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In this paper we characterize classes of statistical functionals through some
results which have been inspired by a classical theorem on mean values due to
de Finetti, Nagumo, and Kolmogorov. All the functionals are order preserving
w.r.t. particular stochastic orderings.

The first result is a quasi-linear representation for functionals assuming,
together with monotonicity w.r.t. first degree stochastic dominance and associa-
tivity, a particular continuity condition which can be interpreted as a mild type
of robustness. This result is used in a "dual" way to characterize other measures
of location, like median, quantiles, trimmed means, and Winsorized means.

In the second part of the paper our aim is to characterize some measures of
dispersion of a distribution around its expected value which are order preserving
w.r.t. the so-called dilation ordering. Most statistical indices of variability can
be obtained in this way. This and a "dual" theorem also account for several mea-
sures of inequality, which are order preserving with respect to the concentration
ordering based on the Lorenz curve, like Gini's celebrated index.

1. Introduction. In 1930 Nagumo and Kolmogorov (independently)
and later de Finetti proved a classical theorem which characterizes suitable
means of n real numbers (in Nagumo's and Kolmogorov's versions) and of
distributions with support in an interval (in de Finetti's) as quasi-linear func-
tions, in fact 1-1 transformations of expected values. In a decision theory
context the dFNK theorem states necessary and sufficient conditions in order
to represent the certainty equivalent of a monetary lottery as a transformed
expected utility, where w( )> the utility function, is increasing. This theorem
has been extended in many ways (see for instance, Chew, 1983 and 1989, and
Fishburn, 1986).

A crucial assumption of dFNK is associativity which in the parallel devel-
opment of expected utility theory is replaced by a stronger requirement, the
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so-called independence axiom, or sure thing principle. Another assumption
is monotonicity w.r.t. the classical stochastic ordering, - also known as first
degree stochastic dominance. Stronger orderings, like second and third degree
stochastic dominance, often play an important role in economic applications
(Fishburn and Vickson, 1978): the representation result of the dFNK theorem
still applies, assuming that one such order is preserved, and indeed properties
of the utility function u( ) related to the type of risk aversion can be specified
better, namely second degree stochastic dominance implies that u( ) is con-
cave, as well as increasing, and third degree stochastic dominance additionally
that uf( ) is convex (see Giovagnoli and Regoli, 1990).

This paper focuses not on utility theory, but on more statistical appli-
cations of the dFNK theorem and modified versions thereof. We deal with
general functionals of a distribution, to be thought of either as the probability
or the frequency distribution of a character in a population, or as an empir-
ical or sample distribution. The first result is a modification of the dFNK
theorem in which a quasi-linear representation for such functionals is obtained
assuming, together with associativity and monotonicity, a particular continuity
condition which, as pointed out in Giovagnoli and Regoli (1990), for statistical
and economic indices can be interpreted as a mild type of robustness.

The result is used in a "dual" way to characterize other measures of loca-
tion, like median, quantiles, trimmed means, and Winsorized means. Roughly
speaking, whereas quasi-linear means are - up to a transformation - the ex-
pected values of a transformed random variable, the other location measures
we look at are expected values of a random variable w.r.t. transformed dis-
tributions. Our result is similar in flavor to one obtained by Yaari (1987) for
representation of preferences. Here again we are concerned with the classi-
cal stochastic ordering, which is the natural order relation to consider for all
measures of location, as well as for utilities.

In the second part of the paper our aim is to characterize some measures
of dispersion. We give a representation theorem for classes of functionals
measuring the dispersion of a distribution around its expected value which are
order preserving w.r.t. the so-called dilation ordering, namely we express them
as transforms of the expectation of a convex function. Most statistical indices
of variability can be obtained in this way. In decisions under risk, such indices
can be interpreted as measures of risk with respect to a convex loss function.
This and a "dual" theorem also account for several measures of inequality,
which are order preserving with respect to the concentration ordering based
on the Lorenz curve, like Gini's celebrated index.

