L, -Statistical Procedures and Related Topics
IMS Lecture Notes — Monograph Series (1997) Volume 31

Hierarchical clustering and the
construction of (optimal) ultrametrics
using L,-norms

Lawrence Hubert

University of Illinois, Champaign, USA

Phipps Arabie
Rutgers University, Newark, New Jersey, USA

Jacqueline Meulman

Leiden University, Leiden, The Netherlands

Abstract: The classification task of hierarchical clustering can be charac-
terized as one of constructing for an object set .S a sequence of successively
less-refined partitions that attempts to represent the pattern of entries
in a given symmetric proximity matrix defined between the objects. We
discuss this process of constructing a partition hierarchy by the fitting
through an Ly-norm (for p = 1,2,0r oo) of a second symmetric matrix
whose entries represent what is called an ultrametric and which can be
used to induce a partition hierarchy. A dynamic programming strategy,
and a heuristic extension for larger object sets, is suggested as the com-
putational mechanism for carrying out the procedure of combinatorial
search for the ultrametric that is the best-fitting according to the chosen
Lp-norm. A numerical example is used to illustrate the complete fitting
process that relies on a proximity matrix provided. A final extension is
presented for the construction of best-fitting ultrametrics based on two-
mode proximity data defined between distinct object sets.
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1 Introduction

One of the most studied data analysis topics in the field of classifica-
tion is that of constructing a hierarchical clustering for an object set,
S ={041,...,0,}, based on some given n X n symmetric proximity matrix
P = {p;;}; an entry p;; (= pjs > 0, and p;; = 0) is assumed to represent
the dissimilarity of the objects O; and O;, where larger values correspond
to the more dissimilar objects. A hierarchical clustering of S can be repre-
sented by a sequence of partitions, Py, Pa, ..., Pr, where P; is the (disjoint)
partition in which each object forms its separate class, Pr is the (conjoint)
partition containing all objects in S within a single class, and P; is con-
structed by uniting two or more classes in P;—;. (Most commonly, only
one pair of classes will be united in P;_1, so that T = n and P, therefore
includes n — t + 1 classes.) The task of hierarchical clustering is typically
carried out by a greedy optimization strategy, which begins with P; and
successively identifies P; from P;_;, for ¢ > 2, by minimizing some chosen
measure of proximity between the subsets that could be united to form a
new class in P;. Most commercially available statistical software packages
(e.g., SYSTAT, SPSS, and SAS) implement their routines for hierarchical
clustering in this manner and with various choices for how the proximity
between subsets might be defined.

The present paper is concerned with this particular problem of con-
structing a partition hierarchy that is intended to represent the patterning
of relationships present in the proximity matrix P, but will do so indirectly
by fitting a second matrix to P = {p;;}, denoted by U = {u;;}, minimiz-
ing an Ly-norm (for one of the usual values chosen for p of 1, 2, or o).
The entries in the fitted matrix U will satisfy a collection of linear inequal-
ity /equality constraints, characterizing what is called an ultrametric, that
in turn can be used to retrieve a specific partition hierarchy for the object
set S. The fitting task itself will be carried out through a recursive opti-
mization strategy based on dynamic programming which for small object
sets can provide globally optimal solutions. Later sections of the paper
discuss the heuristic use of the same dynamic programming strategy for
dealing with larger object sets, and an extension of the hierarchical clus-
tering task for proximity matrices that only contain dissimilarity values
between the objects from two distinct sets (i.e., two-mode proximity data).
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2 Ultrametrics

