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. ssα^O, b\^b-ϊ^ ... ^bn^0 and consider the problem of maximizing
Xifl/fc, subject to %\*a,p = 1, m^n. In this paper Kuhn-Tucker theory is used to solve the
problem and consequently to obtain a generalization of Holder's inequality. The reversal
of the generalized inequality, its extension to the symmetric gauge functions and the con-
tinuous case are discussed. Some statistical applications and other work presently in prog-
ress are outlined.

1. Introduction and Summary. In an article published in 1889,0. Holder presented

two basic and now very well known results. The first of these is known as "Jensen's In-

equality". In an addendum to his article J. L. W. V. Jensen (1906), who is credited with

its discovery, acknowledges that the inequality is not "entirely new", that, after completing

his work, through a monograph by A. Pringsheim he became aware of its earlier discovery

by Holder (1889). In the same 1906 paper, Jensen uses this Holder-Jensen inequality for

convex functions to derive in explicit form the second basic result only implicit in Holder

(1889), namely the "Holder's inequality" bounding the inner products of vectors in terms

of their norms. Specifically, if a and b are two vectors with nonnegative components al9

a2, ... ,anandbι,b2, ... , ̂ respectively, then Holder's inequality asserts that

(1.1) XUafa^&ran^&rb*)"9,
for any p ^ 1 and q satisfying p~ι + q~λ = 1. The inequality is reversed if/? < 1, provided

the components of a and b are strictly positive. Moreover, if these components are propor-

tional, i.e. af = cbf for some c and / = 1,2, ... , n then in (1.1) and its reversal the equality

holds. In this essay our interest centers on this classical inequality due to Holder. Our objec-

tive is to present some recent generalizations of this inequality, to outline some statistical

applications and to indicate the directions of further work which is in progess.

Although Holder's inequality (1.1) was introduced as a theorem about the "mean values"

it is now widely studied in its own right and is variously applied. In its better known applica-

tions in sciences, it is generally encountered as the particular case/? = 2, i.e. the Cauchy-

Schwarz inequality. In mathematics it appears in the theory of linear spaces in the context

of identifying the conjugate or adjoint spaces and establishing their dual character. For dis-

cussions of various generalizations of (1.1) see Beckenbach and Bellman (1965), Hardy,

Littlewood, and Polya (1952), Mitronovic (1968) and Rockafellar (1970). The generaliza-

tions include sharp bounds on the sums of products of type Σ"=itf Ac, of the components

of three or more vectors, and on integrals of type Ja(x) b(x)dx. Another approach to

generalizing (1.1) is to use arbitrary norms φ(a) = φ(ax,a2, ... , an) leading to results of

the type

(1.2) Σ7-,flA ^Φ(a)φ°(*),

where

(1.3) φ°(b) = maxα + 0 Σ7- >
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is the polar of the norm φ. Clearly (1.2) is only a tautology unless more is known about

either the polar φ° than (1.3), or about the inequality itself.

Let <Z(i) ̂  tf(2) ̂  ... ^ a(n) > 0 denote the ordered values of a\, a2, ... , an, m^n, b^

= bφ + ^(y+i) + ... +^(Π>, the tail sum of the smallest b's anάp^l. Then Mudholkar,

Freimer, and Subbaiah (1983) consider the norm φ(a) = (Σ7L \c/[i))xlp and show that

(1.4) X7»iβ,*i^{27»iβp(θ}1/p{?7=ift?o + (m-k)φ[k+l]/(m-k)γ}υ^t

where q~ι = 1 - p~ι and k is the integer given by Lemma 2.1. They also show that (1.4)

is sharp and derive the reversal of (1.4) when/7 < 1. They prove the extension (1.4) of Hol-

der's inequality using arguments of convex analysis. In Section 2 we formulate an optimi-

zation problem and obtain (1.4) as its solution using a constructive method, namely the

Kuhn-Tucker theory.

The polar φ° of an arbitrary norm φ defined by (1.3) can be described in alternative

frameworks, e.g. geometrical, and may even be computed using numerical methods; but

obviously there can be no "explicit formula" for it. Yet Holder's inequality (1.1) can be

generalized as (1.3) using general norms φ instead of the />-type norm. For a (symmetric)

norm φ on Rm and a e Rn, m^n, let φm(a) = φ(tf(i), a(2), •• , 0(m))> where α(1) ^ a{2)

^ ... ^ fl(n) ̂  0 are the ordered values of the magnitudes, \a\, of the coordinates of a.