We would like to stress that what characterizes most of our results is
the monotonicity of the functional w.r.t. a particular stochastic ordering. The
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different orderings under consideration, apart from playing a technical role in
the proofs - namely obtaining an integral representation for the functional for
distributions whose support is not finite - are what singles out and somehow
defines each time the concept which the statistical indices aim to measure.

2. A de Finetti-Nagumo-Kolmogorov Type Theorem Under an
Assumption of Continuity with Respect to Weights. The dFNK the-
orem as given by Hardy, Littlewood and Polya (1934), characterizes "means"
of distributions with support contained in the interval [α, b] which are associa-
tive, consistent, and strictly monotonic with respect to the stochastic ordering
(first degree stochastic dominance) as functionals of the form

m(F) = tΓ1 ί I u(x)dF)

u( ) is continuous and strictly monotonic and is unique up to affine transfor-
mations.

We recall that associativity means that m(F\) = ra(i<2) =*• ra((l-λ)Fi +
XG) = m((l - X)F2 + XG) for all distributions Fu F2, G, and V 0 < λ < 1;
consistency means that m(δx) = x V x € [α,δ], where δx denotes the distribu-
tion concentrated in x (point mass). The stochastic ordering <st is defined as
F <st G iff F(x) > G(x) V x € [α, 6].

A possible interpretation of the theorem is to view m not as a "mean",
but simply as a functional Φ from a set of distribution functions to the real
line: economic and statistical indicators are functionals of this type. The
dFNK theorem allows one to say that under suitable assumptions the func-
tional Φ is quasi-linear, i.e. 3 a real φ('), invertible and such that Φ(Σt λt i

ϊi) =
φ"1(ΣiλiφΦ(Fi)) for all λt > 0, Σ λ; = 1, and to represent it as the transform
of a sum or an integral. Associativity indicates that a given "mean value" of
a character in a given population is left unaltered if part of the population is
replaced by another of equal size having the same mean value as the replaced
part. This property is shared by a large number of indices Φ, other than
"means", and it often seems a fairly natural condition to assume for a statisti-
cal functional. Monotonicity w.r.t. <st is a natural requirement for a "mean",
or a measure of location, and in general for all indicators of size, preference,
utility, etc.

On the other hand, if we are speaking more in general of a functional
Φ on the set of distributions with support in [α, b] which does not necessarily
take values in [α, b] itself, consistency does not always make sense, or may not
be of interest, while the following condition may be more appropriate:

CONDITION 1. The function Φ(^) = φ{x) is continuous in [α,6].
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With this slight change, and under the same monotonicity and associativity
assumptions, the dFNK theorem continues to hold, since φ is also invertible
and m(F) = φ~τΦ(F) is an associative, monotonic and consistent mean; we
only need to replace u~ι by ψ = φu~x, namely

Φ(F) = φ ( I u{x)dF\ .

Condition 1 means that a small change in the value of the character,
when this value is assumed with probability = 1, leads to a small change of
the value of the index: a related condition is that of "continuity with respect
to weights" given in Giovagnoli and Regoli (1990) and recalled below, which
appears to have an appealing interpretation in statistical terms, namely that
a change, even a large change, of the character in a tiny percentage of the
population brings about a minimal change of the index.

We shall denote by D(X) the set of distributions with support in a set
X C R and by D(X)° the distributions in D(X) with finite support; S will
be a convex set C D(X) and S° = S Π D(X)°; X will be omitted form the
notation if given once and for all.

DEFINITION. A functional Φ : 5 —• R is said to be continuous in F £ S
with respect to variations of a (finite number) of weights if

V G = ΣiλiδXi in 5°, V e > 0, 3 τ?£ such that if 0 < η < η€ then

Φ is said to be continuous w.r.t. weights if it is continuous in every F € S. It
is convenient to write

lim Φ((l - η)F + ηG) = Φ(F) (2.1)

Some simple algebra shows that if S° consists of all the distributions with
finite support in X, continuity w.r.t. a single weight - i.e. V F £ 5, V a; 6 I ,
V € > 0, 3 ηc > 0 such that V 0 < η < ηe =» |Φ((1 - η)F + ηδx) - Φ(F)| < e -
implies continuity w.r.t. several weights.

