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ORDERING REGRESSION MODELS OF GAUSSIAN PROCESSES

B Y HARALD LUSCHGY*

Uniυersitάt Munster

We study information orderings of regression models of continuous time
Gaussian processes. This is done in the framework of "comparison of exper-
iments." The theory includes parametric, nonparametric and semiparametric
models. Particular simple criteria for information orderings are obtained for lin-
ear models. Applications include the design problem for regression models with
correlated Gaussian errors and the information contained in additional observa-
tion periods. Several examples are discussed.

1. Introduction. Informational inequalities between models of contin-
uous time Gaussian processes are investigated. Let

x(t) = s(θ,t) + z(t), tei, (l.i)

where / is a compact subset of Et, Z is a zero-mean Gaussian process with

covariance function if, θ is an unknown parameter belonging to an arbitrary

parameter set Θ, and £ ' : Θ x / - * I R i s a deterministic function. K and S

are assumed to be known. We are interested in comparing the information

contained in such models concerning inference about θ when Θ is fixed while

Sy K and / may vary from model to model. The basic ordering which will

be considered is the same as the stochastic ordering of likelihood processes

defined by convex functions.

The above model is an example of a signal-plus-noise model with deter-

ministic signal S and noise process Z. Linear models of type (1.1) are given,

for instance, by parametric regression models

t = l
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where θ G Etr and hi are known regression functions, nonparametric regression
models

X(t) = θ(t) + Z(t),

where θ is only assumed to belong to a (possibly infinite dimensional) given
space Θ of regression functions and semiparametric regression models

where θ = (/?,7), β G IRr and 7 belongs to some prescribed space of functions.
For an example of a nonlinear model, consider the observation of a harmonic
signal corrupted by additive noise

X(t) = sinθt + Z(t),

where the frequency θ is unknown.

The systematic study of the comparison of nonparametric regression mod-
els for stochastic processes when no prior information about the regression
function is available was started by Luschgy [15], [16].

Let us now briefly describe some basic concepts for comparing statistical
experiments. For this topic we refer to Heyer [4], LeCam [13], Strasser [23] and
Torgersen [26], [28]. Let E = (X,B(X), (Pθ : θ G Θ)) and F = (y,B(y), (QΘ :
θ G Θ)) be two experiments with the same parameter set Θ. Here (P# : θ £ Θ)
and (QΘ : θ G Θ) are parameterized families of probability measures on the
sample spaces (X,B(X)) and (y^B(y))^ respectively. Below we will restrict
ourselves to homogeneous experiments with Polish sample spaces equipped
with their Borel σ-algebras.

DEFINITION 1. E is said to be at least as informative as F, E > F, if
there is a Markov kernel M from (X,B(X)) to (y,B(y)) such that

MPΘ = QΘ for every θ e Θ, (1.2)

where

MPΘ(C) = J M(x, C)dPθ(x), C G B(y).

E and F are said to be equally informative, E ~ F, if E > F and F > E.

It turns out that this ordering may be phrased in terms of finite subexperi-
ments. For Γ C Θ, let EΓ = (X, B(X),(PΘ : θ G Γ)). Then E > F if and only if
EY > Fr for every finite subset Γ of Θ. Moreover, for Γ = {ΘQ, θ\, , θn} C Θ,
EY > FY holds if and only if

Jφd£(dPθl/dPθo,---,dPθJdPθΰ I Pθo) (1.3)
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> Jφd£(dQθl/dQΘo, 9dQθJdQΘo I QΘo)

for every convex function φ : (0, oo)n -* IR.

This important criterion follows from a reduction by sufficiency and [28], The-

orem 4.1. Note that the covariance of the likelihood process is increased by

increasing the information.

The decision theoretic interpretation is based on the comparison of risk

functions available in the two experiments. We have E > F if and only if for

every finite decision space D, for every bounded loss function ί : Θ x D —> IR

and for every decision rule p in F there exists a decision rule σ in E such that

/ / ί(θ,a)σ(x,da)dPθ(x)
Jx Jv

< I I i(θ,a)p(y,da)dQθ(y) for every
Jy Jv

(1.4)

A related (weaker) ordering is the pointwise ordering of Hellinger trans-

forms. The Hellinger transform Hβ of E is defined on the set of prior distri-

butions λ on Θ with finite support. If supp(λ) = {#χ, ,θn} and λ(#;) = λ;,

then

y^dC(dPhldPθo,•••,dPθJdPeo \ Pθo)(y).
1=1

Note that HE does not depend on the choice of θo 6 Θ. Since ψ{y) —

~ ΠΓ=i Vi* ι s c o n v e x o n (0>°°)n, ^ follows immediately from the criterion

(1.3) that E > F implies HE < HF.

Now let Θ be an open subset of IRr or a (not necessarily open, nondegen-

erate) subinterval of IR. For "smooth" experiments which are not comparable

with respect to the "global" ordering > a local comparison may be possi-

ble. If the map Θ —• i 1 ( P ^ o ) , θ —> feOiβ is differentiate at θ0 G Θ with

fθO)θ = dPθ/dPβo, i.e. there is fθo G L1(Peo)
r such that

j \fθo,θo+8 - 1 - δffθo I dPθo = o{{δH)ιl2) as (5 - , 0 (δ G IR r),

where ί denotes transposition, then ϋ? is said to be X1(P^o)-differentiable with

derivative f$o. Clearly, J fθo,idPeo = 0 for every i = 1, , r. For / G X1(P^O),

let /P^ o denote the signed measure with P#o-density /.

DEFINITION 2. Let E be L1(P^o)-difFerentiable with derivative f$o and let

F be i1(Q^o)-difFerentiable with derivative ggo, θ0 G Θ. Then £" is said to be

locally at least as informative as F at 0O, E >βo P, if there is a Markov kernel
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M from (X,B(X)) to (y,B(y)) such that

MPθo = Qθo and M(fθθtiPθo) = gβo,iQθo

 for e v e r y t = 1, ,r. (1.5)

In other words, E >go F if and only if the finite "generalized" experiment

(X,B(X), (Peo, fθo,iPθo : i = l, ,r)) is at least as informative as (y,B(y),

(Qθo,gβo,iQθo : i = 1, , r)). Analogous to the criterion (1.3) for the ordering

>, the inequality E >go F is equivalent to

J ψdC{fθo I Pβo) > J φdC(gθa I Qθo) (1.6)
for every convex function y>: IR7* -* IR

(c.f. [28], Corollary 4.5). Since MPQ = Q0 for every ί G θ and some Markov
kernel M implies M(feOiiP$o) = (jθo,iQθo for every i, E > F implies JE1 >^O F
and by the criterion (1.6), the local ordering is stronger than the usual ordering
of the Fisher information matrices.