Then φm(a) defines a norm, derived by trimming from φ, on Rn. In Section 3 we obtain

the polar φ°m of the trimmed norm φm in terms of the polar φ° of φ. The result (1.4) is then

obtained as a corollary of this construction.

Section 4 is given to the continuous case. Here we present a continuous version of the

results in Section 2 and some of their implications. Section 5 is devoted to the outlines of

some statistical applications which have been the main motivations for the generalized in-

equalities discussed in this paper. These include the multiple comparison procedures in

statistical analysis and the variance bounds in the statistical estimation. We also present

some new matrix inequalities which are relevant in such applications. The final section 6

contains miscellaneous remarks and indications of the further work presently in progress.

2. An Application of the Kuhn-Tucker Theory. Holder's inequality (1889) which

gives the maximum of an inner product may be regarded as the solution of an optimization

problem. A general approach to obtaining the optimum of an objective function subject

to constraints rests upon the Kuhn-Tucker conditions, a set of easily written down equations

and inequalities which are both necessary and sufficient for the purpose. In practice these

conditions are either solved to obtain the solution or used to verify the correctness of an

otherwise obtained solution.

Given a vector b e 0? consider the problem of maximizing an objective function Σ7= i0,&,

w.r.t. the α's subject to a constraint (ΣTLifl^/))1 /p = 1, where m ^ n and β ( 1 ) ̂  α ( 2 ) ^

... ^ a(n) 52 0 denote the ordered values of the magnitudes |α f | of the coordinates of a. Since

the constraint involves only the magnitudes of the α's, and Σ7=iαA ^ Σni=ιa(Ob(i) in view

of the well known rearrangement theorem, see Hardy, Littlewood and Pόlya (1952), we

assume without any loss of generality that,

(2.1) aλ^a2^ ...^an^0\bx^b2^ ...^bn^0,

and for/? ^ 1 consider the problem:

(2.2) Maximize Σ^afi. subject to Σ% xa? = 1.

Clearly the solution to (2.2) must satisfy am = am+λ = ... = an. Thus the problem (2.2)

is reduced to the nonlinear programming problem:
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(2.3) maximize Σ£\ah + ahlΣ^mZ?ι subject to Σ?=1α? = 1

and ax > a2 > ... > am > 0.

We still have bλ ^ b2 ^ ... ^ bm_λ ^ 0, but the coefficient of am is known only to be

nonnegative. If it were zero the problem (2.3) would be trivial; af would be proportional

to biq, q~ι = 1 -p~ι, i = 1,2, ... , m-\ and am would be zero. Hence we assume that Σ7=mfc,

> 0 .

In mathematical programming problems it is customary to use JC'S for the variables and

express the problem in a standard format:

(2.4) Minimizeyf.xlvX2, ••• , xm) subject to gfa ,x2, ... ,xm) ^ 0 , i = 1,2, ... ,s.

Then Lagrange multipliers are introduced to form the Lagrangian

(2.5) L(X, λ) = / ( * , ,X2, ... , Xm) + Σf= iλί& fo Λ , , -̂ m).

If/, ^i, g2» , ^5 are all convex then the solution to the problem is characterized by the

Kuhn-Tucker conditions:

dL/dx^O, i = 1,2, ... ,w,

λ ^ O andλ|.ft(x) = 0, i = l , 2 , ... ,5.

In the standard format our problem (2.3) can be written down as:

(2.7) MinimizeΣTLiί-c^JCySubjecttojCy-Jc^i =^0,7 = 2,3, ... ,m,-Jt

wherep ^ 1, and cj = bjt j = 1,2, ... , m-\, cm = S7=m^i satisfy c, ^ c 2 ^ ... ^ cm_i
^ 0 and cm > 0. The Lagrangian may then be expressed as

(2.8) L(x, λ, μ) = ϊ7=i(-Cj)Xj + X"5=W*/+i - ^ ) ~ ^ m + μ(Σ7.,Jc/- 1),

leading to

(2.9) 0 = θL/θJC. = -c.-λ.,, + pμ^" 1 ,

j = 1,2, ... , m, where λo = 0. Solving (2.9) for the xi we get

(2.10) xj=((cj + λrλj_ι)/pμ)υ(p-i\j= 1,2, ... ,m.

