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0. SUMMARY

In some problems, a bivariate random vector (T ,T ) with bivariate

cumulative distribution function F is observed for each of n independent sub-

jects, but the coordinates may be subject to censoring. In the first section,

we describe several mechanisms which can generate the censorship. The usual

nonparametric approaches to estimation of F are then shown to be unsatisfactory.

Therefore, in the third section, we describe a parametric model due to Freund

(1961). This model is studied not because all data can be forced to fit this

specific parametric form, but because this model suggests some approaches to

the nonparametric problem. These ideas, together with some relationships to

the work of other authors, are outlined in the fourth section.

1. Bivariate Times and Censoring Patterns

In this section, we outline several mechanisms which can generate bi-

variate censored times. A distinction between univariate and bivariate cen-

soring is developed.
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Univariate censoring arises naturally in two similar contexts. Firstly,

the experimental units may contain two similar components (such as ears,

elbows, knees, kidneys or engines) whose survival is being studied. Alter-

natively, the experimental units may contain two dissimilar components whose

survival is being studied. Unlike competing risk problems, neither component

is essential for the survival of the experimental unit. In both cases, cen-

soring occurs when the experimental unit is removed from observation before

both components have been observed to fail. Examples include lifetimes of pumps

and hoses on 15 tractors given in Barlow and Proschan (1977) and the times of

first responses to treatment (as observed at one site, perhaps a head or a

tumor) and times of first sign of toxicity or death, as discussed by Lagakos

(1976).

In the examples above, all times for any experimental unit are measured

on a single clock from a common origin. However, double clocks are natural

when studying the times required from initiation of treatment until the first

sign of response in two successive courses of treatment in the same patient

(see Gross and Lam (1981)) or the lifetimes of two paired subjects (siblings

or other kin). The time until response to treatment and the length of the

subsequent disease-free interval also requires two separate clocks. Indeed,

the random variables need not be times in the usual sense. Variables could be

cumulative dose or cumulative cost. Censoring would occur when an experimental

unit (or component) is removed from observation for reasons independent of both

responses.

To model the censoring, independent censoring vectors (C^C ) are post-

ulated to exist for each bivariate vector (T-,T^). We suppose that the vectors

(C-,C ) form a sample from a bivariate distribution G. While such an assump-

tion will not always be valid, it permits censoring times to differ. The

observed quantities are then X. =min(T.,C.) and D. =[T.£C.] (i=l,2). (The

symbol [A] denotes the indicator function of the event A.)
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When a single clock governs both times, censoring occurs when an experi-

mental unit is removed from observation. Since C.. will always equal C« in

this case, this censoring structure will be referred to as univariate censoring.

When the censoring times can differ, the censoring will be called bivariate.

The distinction between univariate and bivariate censoring is clear when

the observations (X ,X ) are plotted in R . If D.= 0, the i t h coordinate is

censored and an arrow parallel to the i t n axis is drawn from (X ,X ). If D.=l,

the i t n coordinate is observed exactly, and the arrow is omitted. If the

censoring is bivariate, the diagram can resemble Figure 1.
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Figure 1: Schematic Diagram for
Bivariate Censoring

Figure 2: Schematic Diagram for
Univariate Censoring

However, if the censoring is univariate, Figure 1 is impossible. In uni-

variate censoring, if exactly one coordinate is censored, it must be the co-

ordinate with the larger value. Consequently, if a point has one arrow at-

tached, that arrow must point away from the diagonal lime X =X 0. Furthermore,

if both coordinates are censored, since the censoring variable must be the same

for each component, the two coordinates must have the same value and all points

with two arrows must be based on the diagonal. Figure 2 indicates a possible

diagram when univariate censoring is present. Both of these situations are

clearly different from competing risks problems, when at most one lifetime can
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be observed exactly on each experimental unit and observation of the surviving

component is censored at the end of the first lifetime, resulting in a diagram

similar to Figure 3:
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Figure 3: Schematic Diagram for
Competing Risks with
(Univariate) Censoring

2. Nonparametric Approaches

The principles of generalized maximum likelihood estimation and of self-

consistency are often used to derive the product limit estimator of the cumu-

lative distribution function of a single survival time in the presence of ran-

dom censoring. In this section, these principles are shown to be inadequate

for estimation of bivariate cumulative distribution functions.