Finally, we will be concerned with the following extension of Defini-

tion 1. For probability measures Q\ and Q2 on B(y)y let \\Qχ — Q2II —

2 SViVc£β(y) IQi(C) ~ Q2(C)\ be the variational distance.

DEFINITION 3. The deficiency δ(E,F) of E relative to F is the number

mϊsuV\\MPθ-Qθ\\, (1.7)
M θθ

where M ranges over all Markov kernels M from (X,B(X)) to (y,B(y)).

Note that 0 < δ(E,F) < 2 and S(E,F) = 0 if and only if JS > F. The

decision theoretic interpretation of δ(E, F) < e is the same as for E > F with

(1.4) replaced by

/ / £(θ,a)σ(xyda)dPθ(x)
Jx Jv

< f ί £(θ,a)p(y,da)dQθ(y) + esup\£(θ,a)\, θeθ.
Jy Jv aeD

The remainder of the paper is organized as follows. Section 2 is concerned

with the ordering > and the ordering by Hellinger transforms of general Gaus-

sian models (1.1). The latter ordering coincides with the ordering by simple

testing problems. Section 3 is devoted to linear models. Here the ordering >

coincides with the ordering by Hellinger transforms and may be completely

described by linear estimation problems. In Section 4 we discuss the local

ordering of nonlinear parametric models. This ordering coincides with the

usual ordering of the Fisher information matrices. Finally, in Section 5, we



H. LUSCHGY 211

consider the information contained in additional observation periods for para-
metric regression models. This quantity is measured by the deficiency. Several
examples which illustrate the theory are discussed.

2. General Gaussian Regression Models. Consider models of the
type (1.1). The proper setting for our results is the notion of a reproducing
kernel Hubert space (RKHS) since all information about the error process Z
is contained in the RKHS of its covariance function K. Recall that K is a
symmetric nonnegative definite kernel on / x /. The RKHS with reproducing
kernel K is a Hubert space H(K) of real valued functions on / with scalar
product ( , )A" and corresponding || \\κ such that:

For each t 6 /, K(;t) belongs to H(K).

For h e H(K), (h,K(Ίt))κ = h(t) for every t € / .

Throughout we assume that

Z has continuous sample paths.

Then H(K) is contained in the separable Banach space C(I) of all continuous
real valued functions on / equipped with the supremum norm and the inclusion
map is continuous. Assume further that

S(θ) e H{K) for every θ € Θ.

This ensures that the distribution PQ = C(X \ θ) of X under θ is equivalent
to P = C(Z). Here PQ = P*£s{θ) a n d P are Gaussian measures on the Borel
σ-algebra B(C(I)) of C{I). Thus the model (1.1) which is determined by S
and K (and /) corresponds to the homogeneous experiment

E(S9K) = (C(η,B(C(I))9(P0 : θ € Θ)). (2.1)

By the well known Cameron-Martin formula

dPe/dP = exV(Lκ(S(θ)) - \\S(θ)\\2

κ/2), (2.2)

where Ljζ .* H(K) —*• L2(P) denotes the linear isometry uniquely determined

by

Lκ ( ί K(Ίt)dμ(t)j (x) = I xdμ P - a.s. (2.3)

for every μ e C(I)*. The topological dual C(/)* of C(I) coincides with the
space of all signed finite Borel measures on /. Under each P#, the process
Lκ(h)y h G H(K), is Gaussian with

EθLκ{h) = (S(θ),h)κ, CovβiLKih^LKiht)) = {huh2)κ. (2.4)
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For more details on these sub jets see Kuo [11] and Parzen [20].

The information in the experiment E{S, K) is completely contained in
the covariance function of the log-likelihood process log(dPe/dPβ0), # G θ , for
some θ0 £ Θ, where by (2.2)

\ag(dPe/dP6o) = LK(S(Θ) - S(θ0)) - \\S(θ)\\2

κ/2 + \\S(θo)\\2

κ/2.

The reason is that this process is a sufficient statistic for E(S, K) and under
each PΊ by (2.4), it is a Gaussian process with covariance function R$o and
mean value function given by

- S(ΘO),S(Θ2) - S(θo))κ,

Θ^Rθo{θ,Ί)-R9o(θ,θ)/2, C " j

respectively.

Now let E(S\, K\) and £(£25^2) be two models with corresponding co-
variances iϋi,0o and i?2,0o For arbitrary symmetric kernels or matrices J2χ and
-R2? -Ri > R2 is short for: R\ — R2 is nonnegative definite. It is easily verified
that Rifio ^ R2,θo f°

Γ some θ0 € Θ implies this relation for every θ0 6 Θ.
Observe further that exp(i?j^o) are symmetric nonnegative definite kernels on
Θ x Θ .

A tempting conjecture is that the ordering > of regression models is
characterized by the ordering > of the corresponding covariances. This will
be verified for several special models and, in particular, for linear models.
However, for the general case we can prove only a weaker version. Here is the
basic result.

THEOREM 1.

(a) IfRι,θo > R2tθo for some θo € Θ, then E^S^Kx) > E(S2,K2).

(b) HEiSuKx) > E(S2,K2), then exp(Λ1Λ)) > exp(i? 2 A ) for every θ0 e Θ
and in particular, Rlfθo(θ,θ) > R2,ΘO(Θ,Θ) for every θ0, θ e Θ.

(c) E(Sι,Kι) ~ E{S2^K2) iί and only if R\yeo = R2,θo for some (every)
θ0 E Θ. This is also equivalent to Rlfio{θ,θ) = R2fiJβ,θ) for every θ0,
θeθ.

PROOF.

(a) LetΓ = {0i, ,0n} C Θ. We have to show that JB(SΊ, JίΓi)r > E(S2iK2)Γ.
Suppressing the index and dealing with E(S,K)r, let

i = log(dPθt/dPθo) + Rθo(θi,

θi) - S(θo)) - (S(θo)9 S(θi) - S(θo))κ.
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By the Halmos-Savage criterion, U = ( ϋ i , ' ' ? Un) : C(/) -» R n is a suf-
ficient statistic for the E(S,K)r- Under P#., the covariance matrix of the
normally distributed random vector U is given by Σ = (Reo(θj, ^))j,A;=i,-,n
and its mean by the ith column of Σ according to (2.5). Hence, C(U \
P#.) = JV(Σet , Σ), where et denotes the ith unit vector in Htn. Identifying
Γ with {1, , n} this yields

E(S,K)Γ~(N(Σei,Σ):ieT).