A concept routinely encountered in formal discussions of hierarchical clus-
tering is that of an ultrametric, which can be characterized by any non-
negative n X n symmetric dissimilarity matrix for the objects in S, de-
noted generically as U = {u;;}, where u;; = 0 if and only if ¢ = j and
the entries in U satisfy the ultrametric inequality: wu;; < max{us,u k}
for 1 < 14,7,k < n. An alternative characterization of this last inequality
would be that for all distinct object triples, O;, O;, and Ok, the largest
two dissimilarities among u;;, Ui, and u;, are equal and (therefore) not
smaller than the third. Any ultrametric identifies a specific partition hier-
archy, P1,...,Pr, where those object pairs defined between subsets united
in P;_1 to form P; all have a common ultrametric value that is not smaller
than those for object pairs defined within these same subsets. Thus, the
individual partitions in the sequence can be identified by increasing a
threshold variable from zero and observing that P is associated with a
particular threshold value where all dissimilarities within a class in P
are less than or equal to this threshold and all dissimilarities between
the classes in P; are strictly greater. Conversely, the collection of all ul-
trametric matrices can be decomposed into equivalence classes where all
members of an equivalence class induce the same partition hierarchy. If
P1,.-.,Pr denotes the specific partition hierarchy induced by all mem-
bers of an equivalence class, we will refer to one particular member of this
class as the base ultrametric defined by U° = {u;}, where u¢; = min{t —
1 | objects O; and O; appear within the same class in partition P;}. All
members of an equivalence class can be obtained from the entries for the
base ultrametric by a strictly monotonic function that maps zero to zero.
Moreover, since U contains 7" — 1 distinct positive values, each member
of this equivalence class will also contain T' — 1 distinct positive values,
where the (t — 1)% largest corresponds to partition P; in the hierarchy and
is implicitly associated with those object pairs that appear together for the
first time within a subset in P;.

An ultrametric matrix is a convenient device for representing in ma-
trix form the partition hierarchy it induces, and specifically, the integer-
valued base ultrametric can serve as a direct way for generating the explicit
set of linear inequality/equality constraints that any ultrametric within an
equivalence class must satisfy. Thus, one could find a best-fitting ultra-
metric within an equivalence class by fitting {u;;} to the original proximity
matrix {p;;} through, for example, an Lp-norm regression strategy that
incorporates the linear inequality/equality constraints implied by the base
ultrametric (e.g., those in Spath, 1991, Chapter 5). It is also possible to
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use the ultrametric notion more fundamentally as the basic mechanism for
obtaining a partition hierarchy in the first place. Explicitly, we suggest here
the development of hierarchical clustering methods by directly attempting
to find a best-fitting ultrametric for P by optimizing a loss criterion defined
by an Lp-norm between {p;;} and a (to be identified) ultrametric matrix
{ui;}. This usage of an Ly-norm is more general than what has been done
thus far in the literature; the extant methods that attempt directly to ob-
tain a best-fitting ultrametric have all adopted a least-squares criterion and
some auxiliary search strategy for locating an appropriate set of constraints
to impose (e.g., see Hartigan, 1967; Carroll and Pruzansky, 1980; De Soete,
1984; Chandon and De Soete, 1984; Hubert and Arabie, 1995).

To be specific, suppose for a given partition hierarchy, Pi,...,Pn (so
T = n), we let C’t(f)l and Ct(z)l denote the two classes united in P;—; to
form P;, and specify b;—; to be some appropriate aggregate (or ‘average’)
value of the proximities for object pairs between th)l and Ct(f)l. Denoting
the set of proximities between C’,@l and C’t(z) as Bi_1(u,v) = {pirj» | Oy €
Ct(f)l, Oj € C’t(f)l , and depending on the L,-norm chosen, this between-
subset aggregate value will be variously defined as the median (L), the
mean (Lg), or the average of the maximum and the minimum proximities
(Loo) in the set B;_1(u,v). The loss functions based on an Ly-norm used
to index the adequacy of a given partition hierarchy in producing an ultra-
metric fitted to P are for the

Ly-norm:
n

> > | porjr — b1 |,

=2 0,ect™), 0,,ec)

where b;_; is the median proximity in the set B;_i(u,v);

Lo-norm:
n

> Z (pirjr — be—1)?,

=2 0,ec™,, 0,,ec),

where b;_1 is the mean proximity in the set B;_1(u,v);