The multiplier μ is chosen to scale the JC/S SO that ΣTLi*/7 = 1. This entails μ > 0, and

justifies the use of the inequality " ^ " instead of " = " in the constraint on Σ7= \X,P in (2.7).

We must now determine the λ's in (2.10) so that (2.6) and (2.7) hold. Suppose that for
some integer ky 0 < k < m, \ = \γ = ... = kk = 0. Then xι > x2 > ... > JCΛ because
the corresponding c/s satisfy such inequalities. From (2.10), the remaining inequalities
onthe c/sholdif

(2.11) q ^ q + I + λ , + 1 = c , + 2 + λ, + 2 - λ , + 1 = . . . = c m + λ m ~ λ m _ 1 = D , s a y .

Thus we have (m-k) equations

(2.12) cj+λj

Adding these we get

(2.11) Σ7

which holds with λm = 0 provided

(2 14) D = 2jLk+lCj/(m-k) = %%k+ ,*•/(«-*)•

Then ckz*D requires that

(2.15) bk^-Z]=k+xb/(m-k),

and D - c t + , = λ*+ j ^ 0 requires that
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(2.16) bk

Finally we note that the c/s are nonincreasing and that

(2.17) kk+j

/ = 1,2, ... , (m-k-2). Hence λ*+2, λ fc+3, , λm-i are also nonnegative.

To complete the derivation of the solution, it is necessary to show the existence of k such

that (2.15) and (2.16) hold. This is done in the following.

LEMMA 2.1. Ifbλ^b2^...^bn^0 and m is an integer 1 ^ m ^ n, then there

exists a unique integer k, 0 < k < m, such that bk > Σn

j=k+ιbj/(m-k) and bk+ι < Σn

j=k+ι

bjim-k), the first of the inequalities being inoperative ifk = 0.

Proof. F o r r = 1,2, ... ,mdefine

(2.18) βΓ = (m-r)br-Xn

j=r+ίbj

Then it is sufficient to show existence of a unique k such that β* > 0 ^ β*+1. This is appar-

ent from the facts that β r - β r + 1 = (m-r)(br-br+ι) ^ 0, for r = 1,2, ... , m-1, and β m

= -ϊn

j=m+ίbj < 0. π

Hence the solution to our optimization problem is given by

{D/()}^\j k+l, ... ,m

where D is as in (2.14) and, in virtue of the constraint ΣJL \xf = 1

(2.20) (pμ)υ(p-l) = {ΣJ-ifc/^0) + {m-k)Dpl^λ}υP.

The corresponding optimal value of the objective function is

(2.21) X]L xCjXj = {Σ$= 1b* + (m-t; #}"«,

where^"1 = 1 -p"1 andέ = Σn

j=k+ιbjl{m-k).

The findings of this section may be summarized as follows:

THEOREM 2.2. Let α, ^ α2 ^ ••. ^ an ^ 0, Z>, ^ b2 ^ ... ^ ftπ ^ 0, /? ^ 1 and

m^n. Then we have the following sharp inequality:

(2.22) Σ"«i<iA ^ (Σ7-iβf)1/p{Σ5-i&/ + (^-^)^?/ p.

w/î r̂  q~ι = \-p~x, έ = Σ"=*+1 bj/(m-k), anJ /: ij a,s in Lemma 2.7

The Kuhn-Tucker approach of this section can also be used to establish the following
reversal of (2.22).

THEOREM 2.3. Let 0 < ax ^ a2 ^ ... ^ an> bλ ^ b2 ^ ... ^ ^ π > 0, p ^ 1

. Then the inequality (2.22) is reversed, the analogous result being sharp.

Particular Cases. Theorem 2.2 and Theorem 2.3 may be illustrated by taking special
values of p and q.

(i) Take/? = 1. Then for aι ^ a2 ^ ... ^ an > 0, and bι ^ b2^ ... ^ bn^ 0 v/e
have

(2.23) {Σ7- i < W i} {Σ?=*+1 */(«-*)} * ^7= ,<iA «Z>,Σ7= ,α,

if k 3= 1. If k = 0 then the lower bound on Σ7= jα,*, still holds, but the upper bound is re-
placed by

(2.24) Σ?= ,αA « ( X 7 - ia*)(S7- Φi/m).