So the reduction by sufficiency leads to the conclusion that E(Sχ> K\)T >

E(S2, -^2)Γ if and only if

( ^ ( Σ ^ , Σi) : i € Γ) > (ΛΓ(Σ2e, , Σ 2 ) : i € Γ), (2.6)

where Σj is defined with respect to RJ,ΘO- NOW, by assumption, Σi >

Σ 2 . Let Πj : IRn x IRn -* IRn, Πj(yi,y2) = ί/j and Q, = JV((Σi -

Σ 2 )e t , Σi - Σ 2 ) ® iV(Σ2e t , Σ 2 ) . Then Πi + Π2 is sufficient for the experi-

ment (Qi : i e Γ) and defining the Markov kernel M on (]Rn,#(IRn)) by

M(a?) = Qf*\ni+U*=x independent of i £ Γ, we obtain AfΛΓ(Σiet ,Σi) =

iV(Σ2ez , Σ 2 ) for every i e Γ which yields (2.6). The implication Σi >

Σ 2 => (2.6) is a special case of the characterization of > for classical

linear models, see Example 3 for references.

We give a second proof based on the convex function criterion (1.3).

SECOND PROOF. Let Γ = {θo,θu ,0n} C Θ and let Pj denote the

distribution on (0,oo)n of the likelihood process dPjβJdPjβo, i = l? '>n>

under Pjfio, j = 1,2. By (2.2) and (2.4), Pj = £(exp | N(aj,Σj)), where

exp : IRn -» (0, oo)n, exp y = (exp yi, , exp y n), Σj is defined as above and

aj = -(Λj f*o(0i, 0i), , i?i,^o (βn, ίn))*/2. Therefore, by the convex function

criterion (1.3), E(SUK1)Γ > E(S2,K2)r if and only if

φd£(exp I N(au Σ2)) > J φd£(exp \ JV(α2, Σ2))

for every convex function <p : (0, oo)n —> 1R.

Since Σi > Σ 2 , we can define a Markov kernel M on ((0, oo)n, /?((0, oo)n)) by

= £(exp I N(logy + a1 - α2,Σχ - Σ 2 ) ) ,

where log : (0, oo)n -•• IRn, logy = (log j/i, ,logyn)*. Using the formula for
the Laplace transform of a normal distribution, we see that

XiM(y,dx) = exp{e^(log2/ + αx - α2) + ej(Σχ - Σ 2 )e ί /2}

= j/i for every y G (0,oo)n,
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that is, M is a dilation. Moreover, for A 6 #((0, oo)n) we have

MP2(A) = / M(exp z, A)dN(a2j Σ2)(x)

= J N(x + a i - α 2 , Σ i - Σ 2)(exp~ 1(A))c/iV(α 2, Σ2)(a?) = Pi (A).

Now (2.7) follows from Jensen's inequality.

(b) Let θ0 e Θ, Γ = { 0 i , - - - A } C Θ and α i , , α n € IR. It suffices
to consider the case θ0 £ Γ. By assumption and the convex function

criterion, (2.7) holds. For φ defined by φ{y) = ( Σ ^ = 1

 α t ! / * ) 2 a n ( ^ i = ^»2,

one gets

/ φdPj = J ^ a{ak / exp(arχ + xk)dN{ahΈά){x)
J ik=i J

α t αfc exp{(e, + e*)*^ + (et + e ^ ^ ^ e , -

aiakexip(Rj}θo(θi,θk)).
* , J b = l

This proves the assertion.

(c) This part is known (cf. e.g. [18], Chapter 1.2). The implications RI}ΘO =

R2fio

 for some 0O € Θ =• £(5i,ϋΓi) - E(S2,K2) ^ R\,eo{θ,θ) =

R21θo(0)θ) f° r every 0O,0 G Θ are immediate from (a) and (b). More-

over, for 0O e Θ , J = 1,2

for every 0,7 6 Θ which yields the assertions. I

In view of

exp(i2 jA(0!,02)) = J(dPj}θl/dPjiθo)(dPj)θJdPjiθo)dPjjθo, 01?02 € Θ, (2.8)

one can show that the necessary condition given in part (b) coincides with the

ordering by the variances of locally MVU estimators, namely, exp(i?i^o) >

exp(i22j0o) if and only if each functional / : Θ —> Ht which admits an unbiased

£2(-f2,^0)-estimator in E(S2,K2) also admits an unbiased Z2(Pi?0o)-estimator

in E(Sι9Kι) and Var^^ < Var0o<jf2, where gj is the locally MVUE of / at 0O

based on E(Sj,Kj).
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EXAMPLE 1. Let X(t) = Ah(θt) + Z(t), t G / (e.g. h(t) = sinί) with
Θ C (0,oo) and A > 0 such that t -» Λ(0ί) G -BΓ(UΓ) for every θ G Θ. Setting
SΆ(0,ί) = i4Λ'(tfί)> J 5 ( 5 Λ ! , ^ ) > £(SU 2 ,#) holds if and only if Ax > A2

provided that \{t —> h(θt) : θ G Θ}| > 2. So not surprisingly, the information
about the frequency in a (e.g. sinusoidal) signal corrupted by additive Gaussian
noise is an increasing function of the amplitude.

EXAMPLE 2. (Gaussian diffusion processes). Consider Gaussian diffusion
models

dX{t) = (A(t)X{t) + θ{t)dt + edW(t), X(0) = 0, t G [0,Γ], T < 00, (2.9)

where A G X1([0,Γ],dί), e > 0, θ G Θ C Z2([0,T],dί) and W denotes a stan-
dard Wiener process (with respect to a complete, right continuous filtration).
Setting PA,C,Θ = £(X I ̂ .>£>0)? (2-9) yields the experiment

EΛ,c = (Co[09T]9B(Co[09T])9 (PA,e,θ : Θ G Θ)),

where Co[0,T] = {x e C[O,T] : x(0) = 0}. (The replacement of C[0,Γ] by
Co[0,T] does not effect the results of this section.) Then for Aj G i1([0,Γ],ώ)
and €j > 0, j = 1,2, we claim that J5χ1>Cl > £U2,e2 if and only if €χ < e2

assuming |Θ| > 2. The remarkable fact is that the ordering > does not depend
on functions Aj. In particular, EAlit and £U2,e are equally informative.