The continuity-with-respect-to-weights condition is a type of robustness
condition for statistical indices. This condition appears to be a reasonable
requirement in many cases and compares with the robustness conditions for
indices mentioned by Bickel and Lehmann (1975). On the other hand, this
continuity property is implied by, but is much weaker than, the classical con-
cept of robustness according to Huber (1981), i.e. continuity with respect to
weak convergence of the F's. For instance the expected value and the vari-
ance,, which are not robust when the support is unbounded, are nevertheless



A. GIOVAGNOLI and G. REGOLI 145

continuous with respect to weights. The continuity-with-respect-to-weights is
however a necessary condition for the existence of the influence curve, defined
by Hampel as the Gateaux derivative of Φ in the direction δx, i.e.

τ?-> o η

(see Huber, 1981). One property of this type of continuity, which extends
(2.1), is given in the following Lemma.

LEMMA 1. Let Φ : S —• R be continuous in F with respect to weights.
Then V G G 5° and V λ0 with 0 < λ0 < 1

lim Φ((l - X)F + XG) = Φ((l - X0)F + \0G). (2.2)
λ—>Ά©

PROOF.

|Φ((1 - λ - ex)F + (λ + €χ)G) - Φ((l - X)F + XG\

= \Φ([l-(l-Xr1eι][(l-X)F+XG)}

+ (1 - λ ) " ^ ^ ) - Φ((l - X)F +XG) <e

by taking η = (1 - A)"1*! in (2.1). |

Lemma 1 also implies that \Φ(F) - Φ(G)| < e for two step functions F
and G with the same support that differ only by a small amount on every step.

LEMMA 2. If Φ : S —• R is associative and has a maximum and a
minimum, the function φ(X) = Φ((l — X)m + XM), 0 < λ < 1, where
φ(m) = min{Φ(θ) : s £ S} and Φ(M) = max{Φ(,s) : s 6 S}, does not
depend on the choice ofm and M and in (0,1) is either constant or 1 - 1.

Furthermore, if Φ is continuous with respect to weights, the function
ψ(X) = Φ((l - λ)m + XM) is continuous in λ.

PROOF. For the first part see de Finetti (1931) or Daboni and Wedlin
(1982). The second part follows from Lemma 1. |

Lemma 2 is used for the proof of the following technical lemma, which
utilizes traditional arguments like those of DeGroot (1970). A full proof is
given in Giovagnoli and Regoli (1989).

LEMMA 3. Let S = H(E) be the convex hull of E, where E = UnEn,
and {En} is an increasing sequence. Let Φ : S —• R, and assume Φ has a
maximum and a minimum in each En, with Φ(ran) = min{Φ(e),e € En},
Φ(Mn) = rnax{Φ(e),e G En}. Assume further that

(1) Φ is associative,
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(2) V e G En, 3 X G [0,1] such that Φ(e) = Φ((l - λ)mn + \Mn) i.e.
^ n (λ) = Φ((l - λ)mn + λMn) maps [0,1] onto Φ{En),

then 3 a real function ^, invertible, such that given s = Σ;λt et G S, Φ(s) =

We can now prove the following.

THEOREM 1. Let D(X)B = all distributions with bounded support in a
given set X C R. Then a functional Φ : D(X)° -> R is

(1) associative,

(2) continuous w.r.t. weights,

if and only if 3 two real functions u : X —* [0,1] and φ, where φ is continuous
and invertible, such that for all distributions with finite support

F = ΣiλiδXi, XieX

u( ) is unique up to an affine transformation.

Furthermore, (1) and (2) hold and Φ : D(X)B -• R is

(3) monotonic (not necessarily strictly) with respect to the stochastic
ordering

iff Φ(F) = φ I / u(x)dF 1 with w( ) monotonic.