(ii) Now take limits as p -> 0. Then for 0 < αi ^ α 2 ^ ••• ̂  «π and b} ^ b2^ ...
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(2.25) Σ?- ,ιi A ^ m{ ΠJLΛ }
Vm {{^U

(iii) Take m=2 andp=2. Then for ̂  ^ α2 Ξ£ ... Ξ£ αn ̂  0 and fcj ̂  fc2 ̂  ... Ξ̂  ft*

^ 0 we get
2 2 1 2 2 2 W 2 } 1 / 2 , if ft,

(2 26)
( 2 2 1 / 2 Σ Λ , if ft, < Σ?=2ft/,

3. The Polars of Trimmed Symmetric Gauge Functions. A symmetric gauge func-

tion (s.g.f.)φ is a real valued function such that (i) φ(x) ^ 0, and φ(x) > 0 if x Φ 0, (ii)

φ(x + y) ̂  φ(x) + φ(y), (iii) φ(crx) = \c\ φ(x), c real, and (iv) φίe,*,,, €2xl2, ... , e^i)
= φ(x) for any permutation (iu i2, ... , /„) of (1, 2, ... , n) and €, = ± 1 , i = l , 2 ... , n.
In other words, an s.g.f. is a symmetric norm. Let Φn denote the class of s.g.f s on J?1.

For any φ e Φn, φ°(y) = supx+0Σ*^f./φ(x) is also an s.g.f., i.e. φ° e Φn. φ° is variously

known as the conjugate, the associate or the polar of φ. φ(x) = (£Ί=λχP)υp

t Φ°(y) =

&1= \yiq)λlq> P~λ + <fλ — 1»is the best known illustration of an s.g.f. and its polar.

The term s.g.f. was first used by J. von Neumann (1937) in the context of metrizing

the spaces of matrices. He showed that the class of unitarily invariant norms of (n x ή) com-

plex matrices coincides with the class of s.g.f.'s of their singular values. His results have

since been extensively generalized and utilized by other authors. The s.g.f.'s are used to

define the norms for operators on Hubert and Banach spaces and they play a crucial role in

the study of function spaces and function algebras. For a general discussion, see Hewitt

and Ross (1969).

For any x e J?1 let JC(1) ^ x(2) ̂  ... X(n) ̂  0 denote the ordered values of the magnitudes

|*.| of the coordinates of x. Then for any φ e Φm, m<n and x e g?n it can be shown that

φm(x) = φ(* ( 1 ), x{2)9 ... , x(n)) defines an s.g.f. on ̂ " , i.e. φm e Φn. By analogy with the

"trimmed means" we call φm an s.g.f. derived by trimming, or simply a trimmed s.g.f.

The following result proved in Mudholkar and Freimer (1983) describes the polar φ°m e Φn

in terms of φ° eΦm.

THEOREM 3.1. Let φ m e φ n be the trimmed s.g.f. on J?1 derived from φ e φ m

Then the polar φ°m e Φn of Φm is given by

(3.1) φ°Jy) = Φ°(y(1), v(2), ... ,y ( k ) 9y,y, ... , y),

where φ° e φ m is the polar ofφ. v(i) ̂  V(2) ^ ... ^ V(n) ^ 0 are the ordered values of

the magnitudes |v/| of the coordinates ofy andy = Σ"=*+1 y^l (m-k).

The proof of Theorem 3.1 is based upon the symmetry and convexity properties of the

s.g.f.'s. It is easy to see that Theorem 2.2 is a particular case of this theorem with φ(x)

4. The Continuous Case. This section contains a continuous analogue of the results

in Section 2, i.e., an upper bound on Jcfα(O b(t) dt, for a e Lp(0, N), ft e Lq(0, N) with

χΓλ + q~λ = 1, p, q ̂  1. Parallel to the discrete case let a, ft be the nonincreasing re-arrange-

ments of \a\, |ft|, respectively, as discussed in Hardy, Littlewood, and Pόlya( 1952). Then

(4.1) ίoNa(t)b(t)dt ^ Jo" \a(t)\ \b(t)\ dt ̂  J0

Nά(t)b(t)dt.
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Hence with no loss of generality, we assume that a(t) and b{t) are nonincreasing nonnega-

tive functions.

