one belonging to Mn' For example, given a
finite observations Xps cees Xp of {xt}, one tries to estimate u in the paramet-
ric model Mn by obtaining first a non-parametric estimate §(w) based on Xps eees
X7 and then approximating it by S(w;u)eMn. The o-approximation of S is the one
that minimizes the a-divergence Da[§(w), S(w,u)]l, ueM . It is well known that
the -T1-approximation is related to the maximum 1likelihood principle. As we
have shown in §2, the o-approximation is given by the a-projection of §(m) to
Mn' We now discuss the accuracy of the a-approximation. To this end, we con-
sider a family of nested models {Mn} such that MO;D M];D MZ;D ...M_=M. The
R, ") and (P} are nested models, in which My is composed of the white
noises of various powers.

Let {M%} be a family of the a-flat nested models, and let én(w;ﬁn)e
Mn be the -a-approximation of §(m), where ﬁn is the (n+1)-dimensional parameter
given by

PPN

SmiﬂaD_a[S,Sn(w)] = D_.[s,S
n n

(w3t )] .

n n

The error of the approximation by gnSMn is measured by the -a-divergence

D_,(S,S,). We define
En(S) = smiaa D_ (S,S
n“'n

) . (7.8)

It is an interesting problem to find out how En(S) decreases as n increases.

We can prove the following Pythagorean relation (Fig. 10).

~ ~

D__(S,S,) = D_ (S,S,4q) + D__ (S 415S,) -

=0

The following theorem is a direct consequence of this relation.

Theorem 7.4. The approximation error En(S) of S is decomposed as

]

E(S) = Zn D_o(SpepeSi) - (7.9)



Differential Geometrical Theory of Statistics 89

n+1

[

Figure 10

Hence,

o

~ A ~

= Z
D-a(S’SO) n=0 D-a(SnH’Sn) :

The theorem is proved by the Pythagorean relation for the right
triangle AS§n§0 composed of the o-geodesic §n§0 included in Mz and -a-geodesic
S§n intersecting at §n perpendicularly. The theorem shows that the approxima-
tion error En(S) is decomposed into the sum of the -a-divergences of the
successive approximations ék’ k = ntl, ...,», where §m = S is assumed. More-
over, we can prove that the -a-approximation of §k in Mz (n < k) is én’ In
other words, the sequence {én} of the approximations of S has the following
property that §n is the best approximation of ék (k > n) and that the approxima-
tion error En(S) is decomposed into the sum of the -a-divergences between the
further successive approximations. This is proved from the fact that the a-
geodesic in M connecting two points S and S' belonging to Mﬁ is completely in-
cluded in Mz for an a-model Mz.

Let us consider the family {MﬁR} of the AR-models. It coincides
with Ml. Let §n be the -1-approximation of S. Let ct(S) and Et(s) be, res-
pectively, the autocovariances and inverse autocovariances. Since Ct and Et

are the mutually dual -1-affine and 1-affine coordinate systems, the -1-approx-
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imation én of S is determined by the following relations

t(s)=ct(s)9 t=0, ], cees N

S ) =0, t = n+l, n+2, ....

This implies that the autocovariances of én are the same as those of S up to

. . n N . ..
t = n, and that the inverse autocovariances c, of Sn vanish for t > n. Similar

t
relations hold for any other a-flat nested models, where Ct and 8t are replaced
by the dual pair of a- and -a-affine coordinates. Especially, since {M5XP}
(0)

are the nested Euclidean submanifolds with the self-dual coordinates ¢ , their
properties are extremely simple.

We have derived some fundamental properties of a-flat nested para-
metric models. These properties seem to be useful for constructing the theory
of estimation and approximation of time series. Although we have not discussed
about them here, the ARMA-modes, which are not a-flat for any o, also have in-

teresting global and local geometrical properties.
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