PROOF. We start by proving the quasi-linearity under conditions (1) and
(2). Two sequences {Nn} and {Mn} can be found in D(X)° in such a way that
V F e D°, Φ(Nn) < Φ(F) < Φ(Mn) for some n and such that the sequence
En = {F e D° : Φ(F) € [Φ(JVn),Φ(Afn)]} is increasing. By Lemma 2, the
functions ^ n (λ) = Φ((l - λ)Nn + \Mn) are continuous, and thus map [0,1]
onto Φ(-En). Hence Lemma 3 can be applied with S = E = D{X)°. For all
x G X define w(x) = '0~1Φ(^) whence Φ(ΣiλiδXi)φ(Σi\i(u(xi)). Since Φ is
continuous with respect to weights, ^(λ) is continuous. It is straightforward
to check that φ(Σ{\iu(xi)) = φ(Σiλiv(xi)) =̂  υ(-) = αu(-) + 6, α,6 G i2.

Now assume condition (3) holds too. The function ^( ) is strictly mono-
tonic since it is continuous and 1-1. Since by (3) Φ(δx) is also monotonic in
x, so is u(x) = φ"1Φ(δx). We need to prove that the integral representation
obtains. This can be done by the same argument used in the original proof of
the dFNK theorem - see for instance Daboni and Wedlin (1982) - which only
requires (non-strict) monotonicity w.r.t. the stochastic ordering. |

REMARK. In the proof of this theorem, condition (2) is required only to
prove the continuity of φ(λ).



A. GIOVAGNOLI and G. REGOLI 147

By this theorem conditions (1) and (2) characterize all the functionals on
DB which are 1-1 transforms of an expected utility, with a utility function u{-)

that may or may not be continuous. Note that the theorem can be applied also
when the distributions have support in a discrete set, e.g. X = {0,1,2, }.
On the other hand the geometric mean, min(supp F), and max(supp F) are
examples of functionals which are monotonic, not strictly, w.r.t. < s <, but to
which Theorem 1 cannot be applied, since they are not continuous with respect
to weights.

COROLLARY. IfX is connected, assuming continuity of Φ w.r.t. weak con-

vergence in place of (2), the same result holds and moreover u( ) is continuous.

PROOF. Continuity w.r.t. weak convergence implies (2). Continuity of
u(') follows from u(x) = φ~1Φ(δx) and x —> xo <& δx-^-+δXQ. |

3. Representing Other Measures of Location. Theorem 1 can be
applied to the inverses of distribution functions, namely:

to obtain a representation theorem for other "means", i.e. measures of location,

which in a way possess some "dual" properties. What we have in mind in

particular are the median and all the other quantiles, the trimmed means, and

the Winsorized means; as is well known, these are all functionals of F(x) of

the form

' xdh(F(x)) (3.1)
/ •

with h( ) an increasing real function on [0,1], right continuous but not contin-

uous. In fact, quantiles, trimmed means, and Winsorized means are obtained,

respectively, when

(0 for ί€[0,α),
(i) h(t)=\

[l forί€[α,l];
0 <€[0,α)

(ii) h(t) =

(iii) h(t) =

(t-α)/(β-α) t€[α,β) (3.2)

1 t € [β, 1] 0 < α < β < 1

0 t € [0 ,α )

ί

1 t€\β,i\.

Functionals of type (3.1) are mentioned within the theory of nonlinear utility

(Yaari, 1987; Quiggin, 1982; Segal, 1984), but with a function h( ) which
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always turns out to be continuous, and thus inadequate for expressing the
statistics mentioned above.

If F has support contained in [α,δ] and h(0) = 0 and h(l) = 1, letting
g(t) = 1 — h(t), some easy manipulations give

/ xdh(F(x)) = I (1 - h(F(x)))dx + a = I g(F(x))dx + a. (3.3)
Jo, J a, J a

The RHS of (3.3) can be replaced by a more general expression, where no kind
of continuity is required for #(•). We now proceed to give a characterization
theorem for functionals which are continuous transforms of J g(F(x))dx with
monotone g( ). These can be referred to as X-functionals, by analogy to L-
statistics when F(x) is the empirical distribution. In this theorem associativity
is taken "laid on its side".