The unique (strong) solution of (2.9) is

X(t) = φA(t) I / φA{sy1θ{s)ds + e I φ^s^dWisΛ ,

where

φA(t) = exp ί / A(s)c

(cf. [14], Theorem 4.10). The process Z(t) = eφA(t) Jo φA(s)~"1dW(s) is a
zero-mean Gaussian process with covariance function

/

min(s,t)
φA(r)~2dr. (2.10)

Defining SA(θ,t) = φA(t) J* φA(s)-1θ(s)ds, we see that EA<e = E(SA,KA,e).
Moreover, the RKHS of KA<t is given by

H(KAtC) = {he Co[0,T]: h(t) = eφA(t) I φA(s)-1g(s)ds, g e L2([0,T},dt)}
Jo
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equipped with the scalar product

t<= ί gi(t)g2(t)dt. (2.11)
Jo

This follows from [20], Theorem 4D, p. 297. Therefore, SA,c(θ) e H(κA,e) for
every θ 6 Θ and

= £-2 ί
Jo

Our claim now follows from Theorem 1.

For instance, in case A = 0, So(θ, t) = J* θ(s)ds and ϋfo,e(s, t) = e2 min(s, ί)
and for A(t) = (* - c)~\ Γ < c, we have SU(M) = ^ !l ^r8K

s)ds a n d

^d,e(5>0 = €2(min(s,ΐ) — sί/c) (Brownian bridge on [o, c]). The estimation
problem for functionals of θ in the model EOiC = J5(5O, K0,e) for various sets
Θ has been treated by Ibragimov et al. [6], Section VII.4, [7], [8].

The following consequence of Theorem 1 is of interest for regression mod-
els with a large set of possible regression functions.

COROLLARY 2. Suppose that 5i = 52 = 5 (Ji = I2 = /) and S(Θ) is a
dense subset of H(K\). Then the following conditions are equivalent:

(I) E(S9K1)>E(SiK2).

(II) Id < K2.

(III) H^Kύ C JΓ(Λ:2) and | |/ι | |^ > ||Λ||^a for every h € #(#1) .

(IV) Rhθo > R2iθo for some (every) θo € Θ.

(V) ϋ W M ) > R2,θo{θ,θ) for every θ0, θ e Θ.

PROOF. (II) <ί=> (III) is well known (cf. [10], Theorems 3.3, 3.4) and (IV)
=> (I) =>- (V) is contained in Theorem 1. (Ill) =>- (IV) follows immediately
from Σi,k<Xi<*kRi,eo(θiΛ) = II Σi<S(θi) - S(ΘO))\\2

K., m € R .

(V) =• (III). We prove first tha t H{KX) C H(K2). Let Λ G H{KX).

Choose a sequence θn, n € IN, in Θ such that ^ ( ^ n ) - h]]^ —• 0. Since by

(V), \\S(θn) - S(θm)\\K2 < \\S((θn) - 5 ( ^ ) 1 1 ^ , S(θn), n ζ IN, is a Cauchy
sequence in H(I(2) and hence, [^(^n) — g\\κ2 ~^ 0 f°Γ some g £ H(K2) Since
the inclusion maps H(Kj) —> C(/) are continuous, ίS

f(0n) -» Λ and ̂ (^n) -^ ̂
in the norm topology of C(I). Thus h = g which yields h £ H(I(2) Next
observe that the inclusion map H(K\) —• H{K2) is continuous by the closed
graph theorem and 5(Θ) - *9(Θ) is a dense subset of H{K\). Therefore, (V)
implies \\h\\κλ > \\h\\κ2 f°

Γ e v e r h 6 H(Ki) and the proof of (III) is complete.!



H. LUSCHGY 217

Thus for the specific models of the preceding corollary, the ordering >

coincides with the ordering < of the covariance functions of the error processes

and also with the ordering by Hellinger transforms as the following character-

ization shows.

PROPOSITION 3. The following statements are equivalent:

(I) The Hellinger transform of E(S\,K\) is pointwise < the Hellinger

transform of E (5*2 ? K2)

(II) JB(SΊ, ΛΓi)r > E(S2,K2)r for every subset Γ of Θ with |Γ| = 2.

(Ill) RifioiW) > R2fio{β,θ) for every θ0, θ e Θ.

PROOF. (I) <3> (III). The Hellinger transform of E(S,K) is given by

]
J

for every prior distribution λ on Θ with finite support.

(II) <& (III). In case |Θ| = 2, the condition R\βo ^ Ri9o

 ι% equivalent
to Rhθo(θ,θ) > R2,θo(θ,θ) for every θ £ Θ since Rj9e0(θOJθ) = 0. Thus the
assertion follows immediately from Theorem 1. I

An immediate implication is the following interpretation by simple testing

problems of the ordering by Hellinger transforms. For Γ = {#i,#2} C Θ and

α e (0,1) let

θί) = sup < / ψdPθ2 : / φdPβ1 < α, φ test >

be the power of the most powerful level α test for testing θ = θ\ vs. θ = θ2 in

E(S)K). By the Neyman-Pearson lemma,

/?r(α) = Φ(-zα + IISW) - S(Θ2)\\K),

where Φ denotes the df of iV(0,1) and Φ(zα) = 1 — α, so that condition (III)

is equivalent to βιjr(ά) > /?2,r(^) f° r every α G (0,1) and Γ C Θ with |Γ| = 2.

The equivalence of the latter condition and (II) follows also from [23], 15.0

and 54.2.

REMARKS.

(a) Without any change the results are valid for compact subsets I of IR^,

k > 1. Therefore, it would be possible to deal with Gaussian random

fields.
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(b) The topological support supp(P) of P = C(Z) is a closed linear subspace
of C(/). One may choose as sample space for E(S,K) any closed linear
subspace of C(I) containing supp(P) instead of C(I) as we did in (2.1).

3. Linear Models. In this section we deal with models (1.1) when Θ is
a linear space and S is a linear map. In this case, the covariance of the log-
likelihood process (w.r.t. 0O = 0) is bilinear. Hence, the converse of Theorem
l.a is valid and the ordering > may be characterized as follows. Recall that
11*9(0)11̂  is the variance of log(dPθ/dPo).

PROPOSITION 4. Let Θ be a linear space and let Sj : Θ —> H(Kj) be linear
maps, j = 1,2. Then E{S1,K1) > E{S2,K2) if and only if

\\Si(β)\\Kl > \\S2(θ)\\κ2 for every θ £ Θ. (3.1)

PROOF. In view of the assumptions, condition (3.1) is equivalent to Rχfo >
iU2,o Since (3.1) is also equivalent to the condition i?i,o(0,0) > #2,o(0,0) for
every 0 € Θ, the assertion follows from Theorem 1. I

This proposition combined with Proposition 3 shows that the ordering >
of linear models coincides with the ordering by Hellinger transforms and by
binary subexperiments. Moreover, it coincides with the ordering by variance
of BLUE's (or UMVUE's) for linear functionals of 0. Here estimators Lk{h),
h £ H(K)i are called linear estimators in E(SyK). It is not difficult to check
that the space of these estimators is the L2{P)-closure of the space of usual
linear estimators x —• Jjxdμ, μ £ C(/)*, see (2.3). By (2.4), the variance of
linear estimators does not depend on 0.