Loo-norm:
n

max | pirjr — be—1 |,
{=2 04eC™,, 0,€0™),
where b;_1 is the average of the minimum and maximum proximities in the
set By_1(u,v).
For all three Ly-norms, an optimal ultrametric will be one for which
the order constraint on the between-subset aggregate values holds: b; <
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by < .-+ < bp_1, and the norm is minimized. For such an optimal solu-
tion, the between-subset aggregate values, by,...,b,_1, define the distinct
entries in an (optimal) fitted ultrametric. (It might be noted that since
less than n — 1 distinct values could be identified if some of the between-
subset aggregate values are tied, the search for an optimal ultrametric can
assume without loss of generality that T = n, and for ¢t > 2, only two
classes are united within P;_; to form P;. Also, as a technical convenience,
we allow the possibility that some of the between-subset aggregate values
may be identically zero when the proximities for calculating these are all
zero. Although not technically an ultrametric since zero ultrametric values
should not correspond to distinct objects, its structure would still satisfy
the central ultrametric inequality for distinct object triples.)

3 A dynamic programming strategy for
identifying (optimal) ultrametrics

The optimization task of constructing optimal ultrametrics fitted to a given
proximity matrix P may be fairly easy to state, but the problem itself is a
computationally very difficult one to solve. For both the L;- and Ly-norm,
for instance, the task has been shown to fall into the class of NP-hard
problems (see Kfivanek and Moravek, 1986; Kfivdnek, 1986; for a recent
comprehensive review, see Day, 1996); thus, there is the usual expectation
that for larger object sets, methods guaranteeing optimality would become
computationally infeasible to implement. Keeping these computational dif-
ficulties in mind, along with the eventual necessity of moving to heuristic
methods of solution for larger object sets, we will still begin with a strategy
that can fit an optimal ultrametric to P for each of the three Ly-norms in-
troduced in the last section. The approach suggested is based on dynamic
programming and the construction of a recursive system that will eventu-
ally produce an optimal solution. There are some complications that arise
in the use of a straightforward dynamic programming formulation because
of the need to impose an order constraint on the successive between-subset
aggregate values, and these difficulties will be addressed below in some de-
tail. In addition, a strategy for heuristically extending the basic dynamic
programming formulation is developed in the next subsection for dealing
with large(r) object set sizes.

3.1 Identifying optimal ultrametrics

To implement a dynamic programming approach for locating an optimal ul-
trametric, we first define a collection of sets, €21, ...,Qy, where Q) contains
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all partitions of the n objects in S into n — k + 1 classes. For convenience,
a member of ) is denoted by Ag; thus, ; contains the single partition
A; that has n classes in which each of the n objects forms a separate class,
and (2, contains the single partition A,, that includes one class for all of
the n objects in S. We will say that a transition from Ax_; € Qx_1 to
Ay € Qy is permissible if the union of two classes in Ax_; produces A, and
if an admissibility criterion to be discussed shortly is satisfied (that would
[hopefully] ensure that the sequence of between-subset aggregate values is
nondecreasing). A function F(Ag) for Ay € Qi is defined as the optimal
value for the sum of the contributions for the chosen Ly-norm up to the
partition Ag. Beginning with F(A;) =0 for A; € Q;, we construct F(Ag)
recursively by

F(Ar) = min {F(Ag_1) + C(Ar_1, Ar)},

where the minimum is taken over all Ax_; € Qx_; for which a transition is
permissible to Ag € i, and C(Ag_1, Ag) is the incremental cost of trans-
forming Ag_1 to Ay characterized by the appropriate L,-norm when that
pair of subsets in Aj_; is united to form Ag. (It is this latter independence
of incremental cost from how Ax_; was obtained that is crucial to proving
the validity of the recursive process.) Finally, an optimal solution is iden-
tified by F(Ay) for the single entity A, € Q,, and a partition hierarchy
attaining this optimal value identified by working backwards through the
recursion starting from €2, and proceeding to §2; and tracing the process
of how F(A,) was generated.

