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The nonparametric maximum likelihood estimator of a
distribution function based on a maxima-nomination sam-
ple has been derived recently by Boyles and Samaniego
(1986). In this article we study minima-nominations for
the case of censored data.

1. Introduction. Let X i , . . . ,Xzχ., i = 1, . . . , n be independent identically
distributed (i.i.d.) random variables (r.v.'s) having a common continuous distri-
bution function F with support (0,oo). Denote the vector ( X α , . . . ,XtA^) by X t ,
i = 1,.. . ,n . Define the map Πt : IRA t —> IR such that Π t maps X; into a par-
ticular element in X t , say X{ (i — 1,.. .,ft). We shall call X t the nominee of X t

and the collection {Xt : i = 1,.. .,n} is called the nomination sample. The case
when Tίi(X.i) = maxi<j</^. X t j has been studied by Willemain (1980) and Boyles
and Samaniego (1986). Another important case is where Π^X;) = minκj<A"t X%j\
that is, when the nominee of X t is the minimum. As an example of such a data
generating process suppose that a factory has n identical machines; the i™ ma-
chine having K{ components (i — 1, . . . , ft). Suppose also that each machine is set
up as a series system of i.i.d. components with common d.f. JP. Let X t be the life
lengths of the components in the i™ machine. As soon as the first component
fails the entire machine fails, these first failure times for the entire factory are
(Xi , . . . ,X n ) , the nomination sample. A reliability engineer may be interested in
inference about the components of the machines, that is about F, rather than the
machines itself.

Another example of such a data generating process is the following. Suppose a
consumer has a known number of options from which he/she has to make a single
decision. The wise consumer will usually choose the option that costs the least and
hence the nominee will be the option of minimal cost. Although the distribution
of all option costs is unknown, one would like to be able to draw some inference
about this distribution from the nomination sample.

In this note we consider the estimation of the distribution function with a
nomination sample in the presence of random censoring. This estimator is derived
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in Section 2. The asymptotic theory of this estimator and functionals of this

estimator is studied in Section 3.

2. Estimation. Let K be a positive integer valued r.v. with probability
mass function p(-) and the probability generating function (p.g.f.) Φ(')- Assume
E\K\ < oo. Let F and G be continuous d.f.'s on (0,oo). Given K = ift, let X{ be
the minimum of the sample X t of size iΓt , i = 1, . . . , n. Then X{ has conditional
d.f. 1 - ( 1 - F)Kij i = l , . . . , n . Let Z i , . . . , Z n be i.i.d. G. Define

(1) Yi = min{Xi, Z t } = X t Λ Z; and δ{ = l[X t < Z, ], i = 1, . . . , n,

where 1[ ] is the indicator function of the event [•]. One can see that Yi is the nom-

inee of the i™ sample if there is no censoring, otherwise we observe the censoring

variable Z{. Hence, if there is no nominee from the i sample, 6{ = 0. In the

reliability example discussed above, this would correspond to no failure in the i t J l

series system, surely this information should be accounted for when estimating F.

Let Y\;n < , . . . , < Yum denote the ordered values of observed Yί's. Denote the

{(Yi-.n, Kim, δi:n)i * = 1,.. -, n} by P c , where K{.n and 6i:n are the values of K{ and

δ{ that correspond to Yί:n, i = l , . . . , n . Proceeding as in Boyles and Samaniego

(1986) (hereafter denoted B-S (1986)) we can obtain the nonparametric maximum

likelihood estimator (NPMLE) of F by finding the d.f. F that maximizes

L(F\VC) = Πf=1{[l - (1 -

(2) = π?=1{f««»(y; _ l M )

where F = 1 — F is the survival function.
Now, letting p t = F(Yi : n)/F(Y;_i : n) we have from (2) that

L(F\VC) = Π ^ ί l - p f ^ ) ^ ^ ^ 1 - ^ ^ ^ ^

= π?=1(i - p^γi:npγ-κ^i^

(3) = X(p), say,

where

We maximize i ( p ) in (3) by separate maximization of each factor. One can
verify that the function xα(l - xb)c is concave and is uniquely maximized by x =
(α/(α + 6c))1/6. It follows that i ( p ) is maximized by