Let us extend the definition of F'1 for all F € D[a, b] by F'1^) = 6; this
is different from the quantile function for which F~1(l) = sup supp(F). The
function F"1 : [0,1] —> [α,&] is nondecreasing and right continuous; observe
that (F-1)-1 = F.

THEOREM 2. A functional Φ : D[α,b] -+ R satisfies

(1*) Φ(ί\) = Φ(F2) => Φ(((l - λ ) ^ 1 + λG" 1 )- 1 ) = Φ(((l - λ)F- χ +
λG" 1 )" 1 ) V Fu F2, G e JD[α,6], and 0 < λ < 1,

(2*) Φ(δx) = φ(x) is continuous in [α,6],

(3*) Φ is increasing (not necessarily strictly) with respect to the stocha s-
tic ordering <8t,

iff 3 two real functions g and η, with 7 continuous and strictly increasing and
#(•) decreasing, such that

VFeD Φ(f) = 7 ( j ί g(F(x))<k)

g(-) is unique up to positive afRne transformations. Note that the same is true
for Φ decreasing in (3*) with an increasing g( ).

PROOF. We can map [α, b] by a linear transformation onto [0,1] and let
F be the induced distribution function with support contained in [0,1]. For
the functional Φ defined by Φ(F) = Φ(F), properties (1*), (2*), (3*) are still
true. Thus assume w.l.o.g. that Φ : J9[0,1] —> R. Observe that F " 1 can be
thought of as a distribution function on [0,1]; let Φ : D[0,1] —• R be defined
as

It is a straightforward check that (1*) => (1) of Theorem 1 for Φ. Also
since F <st G =*• G"1 <st F"1, by (3*) Φ is monotone decreasing, since Φ is
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increasing, w.r.t. < s t . It is obvious that (2*) for Φ =>• continuity of the function

Φ(λ) relative to Φ; in particular if Φ is consistent, namely Φ ( ^ ) = x V x G

[α, 6], φ(λ) = 1 — λ. The conclusions of Theorem 1 can be applied to Φ, namely

there exist g, 7 s.t. Φ(F) = Φ ( F - 1 ) = η f g(t)dF~\t) = η (/ g(F)dx), and

by the same theorem g(-) is unique up to positive affine transformations. The

"if" part of the theorem is straightforward using the identity

-i— I g(F(x))dx= ί1 g(t)dF-\t).
- Q ) Ja JO

In Theorem 2, the function φ(x) = Φ(δx) is monotonic by (3*). Condition

(1*) ensures that it is 1-1 in (α,δ), by Lemma 2. Replacing (2*) by uφ(x) is

invertible", which is thus equivalent to "φ(x) is onto the whole range of Φ",

would lead to the same result, by (2) of Lemma 3 (when n = 1) applied,

as above, in a "dual" way. However such a condition does not appear to be

intuitively very appealing, and is itself equivalent to the continuity of φ when

range (Φ) is connected.

Since we are still dealing with measures of location, (3*) is a natural order

replacement; (2*) is also natural, although the continuity condition is perhaps

too general; if we want to represent "means" we would normally assume consis-

tency. Condition (1*) says that we are taking mixtures "horizontally" rather

than "vertically", namely mixtures of the actual ordered values of the r.v.

rather than probability mixtures. From a mathematical point of view it may

be fairly easy to check, say graphically, whether or not this condition holds.

However (1*) is amenable to an intuitive meaning only when there is a natural

way of matching the ordered values of the random variables in question so that

the ranking is preserved going from one to the other. An economic interpre-

tation in terms of preferences similar to Yaari's (1987) can be given. Another

example is the following: say that Fι and F2 express two different distributions

of firms by number of employees, referred to a given total workforce, and say

that Fι and F2 are equivalent from the point of view of our measure Φ. (1*)

states that the two populations are equivalent if more personnel is distributed

in the same way among firms so as to preserve their ranking as regards number

of staff. We shall comment further on this property at the end of Section 4.