Now let 0 < M < N. Then from Lemma 2.1 by taking limits, or otherwise, it can be

shown that there exists a K, 0 ^ K < M, such that

(4.2) 5oa{t)b{t) dt ^{ JoM a(ίf dt}v*> {J0

M

where

( 4 3 ) b(t) = b(t)9

= if A- b{t) dt}l(M-K),

The defining equation for K is analogous to that in the discrete case, namely

(4.4) b{K) = f»b(t)dt/(M-K).

The existence of K may be seen directly by noting a couple of points. First, if b(0) ^

IIM $ob(t) dt then K = 0. Second, if the opposite inequality holds for b(0), and we define

the nonincreasing function B(r) = (M-r) b(r) — JN

r b(t) dt, for 0 ^ r ^ M then we have

B(0) ^ 0 and B(M) ^ 0. Thus for continuous B there exists a K such that B(K) = 0; other-

wise B would have a jump through 0. In this latter case K is defined by \\mr_>κ-B(r) ^ 0

The inequality (4.2) may be used to obtain simple inequalities such as

(4.5) {Jo (1-0 8® dt}2 ̂  W Y ( 0 d t ,
for any nonnegative nonincreasing g. Such inequalities can often be established more di-

rectly.

5. Applications. The main results of this paper were motivated by a problem in multi-

variate statistical analysis. This and some other applications are now outlined.

1. Multiple Comparisons Among Mean Vectors. First consider the classical ANOVA

setup in canonical form. Let X, be k independently normally distributed random variables

with means θit i = 1,2, ... , k and common variance σ2. Also let s2 be an independently

distributed estimate of σ2. The ANOVA problem is to test

(5.1) # o : θ l = θ 2 = . . . = θ * ,

and to identify the nature of departure from Ho in case of its rejection. Fisher's variance

ratio F and Tukey's studentized range are the two best known tests of Ho. These two tests

and the associated multiple comparisons can be obtained using S. N. Roy's union-intersec-

tion approach and the following modification of Holder's inequality, (e.g. see Subbaiah

and Mudholkar( 1983)):

(5.2) cφβQcf xl\\c\\p = min | | x - η %

where p ^ 1, /Γ1 + q'1 = 1, | |c | | p = &k

i=ι \cJn1*, θ' = (θ^ θ 2 , ... , θ*), and 1' =

(1,1, ... ,1). Specifically by taking p = 1 andp = 2, respectively, we get

(5.3) |c'x| « ίΣta| {max(*,-*,)/*},
1J

(5.4) and |c' x| < 5 ( Σ 1

for all c such that Σ ^ ! ^ = 0. Replacing X by (X-θ) in (5.3) and (5.4) we get, respectively,

the Γ-method and 5-method multiple comparisons, i.e. the simultaneous confidence inter-

vals for all contrasts S^jCiθ. , Σ ^ c , = 0, given by the F-test and the studentized range

test.
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The multivariate ANOVA, i.e. MANOVA, hypothesis in canonical form is Ho: θ = 0

where θ is a (p x k) matrix of the mean-vector of k-p- variate normal populations with a com-

mon covariance matrix Σ. The invariant tests, see Lehmann (1959), of Ho depend upon

the eigenvalues λ! ^ λ 2 ^ ... ^ \p of SHSE\ where SH and SE are the matrices of the

sums of squares and products due to the hypothesis and errors respectively. A class of such

statistics especially suited to multiple comparisons introduced by Muldholkar (1965,

1966), see also Mudholkar, Davidson, and Subbaiah (1974), and Wijsman (1980), are the

unitarily invariant norms | | θ Sf\\φ = φ(λ} / 2, λ f , ... , λ;/2) generated by the s.g.f.'s

φ e Φp. The largest root statistic \x due to S. N. Roy and Hotelling's trace criterinon 2P= 1X,

which belong to this class are analogous to the univariate studentized range and the F statis-

tics, in that the former yield shorter confidence intervals whereas the latter have superior

overall power. This suggests trimmed s.g.f.'s φ(λi, λ2, ... , λ w ) = φ m (λ) , m < p, φ e

Φm, φ m , e Φp, as the compromise statistic which would capture most of the noncentrality

in the problem without serious sacrifice in the shortness of the confidence intervals.

Now the construction of simultaneous confidence intervals in the MANOVA setting

using the s.g.f. statistics φ m (λ ) rests upon inequalities of the form

(5.5) ίr(AB)^| |A| |φJ|B| |φow,

which are analogous to the Holder's inequality. This takes us to the second application.