One unresolved issue needing discussion is the explicit imposition of
some type of admissibility criterion for defining a permissible transition
from Ax_; to Ag that could ensure a nondecreasing sequence of between-
subset aggregate values. Unfortunately, the validity of the recursive process
depends on the property that any proposed criterion for admissibility must
only involve Ax_; and Ay and their relation to the matrix P, and specifi-
cally not on how Ai_; may have been arrived at. Thus, it is not possible
to define admissibility directly by requiring the between-subset aggregate
value that defines Ay from Ax_; to be greater than or equal to the last
between-subset aggregate value that led to Ax—; from Ax_3. What can be
offered, however, are two (less-than-ideal) alternatives: (a) an admissibility
criterion based only on Ag_; and Ag that may sometimes be too lenient and
thus fail to ensure that the collection of between-subset aggregate values
are nondecreasing for the (purportedly optimal) identified ultrametric, or
(b) an admissibility criterion based only on Ai_; and Ay that may be too
strict, and the (purportedly optimal) identified ultrametric could in fact
not be the absolute best obtainable.
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To be specific, the possibly too lenient criterion rests on the observation
(made originally by Chandon, Lemaire, and Pouget, 1980, for the Ly-norm)
that in an optimal ultrametric based on any of the three Ly-norms (with
the notion of an aggregate value defined by the median, mean, or the av-
erage of the two extreme proximities), the nondecreasing constraint on the
between-subset aggregate values, by < --- < b,_1, requires that b; be both
greater than or equal to each such aggregate value calculated within a sub-
set of Ax_1, and less than or equal to the aggregate value of all proximities
between the subsets in Ag. Since these two conditions may be evaluated
given only Ax_; and Ag, they can be imposed in defining whether a tran-
sition from Ag_; to Ay is permissible. Alternately, the possibly too strict
admissibility criterion would require that b; be less than or equal to any
between-subset aggregate value calculated for the new subset formed in Ag
and some other subset present in Ag. This latter criterion would ensure
that no (nontrivial) order inversions in the sequence of between-subset ag-
gregate values would exist (a trivial inversion would be one in which an
inversion may be present in the collection of between-subset aggregate val-
ues, but it can be removed by a simple reordering of when two disjoint
subsets are formed).

The computer program relied on for the numerical examples in Section
4 allows the imposition of either of the two admissibility criteria discussed
above. As a suggested analysis strategy, one would begin with the former
(and possibly too lenient) admissibility criterion and if no nontrivial order
inversions in the between-subset aggregate values are found, an optimal
ultrametric has been identified. If nontrivial order inversions were present,
the possibly too strict admissibility criterion could be adopted, and the
then identified ultrametric presumed optimal (but with the caveat that it
could be possible in some [rare| instances for an even better ultrametric
to be generated). (For convenience of reference, the program we use is
referred to by the acronym HPHI, for ‘ Heuristic Programming H/erarchical
clustering’, where the term ‘heuristic’ is included because of the extensions
it includes for dealing with larger object sets, as discussed in the section to
follow.)

3.2 Heuristic extensions for large(r) object sets

When the number of objects in S is even moderate in size, the random
access memory storage requirements necessary for a dynamic programming
approach to constructing an optimal ultrametric can become quite large.
Necessary for implementing the proposed recursive strategy is the availabil-
ity of large arrays associated with the sets, Q1,...,{x, that contain for all
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partitions of S the recursively-constructed values F(Ay) for Ay € Q, as
well as a mechanism for keeping track of what previous partitions in Qx_1
led to these optimal values F(Ag).! For larger object sets, HPHI allows two
options: (a) finding optimal ultrametrics for subsets of S, and (b) finding
optimal ultrametrics when the basic objects to be hierarchically partitioned
are themselves subsets of S. By the judicious and repeated use of these two
options, we have been able to approach object sets with reasonably large
sizes (and will do so for an object set of size 30 in the next section).