PROPOSITION 5. Let Θ be a linear space and let Sj : Θ -» H(Kj) be linear,
j = 1,2. Then E{S\,K\) > E(S2,K2) if and only if each linear functional
f : Θ -+ Ht which admits a linear unbiased estimator in E(S2, K2) also admits
a linear unbiased estimator in E(S\,K\) and Var </i < Va,r g2, where gj is the
BLUE for f(θ) based on E(Sj,Kj). Furthermore, the BLUE is even UMVU.

PROOF. By Proposition 4, E(SuKι) > E(S2,K2) if and only if i?i)0 >
#2,0- The latter condition is equivalent to H(Rιt0) D H(R2,Q) and | |/ | | i < | |/ | | 2

for every / € H(R2yo), where || - \\j denotes the norm in H(Rjto) (cf. [10],
Theorems 3.3, 3.4). In view of (2.5), we have

H(Rj>0) = {/ : Θ - ffi,: f(θ) = (Λ,^^))^. , h

equipped with the scalar product
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where 5 j ( 0 ) ( A > ) denotes the closure of Sj(θ) in H(Kά) (cf. [20], Theorem 7B,
p. 325). Furthermore, the BLUE for f(θ) = (Λ, Sj(θ))Kj, h € H(Kj), is given

by gj = Lκj(h*)> where ft* is the orthogonal projection of h onto 5j(Θ)
and Var gj = ||Λ*||#. = | |/ | |*. This proves the desired characterization of >.

Suppressing the index j , let Lκ(h*) be the BLUE for f(θ) = (ft*, S(θ))κ,
( τs"\ ( JC\

ft* G 5(Θ) . Choose an orthonormal basis, ftn, n > 1, of 5(Θ) contained
in 5*(0) (note that H(K) is separable) and let .4 be the sub-σ-algebra of
B(C(I)) generated by the sequence Lκ(hn), n > 1, and the P0-null sets.

ί jζ\

Then Lκ{h) is ^4-measurable for every h G 5(Θ) . Hence, by (2.2) and the
Halmos-Savage criterion, Λ is a sufficient σ-algebra for E(S,K). Moreover,
(Pβ I Λ : θ G Θ) is complete. To see this, let u G Π ^ e e i 1 ( P ^ | ^4) such that
Eθu = 0 or every 0 G Θ, that is, J5o[wexp(X^(/ι) - ||Λ||^ /2)] = 0 for every
h G S(Θ). For every h in the linear span of {&i, , Λn}, we obtain

Eo \εo(u

which yields E0(u \ Lκ{h\)^ , L>κ(hn)) = 0 P0-a.s. and from the martingale
convergence theorem follows i£0(ifc | .Λ) = ^ = 0 Po-a.s. Now we can con-
clude that Lk(h*), being .4-measurable, is UMVU for f(θ) by the theorem of
Lehmann-SchefFe. I

EXAMPLE 3. (Classical linear models). We can deduce from Proposition
4 the following known result on the comparison of classical linear models, see
Stepniak and Torgersen [22] and Torgersen [27] (cf. also [3], [5], [9]). Let
Ej = (IRΛ>,#(IRn >), (N(Ajθ,Σj) : θ G Πtr))> w h e r e Aj i s a n nj X r matrix, Σά

is a (possibly singular) nonnegative definite Πj x tij matrix and assume that
{Ajθ : θ £W} C {Σjy : y G IRn>}, j = 1,2. If we set Iά = {l,---,^},
Kj(i,k) = eiΣjek, Sj(θ) = Aj(9 and identify C(/j) with lRn ?, then H(Kj) =
{Σjy : y G IR n j} equipped with the scalar product

(xu*2)Kj =x{Σμ2, (3.2)

where Σj denots an arbitrary generalized inverse of Σ j , and Ej = E(Sj^Kj)

with Θ = IRr. Note that (3.2) does not depend on the choice of Σ j . We thus
obtain Eλ > E2 if and only if A^ΣiAi > At

2ΣA2.

For α, b G 1R, a < 6, let

W?[α?δ] = {h : [ayb] -* 1R, : h is absolutely continuous b! G L2([a,b],dt)}.

In all subsequent examples, the RKHS's are Sobolev spaces of the above type

equipped with a suitable scalar product.
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EXAMPLE 4. (Gaussian white noise and colored noise). Consider the
model

X(t) = θ(t) + N(t), te[O,T],

where N denotes Gaussian white noise (with intensity 1) and Θ = W p[0,T].
If the ordering > is a reasonable concept, then this model should be less
informative than the model where N is replaced by the colored (stationary)
noise with covariance function Kχ(s,t) = exp(—\s —t\)/2. In fact, this is true.
Following the conventional approach to deal rigorously with Gaussian white
noise we replace the above equation by the integrated version

γ ( t ) = j θ(s)ds + w(t), t e [ o , τ ] ,
Jo

where W is a standard Wiener process. Setting Sι(θ) = 0, S2{θ,t) = Jo θ(s)ds
and K2(s,t) = min(θ,ί), we claim that E(Si,Ki) > E(S2,K2) (h = h =
[0,T]). Note first that H{Kλ) = Wf[0,T] equipped with the scalar product

(Λi,h2)K l = 2Λi(0)Λ2(0) + / (Λi + h[)(h2 + h'2)dt
Jo

(cf. [20], p. 430) and H{K2) = {h G W?[Q,T\ : Λ(0) = 0} equipped with the
scalar product

(hi,h2)κ2= / K(t)h'2(t)dt. (3.3)
Jo

Using integration by parts this yields for θ G Θ

The desired informational inequality follows from Proposition 4.

In the sequel we consider some special models.