The differences between our Theorem 2 and Yaari's (1987) Theorem 1 are

that our assumptions (1*) and (2*) are weaker than his - we do not require

"dual independence" - and mainly, which we would like to underline, that

there is no need to prove this result anew, since it is really a consequence of

our Theorem 1, namely a modified dFNK. In addition, our theorem is capable

of taking in applications other than utilities.

COROLLARY. Replacing conditions (T) of Theorem 2 with continuity of Φ
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w.r.t. weak convergence, the same result holds and moreover g(-) is continuous.

PROOF. Convergence in distribution of a sequence of r.v. Xn is equivalent

to convergence in quantile, namely weak convergence of F~x. Thus we apply

the Corollary of Theorem 1 to Φ. I

4. Representing Some Measures of Dispersion and of Inequality.
There are many ways of partially ordering distributions according to their

dispersion: see for instance Shaked (1985) for a comprehensive survey. An

important stochastic ordering of dispersion is dilation, which we shall denote

by <D- This is defined by the relation: let F,G € D{X), X C R connected,
then F <D G <& j χ fdF < j χ fdG V convex function / such that the integral

exists, which roughly speaking means that G has "more variability" than F.

It can be shown that F <D G if and only if

I (F(x) - G(x))dx < 0 for all v in X, v > -oo
J—oo

and

/ (F(x) - G{x))dx = 0. (4.1)
Jx

Thus F <£> G implies that F and G have the same expected value; for r.v.'s

with the same expectation <D can be thought of as the reverse ordering to

second degree stochastic dominance and coincides with the "spread" ordering

of Bickel and Lehmann (1979). For frequency distributions from finite popula-

tions and for sample distributions <D coincides with majorization of n-tuples

of real numbers and the order preserving functions w.r.t. such orderings are

called Schur convex (Marshall and Olkin, 1979).

LEMMA 4. If F, G are distributions with bounded support and the same

expectation μ, an G(x) - F(x) has at most one sign change (from positive to

negative) as x ranges over X = supp(F) U supp(G), then F <D G.

PROOF. See for instance Shaked (1980).

THEOREM 3. Let X C R be connected, and let Dμ(X)B = the set of

distributions with support bounded in X and given expectation = μ; then Φ:

Dμ(X)B -+ R is

(1) associative,

(2) continuous w.r.t. weights,

(3) increasing (decreasing) w.r.t. the dilation ordering;
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iff 3 I : X —• R convex (concave) and a real function ψ, continuous and
increasing, such that

^( ) is unique up to positive aίRne transformations.

PROOF. This theorem needs a different proof from Theorem 1, since
concentrated distributions other than δμ do not belong to Dμ(X)B. First of
all we shall prove the result for Dμ[α, b]° = all distributions with finite support
in a given interval [α,6] C X, then for all distributions with finite support in
X and eventually for all distributions with bounded support. We write D
instead of Dμ(X)B.

Let α < μ < δ, α, δ G X fixed; let E be the set of distributions of J9μ[α, δ]°
with support in at most 2 points. These can be written as:

if α < x < μ AXtb = (1 - β(x))δx + β(x)δh where β{x) = (μ - x)/(b - x)
if μ < x < b Δα|3; = α(x)δα + (1 - α(x))δx where α(x) = (x - μ)/(x - α)

Observe that α(μ) = /?(μ) = 0 and Δα>μ = Δμ tt = δμ, and furthermore that
β(α) = 1 - α(6) so that the symbol Δαj6 is uniquely defined. Let D° h denote
all distributions in D with finite support and such that α = minimum of
the support and b = maximum of the support, i.e. D°α b = {F E D : F =
λ A + Σ λ i ^ + λ nί 6 with λ0 φ 0, λn φ 0 and α < a?t < δ, ί = 1, , n - 1). We
show first that D^ b C H(E). For simplicity the proof is given for distributions
with support in three points only: it can be extended by induction to any
number of points. So let

= l, λt > 0 , Xoα + λ1x + X2b = μ (4.3)

with, say, μ < x < 6; then

with 7 = λχ/(l - α(a?)) = [λo - α(b)]/[α(x) - α(δ)] = 1 - A2//J(α). Moreover
D%b is "dense w.r.t. variation of weights" in Dμ[α,b]° = {F e D : F =
Σiλ t ίx<, Xi € [β,δ]), in the sense that F = limη-+oFη, Fη G D®b, if we put
Fη = 7/Δα,6 + (1 - η)F.