The analysis strategy we suggest begins by identifying [possibly through
a heuristic mechanism] a partition of S, say P, that is initially forced to
be induced as part of the best-fitting ultrametric we construct. The classes
of P, are first treated as the basic objects on which an ultrametric is to
be obtained, i.e., we begin with the classes of P, and complete the iden-
tification of an optimal ultrametric from this point on. Secondly, each of
the classes of P, is then used to obtain a separate optimal ultrametric for
the objects in that class. When these results are concatenated, an optimal
ultrametric is identified, subject to the constraint that P, is part of the par-
tition hierarchy it induces. Obviously, if P, is chosen appropriately to begin
with, the concatenated results would be optimal for the complete object
set S. A check on the choice of P, (however it was obtained initially) can
be carried out by using object classes identified within the subsets defining
Pe as the basic units on which an optimal ultrametric is to be constructed
and then completing the fitting from this point on. If P, is retrieved as
part of this latter process, some obviously increased confidence is obtained
that the concatenated ultrametric may be the best we can find. If, on the
other hand, P, is not retrieved, we could then repeat this same strategy
with whatever partition was observed (presumably for the same number of
classes as contained in P.). This whole process could be carried out iter-
atively until convergence. Obviously, an absolute guarantee of optimality
is not possible through this type of heuristic search, but the eventual sta-
bility achieved leads to an ultrametric that is usually very good (although
not verifiably optimal). Throughout this discussion it is assumed that the
subsets of objects for which separate optimal ultrametrics are generated, or
the number of object classes to be used in obtaining an optimal ultrametric
beginning from that point, are all of a size that could be handled optimally
(i-e., some number in the lower teen’s).

1Given the usual Pentium-level processors now commonly available and the amount
of memory these systems typically contain, the program we have developed can deal
(optimally) with object set sizes in the lower teen’s, but even this requires the capability
of Fortran90 to allocate very large arrays dynamically (and inform the user whether
sufficient memory exists on the system to solve the problem of the size being requested).
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4 A numerical illustration

To illustrate the construction of best-fitting ultrametrics based on the L,-
norm for a given proximity matrix, we use a data set originally collected
by Arabie and Rips (1973) for a replication of a study initially conducted
by Henley (1969) involving the subjectively-judged similarity of 30 ani-
mals. Fifty-three subjects assessed the similarity between all 435 animal
pairs based on a scale from 1 (extremely dissimilar) to 10 (extremely simi-
lar). Table 1 provides the animal names and the summed ratings over the
subjects subtracted from the maximum of 530 so the proximities would be
keyed as dissimilarities. (We provide these data in Table 1 as a convenience
to others who may wish to use this proximity matrix in their own method-
ological examples. Although these data have been analyzed elsewhere (see
e.g., De Soete and Carroll, 1996), they have not been published explicitly.)

Based on the data of Table 1, the results are presented below for each
of the three L,-norms using the heuristic process of Section 3.1 for find-
ing best-fitting ultrametrics. Specifically, a five-class partition, P, of the
object set S was first identified heuristically (the greedy complete-link hi-
erarchical clustering method was used up to the level of five classes). An
(optimal) ultrametric was then found for each of the five classes within P,
and based on these separate ultrametrics, a collection of (smaller) object
subsets identified and treated as the starting point from which to finish
the identification of an ultrametric for the complete object set S. Based on
this latter ultrametric, the object classes for the induced five-class partition
were then considered as defining an initial partition, P, and the whole pro-
cedure repeated. For all three L,-norms, the latter five-class partitions were
retrieved immediately. In all of these analyses, and as suggested in the last
section, the admissibility criterion that may at times be too lenient (to en-
sure a strictly nondecreasing between-subset collection of aggregate values)
was first used, and when nontrivial order inversions were observed (as they
were for a few of the analyses carried out), the more strict admissibility
condition was then adopted.