Pi =

(4) = ([Σ?=1 A' j :n - JSΓ^fcnl/Σ^JΓ^) 1/^-, i = 1,..., n.
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Therefore the NPMLE of F is given by

0 , i f z < F 1 : n

(5) Fn(x) = '

,iίYn:n<X

Note that Fn(x) given by (5) is closely related to the estimate developed in
B-S (1986) where the nomination function Πt was the maximum and there was
no censoring. Note also that if K{ = 1, for all i, Fn reduces to the Kaplan-Meier
estimate. Hence if K{ = 1 and δ{ = 1, for all i, Fn reduces to the empirical
distribution function of (XL, . . . ,Xn) These analogies will become more apparent
in the next section when we discuss the asymptotic theory of the process y/n (Fn -

n
3 Asymptotic Theory. The weak convergence results of Fn presented

here are based on the methods of martingale based inference. The approach is to
propose an estimator which is asymptotically equivalent to Fn and to demonstrate
its limiting distribution.

Note that the stochastic intensity (failure rate) of X{ given K = K{ is given
by \χ{ϊ) — \()(t)Kiδi, where λo(£) is the intensity of the distribution F. Let TLi be
a history which satisfies "the usual conditions" (see Dellacherie (1972)). Embed
Ki into an Wt-predictable and locally bounded process Ki{t). Also, embed ίt into
an 7ΐt -predictable process δ{(t) taking values in {0,1}, indicating (by the value
one) when the i sample is under observation; thus #,-(•) is the censoring process.
Now, define the multiplicative intensity model N{(t) as the point process having
stochastic intensity λi(t). Also, define N(t) = Σ^=1Ni(t) with stochastic intensity
λo(/)Σ^ι_1/iΓt (^)ίt(ί) and history H = Vĝ W,-. Hence, this is related to the Cox
regression model as studied by Anderson and Gill (1982) (hereafter denoted by
AG (1982)). This is also the approach of B-S (1986), however, we will incorporate
the censoring process in our development.

The theory of martingale based inference will give us an estimate of Λo(tf) =
/Jλo(θ)dθ, the integrated hazard, and hence an estimate of F(t) = exp(—Λo(tf)).
From the results of Section 5.2 of Karr (1986) it can be seen that the estimator of
Λo(£) is given by

- 1

Σ

Define Hn = — log(l — Fn) as the NPMLE of the integrated hazard rate of F. A
simple modification of B-S (1986) to allow for censoring yields

LEMMA 3.1. sup y/n \Hn(t) - AOn(t)\ -» 0 as n -> oo.
ίeIR



474 Martin T. Wells and Ram C. Tiwari

This lemma implies that y/n(kon - B) and y/n(Hn - H) will have the same
asymptotic distribution where H = — log F.

The weak convergence of y/n(hon — H) will follow from Rebolledo's (1980)
martingale central limit theorem as found in the appendix of AG (1982). We need
to verify their conditions (1.3) and (1.4) employed in its proof. Recall that φ(-) is
the p.g.f. of the r.v. K and that G = 1 - G is the survival function of the censoring
distribution. Define

(7) *»(*) =

Hence we have that Λon(t) = /Q , >V.
The following result will be used in verifying the conditions of Rebolledo's

(1980) martingale central limit theorem.

LEMMA 3.2.

(a)

f* \Q(s)ds P I* X0(s)ds

Jo ίn(β)/n "" Jo F(s)G(s)ψ'(F(s))
dF(s)-i: F*(s)G(s)ψ>(F(s)Y

where φ1 is the first derivative of φ.
(b) For any e > 0

ξn{S)
p

PROOF. We will prove that

, λo(ί) λo(t)

Note that we have the identity

F{t)G{t)φ'(F(t))Ut)/n

The strong law of large numbers yields

±ξn

 a 4 E{Kl[X>t]l[Z>X]}
oo

(9) = G(t) Σ kFk(t)p(k) = G(t)F(t)φ\F(t)).
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Note that the expression in (9) is positive for all tεM. Hence the numerator in (8)

tends to zero and the denominator of (8) is Op(l). Therefore Δ n -£ 0. The second

equality follows since X0(t) = y^l, where / is the density of F.