Note further that V F G JDμ[α, 6] δμ <D F <D Δα, 6, so Φ(δμ) = min{Φ(F) :
JF1 G .Dμ[α,δ]}, Φ(Δα,6) = max{Φ(F) : F G J9μ[α,6]}. By Lemma 3 the func-
tion ^(λ) = Φ((l — λ)δμ + λΔα>6) is continuous, increasing, invertible and such
that φ~xΦ is linear on convex combinations. Now define ί{x) in [α, b] by means
of

if α < x < μ ψ-^iΔxfi) = (1 - β(x))i(x) + β{x)i{b)
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where the constant ί{b) is chosen arbitrarily, and

if μ < x < b φ^Φ(AaiX) = a(x)ί(a) + (1 - a(x))ί(x)

where l(a) is derived from the previous expression. Note that ί(μ) = 0. We
show that ί satisfies the representation: for all distributions in D^ fe, e.g. for F
as in (4.3), a simple calculation will suffice, using linearity of φ~~ιΦ, and the
same is true in all J9μ[α,δ]° by continuity of Φ w.r.t. weights. Thus for this
function /(•), Φ(Σi\iδXi) = ^(Σ, λ^(«f )).

We now show that ί is convex. Let X\, X2 € [α, b] and put x = (1 - λ)xι +
λx2; say x < μ. Define F = λ ^ + X2δX2 + X3h with λi = (1 - λ)(l - 0(2)),
\2 = λ(l — /?(#)), A3 = /?(#), so that F G Dμ[α, 6]°. It is easy to see by Lemma
4 that Ax,b <D F. Thus Φ(Δ^) < Φ(F), whence

and the convexity of ί follows. This shows that the assertion holds for distri-
butions with finite support in [α,δ]. A classical argument can be employed to
prove uniqueness of ί(-) up to affine transformations.

In order to extend the representation to X, take an increasing sequence
of intervals [αn,δn], an < μ < δn, with limαn = infX, limδn = supX. By
Lemma 3 there exists φ on X, continuous and strictly increasing, such that
φ~xΦ is linear on convex combinations. Define ίn(x) in each [αn, bn] as before.
Such an ίn makes the theorem hold true for any F in D[αn,δn]°. Choosing
for every n an affine transformation appropriately, i.e. in such a way that
4(&i) = li(h) and tn(μ) = 0, one gets ln(x) = /n-i(«) for all x e K - i , 6n-i].
Thus it is possible to define a convex ί : X —• R by l(x) = £n(x) for a? S [αn? ̂ n]

Lastly, let JF1 £ Z) have bounded support. The difficulty lies in finding
two sequences {Fn} and {Gn} of distributions with finite support such that
V n E(Fn) = E(Gn) = μ and Fn <D F <D Gn, and further if n > ne

Φ(Gn) - Φ(Fn) = //Λ?n - J ^ F n < e. If so, Φ(Fn) < Φ(F) < Φ(Gn)
by assumption (3) and / ίdFn < J idF < J ίdGn since ί is convex: the
conclusion follows from J idFn = Φ(Fn), / ldFn = Φ(Gn). Let Fn = ΣiXiδXi

(i = l, ,n) and Gn = Σfλi+i^, (i = 0,1, ,n - 1) where F(xo) = 0,
F(a;n) = 1 and λt = F(x{) - F(xi-ι) < e/V, where V is the variation of l(x)
in the support of F. Clearly E(Fn) > μ > E(Gn) and equally clearly the
difference of the integrals is < e. If E(Fn) φ μ, there exists a k and a point

Xk < V < Xk+i such that Fn = Σ * = 1 *;**< + λ^+i^ + ΣΓJA+I
 λ +i^< h a s

E(Fn) = μ. As the graph of i7^ crosses that of F just once (in y), it follows
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from Lemma 4 that Fn <& F. A symmetric argument leads to F <r> Gn. For
these distributions the theorem is true.