The results for both the L1- and Le-norm are very similar, and the same
five-class partition was induced for the corresponding ultrametrics:

A: {bear (2), cat (5), dog (10), fox (13), leopard (18), lion (19), tiger
(28), wolf (29)} — carnivorous feline/canine animals plus the omnivorous
bear

B: {beaver (3), chipmunk (7), mouse (21), rabbit (23), raccoon (24), rat
(25), squirrel (27)} — small rodent-like animals

C: {antelope (1), camel (4), cow (8), deer (9), donkey (11), elephant
(12), giraffe (14), goat (15), horse (17), sheep (26), zebra (30)} — large
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hoofed herbivores (ungulates)
D: {chimpanzee (6), gorilla (16), monkey (20)} — primates
E: {pig (22)} — Suidae

The (optimal) ultrametrics defined by the values of the between-subset
aggregate values for the Li- and La-norm constructed within each of the
classes labeled above as A, B, C, and D are given below (we also present
those for the Lo,-norm in the case of the two classes labeled B and D that
were also observed in the retrieved ultrametric using this latter norm).
Within each class we also provide a summary measure of the discrepancy
between the proximities and fitted values by giving the contribution each

class has to the overall Ly-norm measure being minimized.

level

A8

A:T

A6

A:5

A4

A:3

A:2

A:l

B:7
B:6
B:6

B:5
B:5

B:4
B:3

new class formed
{2, 5, 10, 13, 18, 19, 28, 29}

an addition of omnivorous bear to the
carnivorous feline plus canine classes

{5, 10, 13, 18, 19, 28, 29}

the union of the carnivorous feline and

canine classes

{10, 13, 29}
canines

{5, 18, 19, 28}
felines

{13, 29}
nondomestic canines
{18, 19, 28}
nondomestic felines
{18, 28}
feline(subclass)

(all separate)

contribution to the norm measures:

{3, 7, 21, 23, 24, 25, 27}
{3, 7, 23, 24, 27}

{3, 23, 24}

somewhat larger animals
{3, 7,24, 27}

{7, 21, 25, 27}

very small animals

{3, 24}

{7, 27}

Ly
282.0

217.0

104.5
97.0
57.0
35.0

24.0

557.0

230.5
197.5

173.5

123.0
22.0
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Ly
278.0

222.6

104.5
61.3
57.0
35.0

24.0

22,100.
212.3

200.5

163.5

123.0
22.0

Lo

206.5

200.5

164.5

123.0
22.0
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long-bushy-tail animals
B:2 {21, 25} 6.0 6.0 6.0
long-naked-tail animals
B:1 (all separate) -
contribution to the norm measures: 458.0 18,500. 79.5

C:11 {1, 4, 8,9, 11, 12, 14, 15, 17, 26, 30} 286.0  298.2
the final addition of elephant

C:10 {1, 4, 8, 9, 11, 14, 15, 17, 26, 30} 238.0  242.7

C:9 {1, 4, 9, 11, 14, 17, 30} 212.5  215.9

C:8 {8, 15, 26} 200.5  200.5
farm animals

C.7 {4, 14} 174.0 174.0
African animals

C:6 {1, 9, 11, 17, 30} 167.5 174.7
horse-like animals

C:5 {15, 26} 93.0 93.0
farm animals (subclass)

C4 {11, 17, 30} 81.5 81.5
equine

C:3 {1, 9} 49.0 49.0
deer-like animals

C:2 {11, 17} 31.0 31.0

domestic equine
C:1 (all separate) - -

contribution to the norm measures: 149.6  298,200.
D:3 {6, 16, 20} 49.5 49.5 49.5
D:2 {6, 20} 26.0 26.0 26.0
D:1 (all separate) - -
contribution to the norm measures: 19.0 200.0 9.5

Based on the five-classes, A, B, C, D, and E, the completions of a best-
fitting ultrametric beginning from this point are given below for the L;-
and Lo-norm:

level new class formed Ly Lo

5 {A, B, C, D, E} 389.0 382.1
4 {A, C, D} 375.0

4 {A, C, D, E} 373.1
3 {E, B} 354.0

3 {A, C, E} 357.5
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2 {A, C} 323.0 323.2
1 (all separate) - -
contribution to the norm measures: 10,494. 598,600.