Parametric regression models. Let

where h = (hu- -,hr) e H(K)r and Θ = W. In this model S(θ) =
Σ[=i @ihi a n ( i the corresponding experiment is denoted more concisely by
E(h, K). Define a symmetric nonnegative definite r X r matrix by J(h, K) =
({hi,hj)κ)i,j=i,-,r Then according to Proposition 4, given h £ H(Kχ)r and
g € H{K2)

r, E(h,Ki) > E(g,K2) if and only if

J(htKi)>J(g,K2). (3.5)
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Since J(h,K) is the Fisher information matrix of E(h,K), the ordering > of
parametric regression models coincides with the ordering > of the Fisher infor-
mation matrices. Note further that the ML-estimator of θ in E(h, K) is given
by θ = J(/ι, K)+(Lκ(hι), , Lκ(hr)y and its covariance matrix by J(/i, K)+

under each P#, where J(Λ, K)+ denotes the Moore-Penrose inverse of J(/i, K).
If J(/ι, K) is regular, 0 is an unbiased estimator of θ which is UMVU in the
sense that Cov θ < Cov# θ for every θ 6 Θ and every other unbiased estimator
0 € Π^€e-^2(^) of 0, see Proposition 5 and [29], Satz 2.114. Hence, the order-
ing > of parametric regression models with independent regression functions
may also be characterized by the ordering < of the covariance matrices of the
ML-estimators (UMVUE's) of θ.

Let us briefly discuss an application to the comparison of sampling de-
signs in (3.4). Designing problems for parametric regression models with not
necessarily Gaussian error processes are treated in the book of Nather [19]
from a different point of view; see also the survey article of Bandemer et al.

[i]

Suppose that observations X(t) are available only at t £ D for some
closed subset D of /. Let E((h,K)Dy J(h,K)D and ||#||JΓ> for g € H{K) be
short for E(hD,Kr>), J^D^KD) and H^DII/^, respectively, where hp denotes
the restriction of h on D and KD denotes the restriction of K on D x D. Note
tha t gD β H(KD) and \\g\\D < \\g\\j for every g e H{K\ D C I (cf. [20],

Theorem 6C, p. 312). For (closed) designs D\,D2 C /, it is natural to say
that Dι is at least as informative as D<ι in E(h, K) if J5(/ι, K)DX > E(h, K)D2-
By (3.5), this is equivalent to the condition

J(h,K)Dl>J(h,K)D2. (3.6)

Clearly, / is at least as informative as any other design. The most interesting
situations are discrete sampling and continuous sampling in closed subintervals
of/. In case of discrete (finite) designs Dι,D2 C /, (3.6) takes the form

ht

Dl^D1hDl > h^Kn.hD^ (3.7)

where for D = {tι, , ίn}, hr> is identified with the nxr matrix (/i?(^))t=i,-,n

and KD with the nxn matrix (K(tijtj))ij=ir.Ίny see (3.2). We remark that for
the comparison of discrete designs D with regular matrix JITD, the assumption
h £ H(K)r can be dropped, since then H(KD) coincides with IR^ as set. In
the special case

h3 = Σ αi*'ΛT> **) for every j = 1, , r, α i t G
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we obviously have J(/ι, K)χ = J(h, K)D with D = {ί1? , t n }, so that £> and
/ are equally informative. This is best understood by the observation that
C(I) —• IRn, a; —• (a?(*i), , »(ίn)) is a sufficient statistic for E(h, K) in view
of (2.2) and (2.3).

EXAMPLE 5. Let r = 1 and ϋf(s,t) = min(s,t) on [0,Γ]. For two-point
designs D = {<i,*2}> 0 < Ί < 2̂ < 2\ we have

if *i > 0 and ||/i|||, = h2(t2)/t2 otherwise. In case h(t) = t2, \\h\\2

D = ί? + (ί2 -
î)(^2 + ^l)2 a n ( i thus, D* = {T/2,T} is at least as informative as any other

two-point design. If h(t) = ^3, then \\h\\2

D = if + (*2 - <i)(ί? + 1̂̂ 2 + *1)2 a n d

D* = {Γ(l + 171/^2)/8,Γ} is at least as informative as any other two-point
design. In case h(t) = t = ϋΓ(ί,Γ), {Γ} and [0,Γ] are equally informative.

Now consider continuous designs J9 = [α,α + ̂ ] C [0,Γ] of fixed length £,
0 < i < Γ. For any interval [α,6] with a > 0, we have #(iT[α>&]) = W?[α,δ]
equipped with the scalar product

fb
/

Ja

for the case a = 0 see (3.3). Again for Λ(ί) = t2, we obtain ||Λ||^ = 4(α +
£)3/3-a3/3 and for Λ(ί) = /3, ||Λ||^ = 9(α + ̂ ) 5/5-4α 5/5 holds. This implies
that for both regression functions, D* = [T — l,T] is at least as informative as
any other design interval of length L

Nonparametric regression models. Let

X(t) = θ(t) + Z(ί), * € / , (3.8)

where Θ is a (possibly infinite dimensional) linear subspace of H(K). Here
S(θ) = 0 and the corresponding experiment is simply denoted by E{K). Given
two such experiments E{Kλ), E(K2) on Θ (h = J2, Θ C #(#1) Π H(K2)),
(3.1) takes the form

>l |0 |k 2 for every Θ € Θ. (3.9)

As in the proof of Corollary 2, one can show that (3.9) implies Θ ( A l ) C <9(/<2)

and Hey*! > | |0|k2 for every θ G Q{Kι\ where Θ{Kj) denotes the closure of Θ
in H(K ).

Let us consider in more detail error processes which are solutions of linear
stochastic differential equations of the following type

, Z(0) = 0, ί€[0,Γ], (3.10)
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where A is a continuously differentiable function on [0,T]. The covariance
function KA of Z is given by (2.10) (with e = 1) and the corresponding ex-
periment E(KA) is equipped with the sample space Co(0,T] of all continuous
functions vanishing at zero. Since £(Z \ A) is equivalent to C(Z | 0) = £(W)
(cf. [14], Theorem 7.5), the RKHS H(KA) coincides with H(K0) as set and
their norms are equivalent (cf. [10], Theorems 3.3, 3.4 and 4.5). In particular,
H(KA) and H(K0) coincide as topological spaces.

THEOREM 6. Let A and B be continuously differentiable functions on

[0,T] and let Θ be a dense (not necessarily linear) subset of H(KA)> Then

E(KA) > E(KB) if and only if

A' + A2>B' + B2 on [0,Γ] and A(T) < B(T). (3.11)

PROOF. According to Corollary 2, E(KA) > E(Kβ) holds if and only if

\\h\\κA > \\h\\κB for every h e Π(KA). (3.12)

For h € H(KA), h(t) = φA(t)jt

oφA(sr1g(s)ds with g e i2([0,Γ]),cί/), we
obtain from (2.11)

\\h\\2κA= Γ g
Jo

Using integration by parts, one gets

\\h\\h = [T[h'(t) ~ A(t)h(t)]2dt = lT[h'\t) + (A'(t) + A\t))h\t)]dt
Jo Jo

- A(T)h\T) = / hn(t)dt - / h?(t)dμA(t),
Jo Jo

where μA = A(T)eτ - (A' + A2)dt € Co[0,T]*. Therefore, (3.12) is equivalent
to the condition

I T
h2d(μB -μΛ)>0 for every h e H(KA). (3.13)

Since the functional Co[0,T] —• IR, x —>• Jo x2d(μβ — μA) is continuous and
H(KA) is dense in Co[0,T], (3.13) holds if and only if μB - μA > 0 and this
condition is equivalent to (3.11). Thus the proof is complete. |

REMARKS.