2. Some Matrix Inequalities. The inequalities involving matrix functions such as sin-

gular values, eigenvalues, traces, determinants, etc. are of broader interest than the multi-

ple comparisons discussed above, e.g. see Beckenbach and Bellman (1971), Marshall and

Olkin (1979) or Mitrinovic (1970). The following two results, which bound the trace func-

tions in terms of sums resembling inner products, may be found in Marshall and Olkin

(1979, ch. 20).

THEOREM 5.1. (von Neumann, 1937). 7/Ά, B are (nXri) complex matrices, and

U, V are unitary then

(5.6) Re(tr\JA\B) ^ |ίr(UAVB)| ^ X7= 1σ ί (A)σ l (B),

where σ,(A), σ, (B) are the singular values of A and B arranged in decreasing order, i

= 1,2, ... ,n.

THEOREM 5.2. Let H (nxn) be a Hermitian matrix with eigenvalues \λ ^ λ 2 ^ ^

\n and U (kxn) be a complex matrix such that the eigenvalues o/UU* are β1 ^ β 2 ^ ...

2* $k^0. Thenforallk =1,2, ... ,n

(5.7) Σ ί = 1 λ n _ l + 1 β, ^ ίrUHU* ^ Σ ΐ - ^ β ,

Clearly application of Theorem 2.2 to (5.6) and of Theorem 2.2 and 2.3 to (5.7) result

in numerous inequalities involving /teίr(UAVB) and ίr(UHU*).

3. Cramer-Rao Information Inequality. As illustrated in Section 2, Theorem 2.2 is

a generalization of the well known Cauchy-Schwartz inequality. Hence it is potentially use-

ful in establishing extensions of results generated using the Cauchy-Schwartz bound. One

such basic result in statistical inference is the lower bound on the variance of an estimator

due to H. Cramer and C. R. Rao, see e.g. Rao (1973).

Let X\, X2» > %N he a random sample from a population with probability density func-

tion /(JC Θ) depending on a real valued parameter θ. Then V = Var(Γ) of an estimator T

such that E(T) = θ+£(θ) satisfies

(5.8)
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where b' = d/dθ(bθ), and / = 7(0) = E(d/dθ log/(x; 0))2 is the information per observa-

tion in the sample.

The result (5.8) can be extended in several directions by applying the inequalities of this

paper. As a simple example, consider n such problems with analogous quantities NJffj(x;Q),

Vpbj(Q) and Ij(Q),j= 1,2, ... ,n. Then from (5.8) we get

(5.9) 2^,(1 + b'j) ̂  ϊ]=ι(NβjWj.

If we apply Theorem 2.2 to the right hand side of (5.9) then we obtain tight lower bounds

on risk functions of type ΣjLi^o")* m < n > t n e s u m of the m largest variances. These lower

bounds can be used to identify good common estimators for parameters of the same type,

for example location, for different distributions.

6. Remarks.

1. Nonlinear programming, which is now a well developed field, provides a new con-

structive approach for generating inequalities. Kuhn-Tucker theory, and Lagrangian dual-

ity, are the two underpinnings of this subject. Bazaraa and Shetty (1979) Chapters 4 and

6 provide an excellent summary of these topics. Pourciau's (1980) essay entitled "Modern

Multiplier Rules" is a nice expository survey.

2. In this paper we have focused upon inequalities involving convex functions and their

multiplicative duals called polars. If/is a real valued convex function on J? then/^y)

= supx [y'x -/(x)], known as the Fenchel conjugate of/, yields inequality y'x ^/(x) + / c

(y). Analogues of the result in Section 3 for Fenchel conjugates exist.

3. In Section 3 we deal with s.g.f.'s, the symmetric homogeneous norms, which

include the p-norms p^ 1. It is possible to develop the analogue of the reversed inequality

given in Theorem 2.3 in the general setup using concave functions.

4. The work on the results of Section 2 for infinite sequences is in progress.

5. Section 4 gives the continuous version of results in Section 2. Investigation of the

integrals of functions defined on the entire real line and the continuous version of the result

in Section 3 is also continuing.

6. It is well known that the von Neumann norms based upon the s.g.f.'s play a crucial

role in the theory of function spaces. The analysis of the normed linear spaces using the

trimmed norms is likely to be interesting.
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