For the Lo,-norm, the five-class partition retrieved for the corresponding
ultrametric differed slightly from that for the L;- and Lo-norm and involved
the placement of bear (2), elephant (12), and pig (22). Explicitly, the two
classes previously labeled as B and D were again retrieved for the Lo,-norm,
but the three other classes varied slightly:

F: {antelope (1), camel (4), cow (8), deer (9), donkey (11), giraffe (14),
goat (15), horse (17), pig (22), sheep (26), zebra (30)} — large hoofed
herbivores including (appropriately) pig and excluding bear

G: {cat (5), dog (10), fox (13), leopard (18), lion (19), tiger (28), wolf
(29)} — felines/canines only (excluding bear)

H: {bear (2), elephant (12)} — large animals

B: {beaver (3), chipmunk (7), mouse (21), rabbit (23), raccoon (24), rat
(25), squirrel (27)} — small rodent-like animals

D: {chimpanzee (6), gorilla (16), monkey (20)} — primates

Using these latter five classes, the completion of a best-fitting ultrametric
is given below for the Lo.-norm; subsequently, the optimal ultrametrics
within the classes labeled F, G, and H are given (those for the two classes
B and D were provided previously along with the Li- and Ly-norm results):

level new class formed L
5 {B,D, F, G, H} 343.5
4 {D, F, G, H} 335.0
3 {F, G, H} 331.0
2 {F, H} 313.5
1 (all separate) -
contribution to the norm measure: 362.0
F:11 {1, 4, 8, 9, 11, 14, 15, 17, 22, 26, 30} 294.5
F:10 {8, 15, 22, 26} 272.5
F:9 {1, 4, 9, 11, 14, 17, 30} 216.0
F:8 {8, 15, 26} 200.5
F.7 {1, 9, 11, 17, 30} 178.5
F:6 {4, 14} 174.0
F:5 {15, 26} 93.0
F:4 {11, 17, 30} 81.5
F:3 {1, 9} 49.0

F:2 {11, 17} 31.0
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F:1 (all separate) -
contribution to the norm measure: 292.5

G:7 {5, 10, 13, 18, 19, 28, 29} 232.0
G:6 {10, 13, 29} 104.5
G:b5 {5, 18, 19, 28} 63.0
G:4 {13,29} 57.0
G:3 {18, 19, 28} 35.0
G:2 {18, 28} 24.0
G:1 (all separate) -
contribution to the norm measure: 91.0
H:2 {2, 12} 305.0
H:1 (all separate) -
contribution to the norm measure: 0.0

5 Constructing (optimal) ultrametrics for
two-mode proximity data

The discussion of finding optimal ultrametrics has been restricted thus far
to a single object set S for which a symmetric n x n dissimilarity matrix
P is available. A direct extension is possible, however, to the context of
a (two-mode) ny x np dissimilarity matrix Q = {g;;} defined between
the objects from two distinct sets, say S4 = {Or,,...,0r,,} and Sp =
{O¢;,---,0c,, }, containing ng and np objects respectively, and where
¢i; denotes a dissimilarity between the (row) object O,, and the (column)
object Oc;,. Specifically, a combined single object set S is first constructed
as S = S, U Sp containing n = n4 + np objects, and the same dynamic
programming strategy for locating an (optimal) ultrametric is now applied
to the single set S but with two modifications: (i) when considering the
recursive process over the sets Qi,...,,, a transition from Ax_; € Qg1
to Ay € € is not permissible whenever the new subset formed in Ay would
contain only objects from S4 or from Sp; (ii) in generating the between-
subset aggregate values and the contribution to the chosen norm measure
for a transition from Ag_; to Ag, only those proximities defined between