(a) In case A = 0 or B — 0, the preceding theorem has been proved in [16].
If Θ is a linear subspace of H{KA)Ί it is enough to impose the (weaker)
assumption that Θ is dense in Co[0,T]. To see this, one only has to
replace Corollary 2 by the criterion (3.9) in the proof of Theorem 6.
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(b) Using (3.11) it is easy to construct functions A and B such that E(KA) >
E(Kβ) holds if the processes are observed up to time T, but this in-
formational inequality fails for longer observation periods; consider e.g.
A(t) = t —1, B = 0, T = 1. On the other hand, noncomparable regression
models E(K{) and E(K2), where I = [0,Γ] and Θ is dense in H(K{),
cannot be made comparable by longer observation periods (provided, of
course, that K\ and K2 do not depend on T). This is caused by the
fact that the ordering > may be characterized by the ordering < of the
covariance functions K\ and K<ι, see Corollary 2. As a nice consequence
one obtains that solutions A and B of the differential inequality (3.11)
must satisfy A < B on [0,T].

(c) For parametric regression models it may happen that noncomparable
models become comparable by longer observation periods, in contrast
to nonparametric regression models with a large (dense) set of possible
regression functions. A corresponding observation in the setting of iid
observations can be found in [26]. For instance, let K(s,t) = min(,s,£),
h(t) = t2 and g(t) = t on [0,T]. By (3.3), \\h\\2

K = 4T3/3 and \\g\\2

K = T
holds. Hence, by (3.5), E(h,K) t E(g,K) for 0 < Γ < (3/4)1/2, but
E(h, K) > E(g, K) for T > (3/4)1/2.

EXAMPLE 6. (Ornstein-Uhlenbeck error processes). Let A = c, c G IR,
and Θ = {θ e WΊ 2[0,Γ] : θ(0) = 0} (or e.g. Θ = space of polynomials on [0,Γ]
vanishing at zero or Θ = linear span of {t —> cos(nπt/T) — 1 : n G IN}) Then

ΛΓC(M) = (2c)-1 eχip(cs + ct) - (2c)-1 exp(c\t - s\) if c φ 0

and by Theorem 6, E(KC) > E(Kd)> c, d G IR, if and only if c = d in case c > 0
and d > 0; |c| > d in case c < 0 and d > 0; c < d in case c < 0 and d < 0.
This example shows that the "ergodic" case c, d < 0 corresponds to compa-
rable experiments while the "nonergodic" case, c, d > 0 yields noncomparable
experiments. For these notions we refer to Basawa and Scott [2].

EXAMPLE 7. (Brownian bridges). For c G IR, c φ 0, let AC(J) = (ί - c)""1

and assume T < c if c > 0. Choose Θ as in the preceding example. Then
KAC(S, t) = min(θ, ί) - st/c and E(KAC) > E(KAΛ) if and only if c < d in case
c, d > 0, Γ < min(c, d), and in case c, d < 0; c, d arbitrary in case c > 0, d < 0
and T < c.

Semipammetric regression models. Let

r

X(t) = Σ βMt) + 7(<) + Z(t), t £ I, (3.14)
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where h = (hχ, ,hr) € H(K)r and 7 is assumed to belong to some linear
subspace Γ of H(K). Here θ = {β,η), Θ = W X Γ and S(β,j) = Sh(β,f) =
ΣUiβihi + 7 Given h € H(Kt)r and g € Jff(/iT2)

r (ij = ί 2 ) Γ C JJ(JSΓi) Π
H(K2)), it follows from Proposition 4 that £(S Λ , iίΊ) > £(S S , ϋΓ2) if and only
if

sup (2/?7(7) - β*Jβ) < \\Ί\\h ~ \b\\h f o r e v e r v 7 e Γ with
?€KΓ

and J = J(h,K1)-J(g,K2).

Since suP/?€ir(2/?7(7) - β*Jβ) = /(7) t 7/( 7 ) if /(7) € J(IRr) and = 00
otherwise, provided J > 0 (cf. [21], p. 108), this condition is equivalent to

J > 0,/(Γ) C J(H r) and /( 7) t7/( 7) < UTII^ " ||7ll^2 for every 7 € Γ.
(3.16)

Recall that / denotes an arbitrary generalized inverse of J. For semiparametric
regression models which differ only by their parametric part, that is, Kι =
K2 — K, (3.16) takes the particular simple form

, K) > J(g, K) and h{ - 9i

belongs to the orthogonal complement of Γ for every i = 1, , r.

4. Nonlinear Parametric Models. This section is concerned with
the local comparison of smooth regression models (1.1) when Θ is an open
subset of Htr or a (not necessarily open, nondegenerate) subinterval of Ht. We
refer the reader to Ibragimov and Has'minskii [6] and Kutoyants [12] for the
estimation theory of such parametric models; for the testing theory in case
r =1 see [17].

The differentiability condition involved in the definition of the local or-
dering of experiments is ensured for differentiate functions S. Here S : Θ -*
H(K) is differentiate at θ0 e Θ with derivative S(θo) € H(K)r if

+ δ) - S(θ0) - δ'Siθo^K = o ( (^) χ / 2 ) as δ - 0.

Then S(θOit) = VθS(θ0,t) for every t e J and sup ί € / \S(ΘO + £,*)- S(θo,t) -
δtS{θo,t)\ = o((8H)1/2) since the inclusion of H(K) into C(I) is continuous.

THEOREM 7. Let θ0 £ Θ and suppose that Sj : Θ -» H(Kj) is differen-
tiable at θo with derivative Sj(θ0) € H(Kj)r

} j = 1,2. Then E(SuKι) >ΘO

E(S2,K2) if and only if

J(S1(ΘO),K1)>J(S(ΘO),K2). (4.1)
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PROOF. We suppress the index j. Computing the likelihood ratio feo,e =

dPθ/dPθo yields

fβOtβ = exV{Lκ(S(θ) - S(θ0)) - \\S(θ)fκ/2 + \\S(θo)\\2

κ/2},

see (2.2). Since normal random variables have finite exponential moments,

fθo,θ € L2(Pθo) for every θ € Θ. We claim that Θ -> L2(Pθo), θ -• fθθίβ is

differentiable at θ0 with derivative fgo € L2(Pβo)
τ given by

k,i = Lκ(S(θ0)i) - (S(θo)i, S(θo))κ, i = 1, , r. (4.2)

Observe that by (2.4), EeJeo,i = 0 and

Covθofθo = J(S(θ0)tK). (4.3)

Furthermore, we have

and

E9oUβo,θ • h,i) = Eθfθo,i = (S(θo)i,S(θ) - S(θo))κ.