In regular parametric settings, maximum likelihood estimators are well-

known to have optimal asymptotic properties. The likelihood can be viewed as

the Radon-Nikodym derivative of a parametrized probability measure with respect

to a carrier measure. Since Radon-Nikodym derivatives can often be computed

even when the "parameter" is not finite dimensional and a likelihood is not

defined, Kiefer and Wolfowitz (1956) suggested a Generalized Maximum Likeli-

hood Estimator (GMLE) for nonparametric problems. In parametric settings, the

GMLE reduces to the usual maximum likelihood estimator. However, the general-

ized maximum likelihood principle is not known to guarantee any optimal proper-

ties, as occurs in the finite dimensional case. Johansen (1978) showed that the

product limit estimator of Kaplan-Meier (1957) is the GMLE of F in the class of

all CDF's.
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Another property of the product limit estimator was established by Efron

(1967), who named the property self-consistency. In the univariate problem,

an estimator F is said to be self-consistent if
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or, the proportion estimated to survive past t is equal to the proportion of

the subjects observed to survive past t plus the sum for all individuals cen-

sored before t of the estimated conditional probability of surviving past t,

given survival to the censoring time. Efron showed that, up to possible in-

determinacy for t>_t. ., the only self-consistent estimator of the cumulative

distribution function is the product limit estimator. Thus the GMLE is self-

consistent.

In a 1980 Stanford Ph.D. dissertation, Munoz studied nonparametric esti-

mation of a bivariate distribution function in the presence of univariate cen-

soring. He showed that the GMLE is self-consistent. He also showed that the

GMLE is supported on three kinds of sets: points, rays and regions. The points

of support are those (X
1#
,X«.) with (D-.,D ) = (1,1). The rays of support are

sets {(x,y): * = \
±
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2 i
) = (0,1) . One region of support may exist: {(x,y): x>_X.j., y ^ .

x
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will be a region of support if (D-.,D ) = (0,0) and the region contains no

other points, rays or regions. Thus the support of the GMLE is the minimal set

in which the true times corresponding to observed times must lie.

Munoz showed that the mass of each set is determined, but the distribution

of the mass within the set is completely arbitrary. Since, under random cen-

sorship, a non-negligible proportion of the observations will be censored in a

single component, a non-negligible proportion of the mass is not located by the

GMLE. Therefore there are self-consistent estimators of bivariate distribution

functions which do not converge to the correct limit. The fact that self-

consistency alone is inadequate is recognized in the calculations of Munoz
τ
s
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example, despite a theorem which states that bivariate self-consistent esti-

mators are asymptotically consistent. However, Campbell (1981) establishes

that self-consistent estimators of discrete distributions are asymptotically

consistent.

3. Freund
τ
s Model

Since the completely nonparametric approaches outlined above are un-

satisfactory, a simple parametric model introduced by Freund (1961) will be

described in this section. We will show that the resulting joint density for

(T JT.) is a tractable curved exponential family when univariate censoring is

present. Subfamilies described by Block and Basu (1974) and by Lagakos (1976)

are seen to be much less tractable under censoring.

3.1 Freund
f
s Distribution

We suppose that the pair of times being studied can be recorded from

a single clock. The experimental unit can be thought of as being under con-

tinuous observation, changing state whenever clocktime passes T or T . If

T_ and T- are jointly absolutely continuous, the states and transitions possible

at time t are indicated in Figure 4.

τ 2>t

\

τ 2 <t

η < t
τ 2>t

η < t
τ 2 <t

Figure 4: States and Transitions for Freund Model
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If the Markov property is assumed, the times between transitions will have ex-

ponential distributions with the four positive parameters indicated in the dia-

gram. Since the Markov property implies that the difference between the two

times must be independent of the exact value of the smaller random variable,

this model gives the following joint density for T- and Ύ',

(1) f
i

, 2

( -(α+3)t -3"(t -t )

αe 3'e 0 < t
±
 <

-(α+3)t -α'(t -t )

3e α'e 0 < t < t

This density was introduced by Freund (1961), who showed that the marginal

distributions are not exponential. Freund also calculated the expectations,

variances and covariance of T and T . He showed that the correlation coeffi-

cient need not be non-negative, but can range from -1/3 to 1.

3.2 Inference

In this sub-section, we show that Freund
f
s distribution is a curved

exponential family under univariate censoring and derive the closed form maxi-

mum-likelihood estimators. Bivariate censoring causes the dimension of the

statistic to be random (and stochastically increasing with n). At the end of

this sub-section a simpler alternative to the maximum-likelihood estimator is

suggested for bivariate censoring.

In the presence of univariate censoring with density g and distribution

function G, the likelihood for Freund
τ
s model is

T(α,$;cT, 3') z (x,d) n

(2) e
η +

 ~ " Π
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where

. z(
X )
d)

z (x,d) = £ z(x.,d.), and (x) =x[x>0]• Because four of the seven coordinates
+ ~ ~

 i = 1
 ~i .i +

of η are non-linear functions of the parameters, this is a four-parameter

curved exponential family with a seven-dimensional sufficient statistic (see

Efron (1978)). If no censoring is present, G Ξ O and the last three components

T >.

of z are all equal to n. Therefore η (α,β;α,β ) z (x,d) is an affine function

of four sufficient statistics, and Freund
f
s distribution is a regular exponen-

tial family in the absence of censoring. In either case, the theory of expon-

ential families implies that the maximum-likelihood estimator is given by the

solution of

\

- 1 0 0 1/α

- 1 0 0 -1/β

0 - 1 0 -1/α"