(b) The proof follows from a minor modification of Lemma 2.3b in B-S (1986). ||

Let θ be a positive real number such that θ < r~ 1 ( l) , where r = (1-F)(l-G).
By applying Rebolledo's (1980) theorem we will show that following result holds.

THEOREM 3.3. The process βn = y/n (AOn - H) converges weakly in D[0, θ] as
n -> oo to a mean zero Gaussian martingale B with coυariance function

(10) Cov(B(s))B(,)) = j nJ[^,{P(u)) 0

PROOF. By the Doob-Meyer decomposition for submartingales (and hence for
counting processes) we have

(11) dNi(t) = λo(t)Ki(t)δi(t) + dMi(t)

(12) dN(t) = λo(*)ίn(<) + dM(t)

where M(t) = Σ^= 1 M{(t) is an 7ΐ-martingale. Therefore the process in the theorem
may be expressed as

(13) yfi, {Aon(i) - H(t)} = Mn(t) + Rn(t),

where

Mn(t) = ±=f ^ λ a n d Rn{t) = fl^s) = O)dH(s).
/n Jo ξn{s)/n Jo

sup 1-βnCOI —*• 0 as n —> oo.
te[O,0\

Note that (9) implies

Also, note that Mn(t) is a square integrable martingale. Therefore to deduce
that the process βn converges to a Gaussian martingale, we will apply Rebolledo's
(1980) martingale central limit theorem to the martingale Mn. The version of
Rebolledo's theorem we will use is found in AG (1982) with p = 1 and Hu(t) =

n)~ 1 . By Lemma 3.2a and (12) we have that

The Lindeberg condition of AG (1982) may be verified by applying Lemma 3.2b.

Therefore the conditions of the theorem have been met and we have the desired

result. ||
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THEOREM 3.4. The process χn(t) = y/n {Fn(t) - F(t)} converges weakly in
D[0,θ] as n —* oo to χ(t) = F(/)i?(/), where B(t) is the Gaussian martingale in
Theorem 3.3. The coυariance kernel ofχ is given by

(14) *(.,«) - f

PROOF. By applying the Doleans-Dade exponential, £(•) (see Liptser and
Shiryayev, 1978, pp. 255-256) it is immediate that F = €(—H) since F satisfies

Therefore,

so that

h Γ ( 1 ̂ ( < ) ) - λo»(*)).

Using the decomposition in (13) it is clear that

(15) χn(ί) = F(t)JQ ^ p»f» dMn(s) + K(t)

for some remainder term i2* which tends to zero in probability uniformly in tc[0, θ].
Define Ln(t) to be the integral in first term on the right hand side of (15). Note
that Ln(t) is a square integrable martingale with predictable variation process

(16) <Ln,Ln>(t)= f
Jo

* | i - * n(β-)"|2λo(*)<fa

By an application of Lenglart's (1977) inequality and the decomposition in (15)
we have that the term on the right hand side of (16) in the square bracket tends
to one. Therefore, it follows that

(17) < £ n , Z n > ( t ) £ < J B , B > ( ί ) .