This yields

+ δ)

-S(θo))κ+ WΪSMWJc
ί) - 5(β o) | |^) " 1 " \\S(ΘO + ί) "

= o(ί*ί) as <!) -> 0 (ί 6 IRr)

and our claim is proved. It follows that E(S,K) is i1(P^o)-differentiable with

the same derivative (cf. [29], Satz 1.199 and Satz 1.190). Now, noting that

£(fθo I PΘ0) = N(o, J(S(ΘO), K)),the convex function criterion (1.6) yields the

assertion. |

Equation (4.3) shows that J(Sj(θo),Kj) is the Fisher information matrix

of E(SJJKJ) at θ0. Therefore, the local ordering of regression models with

differentiable functions 5* coincides with the ordering > of the Fisher infor-

mation matrices. In case r = 1, the local ordering >eo of arbitrary X1(P^O)-

differentiable experiments may be completely described by the slopes of power

functions of the locally most powerful level a tests for testing θ = θo vs. θ > θo



H. LUSCHGY 227

(cf. [28]). This is obvious in our setting, since we have in E(S,K) by (4.2) and
the generalized Neyman-Pearson lemma

8XLp{Eθo(φfθo) : Eθoψ = a, φ test} = \\S(ΘO)\\K ί y dN(0,

for every a 6 (0,1).

EXAMPLE 8. (Wiener processes with a nonlinear drift). Let Θ = [0,oo),
/SΊ(0,<) = log(βt+l), S2(θ,t) = (0*+l) 1 / 2 - l and/fi = K2 = IT with ϋT(M) =

min($,t) on [0,Γ]. Then SΊ(O,t) = ί and S2(0,t) = t/2 are the H(K)-
derivative of Si, S2 at 0, respectively, and ||5Ί(0)||^ = Γ and ||S2(0)|& = Γ/4,
see (3.3). Hence, 2?(5i, ϋf) is locally more informative than E(S2^ K) at θ0 = 0.
Clearly, E(S\,K) is not (globally) more informative than E(S2^K) by Theo-
rem 1, since e.g. i?i,o(l, 1) = Γ/(Γ + 1), #2,0(1,1) = log(Γ + l)/4 and hence
Λi,o(l, 1) < #2,o(l, 1) at least for T > e4 - 1.

Theorem 7 may be applied to the local comparison of sampling designs
along the lines described in Section 3.

5. Information Contained in Additional Observation Periods.
For the discussion of this topic, consider the parametric regression model

* > 0 , (5.1)

where Θ = IRr and Z(t), t > 0, is a mean-zero Gaussian process with
continuous sample paths and covariance function K. The restriction hγ of
h = (/ii, ,/ιr) on [0,T] is assumed to belong to the r-fold product of the
RKHS of the restriction Kτ of K on [0,Γ] x [0,Γ] and J(hJ()τ is assumed
to be regular for every Γ > 0, where J(h,K)τ is short for J(hτ,Kτ) Obser-
vation of X up to time T corresponds to the experiment E(hχ, I(χ) which is
simply denoted by Eχ

Let / : (0,oo) -+ (0,oo) be a function satisfying f(t) > t for every t £
(0,00). Clearly, ϋ?/(τ) ̂ s a^ least as informative as Eτ How large is the amount
of information contained in the additional observation period [T,/(T)]? This
quantity is measured in terms of the deficiency of ET relative to -B/m Since
{Lκτ(h\), , L>κτ(hr)) is a sufficient statistic for ET, see (2.2), we find that

Eτ - (N(θ, J(h, K)?1) : θ e IRr).

Therefore, according to a result of Torgersen [25] (cf. also [13], p. 130, [24]) on
the comparison of translation experiments, we obtain

, EJ{T)) = | |tf (0, J(Λ, JO? 1 ) - JV(0, J(h9
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This is a rather complicated function of the Fisher information matrices
of ET and Epφy So the following bounds may be helpful. They are the usual
bounds for the variational distance using the Hellinger distance (cf. [23], 2.15)
and for the above normal distributions given by

+ J/ (r))/2)Γ1 / 2} < δ(Eτ,Ef{τ))

with JT = J(h,K)τ. An immediate consequence is that δ(Eτ,Effχ\) —̂  0 if
Jj1Jf(τ) -* IT as TJf(τ) oo.

Now let r = 1 and h = hi. Let||Λ||τ be short for | | M k r τ h e n ( 5 2 )
yields

δ(Eτ, Eί{τ)) = <?(||Λ||J(Γ)/||Λ||^), where (5.3)

Observe that G : [l,oo) —>• [0,2] is continuously differentiable with bounded
derivative and strictly increasing. Setting C = sup{G"(#) : x > 1}, we get for
every x > 1, T > 0

\δ{Eτ, Eί{τ)) - G(χ)| < C\ ||Λ||}(T)/||Λ||^ - x\.

The most interesting case is

KmJh\\}{T)/\\hfT = 1. (5.4)

Then, by (5.3) and Taylor expansion of G about 1, we obtain

1)

+ o{\\h\\){τ)l\\h\\τ ~ 1) as T -> oo

since G'(l) = (2/τre)1/2.

EXAMPLE 9. Let /if(s,ί) = min(s,ί), /i(ί) = tn, n > 1, and /(T) =
Γ + o(T) as Γ ^ oo. Then by (3.3), \\h\\l = n 2T 2 n-V(2n - 1) and hence
δ(3r,Enτ)) = (2/πe)1/2((/(Γ)/Γ)2"-1 - 1) + o((f(T)/T)2n-1 - 1), Γ -
oo. In particular, if Λ(ί) = ί and /(Γ) = T + c for some c > 0, we ob-
tain 6(Eτ,Ef{τ)) = (2/τre)1/2cT-1 + ί^T"1), for /(Γ) = T + Γ1/2 we get
δ(Eτ,Enτ)) = (2/πe)1/2Γ-i/2 + o ^ " 1 / 2 ) , and for /(Γ) = T + logΓ,

= (2/τre)1/2Γ-i i o g Γ + 0 ( Γ - i l o g Γ ) .
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