The converse follows immediately from the properties of φ and from the
linearity of the integral with respect to F. I

Theorem 3 can be applied within the framework of measures of the disper-
sion of a distribution about a given expected value. The theorem characterizes
the ones that are associative, "robust" and preserve the dilation order.

A different characterization was given by Peccati and Regazzini (1977):
choosing a measure of deviation d(x,θ) of x from a "center" θ and applying
dFNK to the distribution of |d(x,0)| they obtain all dispersion measures of
the form

1 Ju(\d(x,θ)\)dF, (4.4)J
with u(') increasing and continuous. Some well known indices of dispersion,
like the standard deviation and all absolute central moments, can be seen to
satisfy both (4.2) and (4.4). However, even when θ = μ the two families de-
scribed by (4.2) and (4.4) are not the same, and in any case the main difference
between their result and our Theorem 3 lies in the initial assumptions.

By interpreting the function £(x) as a loss function, Theorem 3 also char-
acterizes a class of risk functions with respect to convex losses.

A dual result is

THEOREM 4. Let Dμ[0,1] be the distributions with support in [0,1] and
given expectation = μ; then Φ : Dμ[0,1] —• R satisfies

(l ) Φ(Fχ) = Φ(F2) =» ΦtfλFf1 + (1 - λ)G'1)'1) = Φ((XFϊ\l -
λ)G" 1 )- 1 ) V Fu F 2, G € D, V 0 < λ < 1.

(2*) Φ(ΣiλiδXi) is continuous w.r.t. the X{;

(3*) Φ is increasing (not strictly) with respect to the Lorenz ordering,

iff 3 u : [0,1] —> [0,1] concave and a real function ψ continuous and increasing
such that

([u(F)dx) . (4.5)

PROOF. We recall the definition of Lorenz ordering for nonnegative ran-
dom variables with finite expectation (see also Arnold, 1986):

X <LY & Lχ(v) > Lγ(υ) for all υ € [0,1],

where Lχ(v) is the Lorenz curve defined as

Lχ(v)=
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If F, G e Dμ[Q,ϊ\ =* F " 1 , G"1 have the same expectation. And in this
case the Lorenz ordering for the F's is the reverse of the dilation ordering for
their inverses. Also (2*) implies continuity w.r.t. weights for the functional
φ(ir--i) = φ(jp). Thus Φ satisfies the assumptions of Theorem 3, with Φ de-
creasing in (3), hence the integral representation holds with a concave function

Inequality, i.e. the difference between the actual frequency distribution of
a character in a population and the distribution one would get if that character
was possessed equally by all the units of that collective, is usually compared
through the Lorenz order, and traditionally refers to distribution of income.
Observe that for bounded nonnegative r.v.'s with the same expectation <L
coincides with <£> (Arnold, 1986, Theorem 3.2). Thus Theorem 3 states that
inequality measures (also called concentration indices) are increasing continu-
ous transforms of the expected value of a convex function if and only if they
are associative (and mildly) robust (in the sense of condition (2)). Exam-
ples of such inequality measures are Pietra's index: \μ~1Y>iPi\xi - μ|, TheiΓs:
ΣiPi(x{/μ)log(xi/μ) and many more.

Theorem 4 characterizes those concentration indices that satisfy "dual"
associativity, i.e. (1*), and a different type of mild robustness, given by (2*).
We can interpret (1*) as follows: if the same total income is distributed in two
populations so that the concentration is the same w.r.t. Φ, (1*) states that the
concentration is still the same if in addition a further income is distributed
so that "the poor get less and the rich get more," i.e. the poor get smaller
proportions and the rich get larger proportions in such a way as to preserve
the ranking. An example is Gini's measure of income inequality which can
be expressed as μ"1 J F(x)(l - F(x))dx, namely is of the form (4.5); this is
continuous but not associative: it is however associative in the dual sense.
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