As in the proof of Theorem 3.3, for Λfn, the Lindeberg condition for Ln may
be verified. The result then follows by an application of Rebolledo's martingale
central limit theorem. ||

As to be expected, if φ(u) = u, that is K{ = 1 for all i = 1,..., n the covariance
function in (11) reduces to the limiting covariance function of the Kaplan-Meier
estimate. Similarly, if φ(u) = u and G(u) = 1, that is, there is no censoring, the
result reduces to the classical result for the empirical distribution function.
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To apply Theorem 3.4 it is necessary to estimate the variance in (14), but this
can also be done using martingale based methods. The process

X0(s)ds

which converges to the variance in (10), has a martingale based estimator

— 2

Σ
lJ:Xj>Xi

By applying the results of Theorem 5.12 of Karr (1986) the estimate Wn(t) may
be shown to be a consistent estimate of the variance in (10). Therefore,

(18) Un(t) = (1 - Fn(t))Wn(t)

will consistently estimate the variance in (14). This is the type of estimator intro-
duced by Tsiatis (1981) in the context of Cox regression models.

Using the results of Theorem 3.4 one may study the asymptotic behavior of the
estimated quantiles. Define the quantiles of Fn as F^ζt) = inf{x : Fn(x) > t}.
Applying the general results for the asymptotic behavior of quantiles by Tiwari
and Wells (1988) we have

THEOREM 3.5. Under the conditions of Theorem 34 the process
F"1(t)]f(F~1(t)) converges weakly on D[0,F(θ)] to the mean zero Gaussian pro-
cess χ(F~1)f where χ( ) has covariance function given by (14)•

The above theorems are stated under the assumptions that K is a random
variable with finite expectation. In some applications the assumption that K is
random may not be appropriate. B-S (1986) suggest a possible modification when
K is not random. For further details see Section 3 of B-S (1986).

Many statistical procedures under the nomination sampling scheme can be
viewed as a functional of the process y/n(Fn — F) and the asymptotic properties of
such procedures can be inferred from the process itself. In what follows, in the re-
mainder of this section, we will consider the problem of estimation of a parameter
of the unknown distribution F. Specifically, we will examine the properties of lin-
ear combinations of functions of estimated quantiles (lcfeq) under the nomination
sampling scheme. In the case of simple random sampling the estimated quantiles
are the order statistics and in that case parameter estimates are based on linear
combinations of functions of order statistics (lcfos). In the case of nomination
sampling we do not record the order statistics of the individual samples, thus we
will use the estimated quantiles discussed in Theorem 3.5.

Let Jn be some known score generating function and let h(-) denote a known
function of the form h = hi — Λ2 with Λt (i = 1,2) increasing and left continuous.
Consider the lcfeq
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Tn= fth(F-\s))Jn(s)ds.
Jo

If Jn -» J, in some sense, Tn can be used as an estimate for the functional

θ= f* hίF-^sVJU) ds.
Jo

See Serfling (1980) for an extensive survey of functionals of this type.
Associated with the function g = ^(.F"1) is a Lebesgue-Stieltjes signed mea-

sure; let \g\ denote the total variation measure of this measure. We shall need the
following assumptions to demonstrate the asymptotic normality of yjn (Tn — θ).

Assumption 1: (i) Suppose \J\ < a(t) and, for all n, |Jn\ < a(t) on (0,1) where
a(t) = Mt~bl(l - t)-b* for 0 < t < 1 with M > 0 and (bx Λ b2) < 1.

(ii) Suppose h = hi - /12, with h{ increasing and left continuous on IR with
I M F - 1 ) ! < D(t) for i = 1,2, where D(t) = i f r * ( l - ί ) " d 2 . for 0 < ί < 1, with
M > 0 and any fixed dι,d2.

Assumption 2: Except on a set of ί's of |^|-measure zero we have both J is
continuous at t and J n —> J uniformly in some small neighborhood of t as n -*• 00.

Under the above assumption we have a theorem which is an analog of the
result of Shorack (1972) concerning lcfos in the simple random sampling set up.
The proof of our result is quite similar to Shorack's and will be omitted.

THEOREM 3.6. If(bχ + dx) V (b2 + d2) < \f then

y/n (Γ n - θ) Λ JV(0, σ2) as n -> 00,

where

σ2= I' ί1 KiF-^F-^t)) J(s)J(t) dg(s)dg(t)
Jo Jo

with i ί( , ) being the coυariance kernel given by (14)'
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