0 0 - 1 1/3"

-1/α 1/α 0

0 0 1/3

1/α" 0 0

0 0 0

= 0

If all components z are positive, the maximum-likelihood estimator is obtained

by solving four one-parameter equations. Each of the resulting estimators is

the ratio of a number of occurrences to a total exposure time:
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In the absence of censoring, these estimators reduce to those obtained by

Freund (1961). It is clear that these estimators always take values inside the

parameter space. Furthermore, the exponential family form implies that UMP

tests are possible for all one-sided alternatives that can be specified in terms

of a single linear transformation of the natural parameters. Thus the best test

based on complete observations of the null hypothesis α^ = 3" = α+3 (stress-

passing) against α^ = $' > cv+3 (increased stress) will not depend on α+β. Clearly,

fewer UMP tests exist in the presence of univariate censoring. The strong

consistency and joint asymptotic normality of the estimators follow routinely

from the strong law of large numbers and the central limit theorem applied to

iid vectors Z.

If bivariate censoring is present, then the log-likelihood is not always

linear in the parameters. To see this, note that the likelihood factor for

terms with D= (1,0) and X > X is

f (x x )
d x e β + e
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This factor is not of exponential family form, but is a mixture of two exponen-

tial family densities, reflecting the fact that it may be unclear which para-

meters were acting on which experimental units. The product of terms of this

type does not generate a sufficient statistic of fixed dimension. Since the

sufficient statistic is more complex than that for univariate censoring or

complete data, the solution of the maximum likelihood equations will generally

be more difficult.

One way to simplify the estimation procedure can be thought of as modifying

the observations to reflect the observations that would have been made if the

censoring had been univariate. Formally, define

(/ \
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1
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The estimators α,J3,α^ and β^ are obtained by applying the estimators (3) to the

* * -k *

univariately censored {(X ,X D ,D ), l£i<_n}. While it is clear that

this approach throws away information and cannot always be efficient, this

approach does provide closed form consistent estimators which are approximately

normal and independent in large samples. The precise efficiency properties

remain to be determined.

3.3 Subfamilies

Several sub-models of Freund's distribution have been proposed. Block

and Basu (1974) point out that a three-parameter subfamily of Freund's distri-

bution corresponds to the absolutely continuous component of the bivariate ex-

ponential distribution derived by Marshall and Olkin (1967). The three para-

meters are a linear function of the first three coordinates of η in (2) and
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correspond to the constraint that 3(3"- 3) = OL(a'- a) . The non-linearity of this

function and the resulting curvature of the exponential family are reflected

in the fact that the maximum-likelihood estimators for λ ,λ and λ do not

have closed-form expressions, even for complete data. The sub-family charac-

terization does imply that the maximum-likelihood equations based on complete

data (univariate censoring) are determined by a four (seven) dimensional suffi-

cient statistic. (See Section 7 of Block and Basu (1974) for complete data

equations.)

Lagakos (1976) presents a three-parameter family for joint analysis of re-

sponse time and survival time in cancer treatment studies. With a convention

that response times are not observed after death, this family corresponds to

Freund's family with the restriction that 3=3^ > a non-linear constraint on the

natural parameters.

Since neither family exhibits a compelling superiority over the Freund

family, we suggest considering the full family whenever either subfamily is

fitted.

4. Extensions

One way to extend Freund
f
s model to a nonparametric family is to allow

the parameters to be functions of time, permitting a' and 3' to depend on the

first failure times. This yields the functions α(t), 3(t), α"(t|y) and 3"(t|y),

corresponding to λ (t), λ (t), λ . (t|y) and λ ι (t|x) of Cox (1972). None of

these functions correspond to hazard gradients. In his dissertation research,

Mr. Tsai is investigating nonparametric estimators of these functions in the

presence of censoring. When F is absolutely continuous, in order to obtain

consistent estimators of α^(t|y) and 3"*(t|x), some form of smoothing is re-

quired, since otherwise no more than one datum could be used to estimate each

conditional function.

Other researchers have imposed additional structure. If the experimental

units are assumed to have a non-stationary Markov property, α'(t|y) =α^(t) and
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3"*(t|x) = 3"*(t). Nonparametric tests for this model are described in Aalen,

Borgan, Keiding and Thormann (1980) and in Voelkel (1980). In some cases, it

is more reasonable to believe that when one component fails, the other component

begins to age differently. The semi-Markov property requires instead that

α'(t|y) = Ct^(t-y) and $^(t|x) = β^(t-x). Lagakos, Sommer and Zelen (1978) and

Voelkel (1980) studied this model.

Freund's distribution has been extended to more than one time and to allow

a positive probability that T-.
 = τ

2

 F o r s o m e
 such extensions and additional

references, see Block (1975) and Proschan and Sullo (1975).
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