the object sets S4 and Sp are considered. Based on this strategy, the
between-subset aggregate values producing the fitted values for the prox-
imities in Q, denoted generically as T = {t;;}, will satisfy the two-set
ultrametric inequality (e.g., see Furnas, 1980; De Soete, DeSarbo, Furnas,
and Carroll, 1984a, 1984b): for Orl.,Ori, € S4, and Ocj,OcJ_, € Sp, the

largest two values among tn.cj,tn.cj, stracss and tri/cj/ are equal.
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animal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
name 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
antelope (1) ok %k k ok kK ok ok x %k Kk %
bear (2) 306 * Ok kK kK Kk kK Kk Kk %k *
beaver (3) 378 333 * * * * * * * * * * * * *
camel (4) 225334410 * * ok ok x ox kXX x X %
cat (5) 340341266384 * * ¥ X K x K x k x
chimpanzee (6) 380 366 354 403 355 * * * * x *x *x x Xx X
chipmunk (7) 387 389 176 434 273 362 * * * * * % x ok &
cow (8) 240 290 395 260 376 406 403 * * * * x * x %
deer (9) 49 315 359 249 339 392 357 238 * * x * *x x %
dog (10) 316 282 305 329 221 337 327304280 * * * * * %
donkey (11) 206 341 385 199 365 377 404 216 228 316 * * * * *
elephant (12) 301 305 416 256 420 383 469 258 342 382 285 * * * *
fox (13) 315 289 286 377 224 360 325 357 289 126 347 407 * * *
giraffe (14) 203 356 418 174 422 372 429 313 236 370 290 266 380 * *
goat (15) 179 338 361 257 327 381 371 193 196 240 204 363 313 310 *

gorilla (16) 379 251 400 378 411 40 412 397 407 369 382 347 362 347 412
horse (17) 157 304 389 142 371 391 423 181 150 267 31 274 320 190 209
374 F  *F  x kK ok x ok ok x Kk Kk

leopard (18) 268 288 390 341 52 349 419 355 281 262 326 339 213 323 332
3359285 * * ok ok ok ok ok ok ok  * kK
lion (19) 276 257 381 327 75 365 435 322 296 263 323 307 213 331 325
323247 38 * *x ok k ok k% ok ok k ok k
monkey (20) 383 358 352 403 359 26 310 419 381 334 377 381 357 388 372
50 395363369 * * *x x ok k ok ok ok ok *
mouse (21) 434 436 261 439 336 388 164 416 386 349 412 473 372 453 386
472 440 430 457 385 * ¥ *x ¥ ¥ ok x k& ¥
pig (22) 410 356 350 395 359 408 394 269 368 299 347 371 362 410 284
404 344 400 389 401 375 * * * *x * x x X
rabbit (23) 321 394 207 407 271 378 201 400 323 297 390 435 301 420 340
430 394 391 403 360 222 343 * * * * * * % %
raccoon (24) 356 304 123 391 229 347 171 405 349 282 383 433 214 398 352
397 383 356 371 307 248 344 194 * * * * * %
rat (25) 422 406 245 440 295 401 155 431 405 353 421 465 358 448 382
452 431 427 429 398 6 354239270 * * * *x &
sheep (26) 233 335 355 296 314 390 384 208 230 263 239 350 333 341 93
408 247 356 337 394 397 261 317 335395 * * * * *
squirrel (27) 368 378 183 422 264 347 22 413 366 322 401 454 312 439 389
438 413 410 409 313 161 385 188 143 174 364 * * *

tiger (28) 281 243 403 328 57 368 431 355 295 287 320 318 205 333 316
320 297 24 32 354 445 415 412 371 430 348 415 * * *
wolf (29) 301 246 338 349 245 366 397 345 312 83 317 374 57 362 303

339 279 180 177 382 417 383 367 292 374 310 377 181 * *
zebra (30) 129 319 396 214 347 375 416 228 178 293 116 287 307 211 222
367 47 244 252 378 437 370 384 377 431 258 413 240 290 *

Table 1: A lower-triangular dissimilarity matrix between thirty animals
based on data collected by Arabie and Rips (1973).
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