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Abstract: The bivariate ranks and quantiles based on the bivariate affine
equivariant median are considered. Correspondences between two differ-
ent plots for bivariate data, the direct diagram and the Oja rank plot,
are described. Several illustrative examples are given.

Key words: Affine invariance, affine equivariance, bivariate quantile, bi-
variate rank, multivariate median.

AMS subject classification: 62G30, 62F07, 62H99.

1 Introduction

Rank methods occupy a central role among standard univariate statistical
methods, and form the backbone of conventional nonparametrics. Conse-
quently, it has been recently of some interest to explore concepts of rank for
multivariate data, and in particular, for bivariate data. There are various
alternatives, including ideas based on depth (Liu, 1990,1992; Liu and Singh,
1993). But another analytic definition of bivariate rank which leads to ap-
pealing bivariate analogues of univariate rank statistical methods is reached
through the gradients of a convex objective function used to define a bivari-
ate median; see Brown and Hettmansperger (1987a,b), Hettmansperger,
Nyblom and Oja (1992), Hettmansperger, Méttonen and Oja (1997a,b)
and Mottonen and Oja (1995). To show how this idea works, the notion of
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univariate rank is set up this way in Section 2.

There are several possible definitions of bivariate median which could be
used to develop a notion of bivariate rank (Small, 1990; Niinimaa and Oja,
1997). Among these, the bivariate median of Oja (1983) is affine invariant.
The resulting bivariate ranks are called Oja ranks, and defined in Section 3.
They lead to the idea of bivariate quantile, which is a data item or region
or chord between data items having prescribed rank.

The purpose of this paper is to examine the connections between and
uses of two corresponding plots. The first, called the direct diagram,
is just a plot of data in R? (the observation points with the lines going
through pairs of observations). The second diagram, called an Oja rank
plot, describes data items and regions having particular Oja rank values.
From it, quantiles in the Oja sense can be read off. The Oja rank plot
is developed in Section 4. In certain senses, the two plots have a duality
relationship. Such connections, and other properties, are listed in Section 4.
The correspondences between the two plots indicate considerable potential
for higher dimensional versions to be useful in informal data analysis.

2 Univariate ranks

Given univariate data z1,...,Z,, the median m is defined as the choice
f = m to minimize the dispersion criterion

S6) = Zlm -4

Clearly S'(0) = — 3 sgn(z; — 6), and this gradient function can be used to
define univariate rank. In order to facilitate a clear analog with the coming
bivariate case it is convenient to define sgn(t) = +1if¢t > 0, -1 if t < 0,
but sgn(t) can take any value in [—1,+1] when ¢ = 0. If z(;) denotes the
jth order statistic, then %S’(:c(j)) is any value in [j —1— 2,7 — %] while in
general, if z(;_1) < 0 < z(j), then

n

1, . 4T

The rank of the position § among {z;} can therefore be defined as
1
and -—%n < R(9) < %n, with z(g) = —0co and z(,41) = +00.

Inversion of the rank function leads to the notion of quantile. For 0 <
p < 1, the pth quantile &, is the solution § = &, of R(f) = (2p—1)(3). It is
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easy to verify that if p = (j—1)/n, then &, is any value within [z(;_1), z(;)],
while if (j — 1)/n <p <j/n, then § = z(;).

The preceding definitions of univariate rank and quantile will now be
extended to the bivariate case, using the Oja dispersion function for a
bivariate median. Note now that later it is convenient to define bivariate
quantiles in a way which is notationally different from the univariate case.

3 Oja bivariate ranks

Now suppose that z1,...,z, all € R2. The Oja bivariate median m is the
choice § = m to minimize

8(9) = ZA(III,, Zj, 0)

i<j

where A(a, b, c) is the area of the triangle having vertices a, b and c¢. The
corresponding gradient function is

VS(0) = 5 3 u(zs 75:6)

i<j

where u is a “repulsion vector”, having magnitude |z; — z;| and direction
perpendicular to and away from the chord between z; and z;, towards .
See Brown and Hettmansperger (1987a) for details. Correspondingly, the
Oja rank of 6 is defined as

R() = VS(0),
= %Zu(wz,xjﬁ)

i<j

Note that ranks R(f) are bivariate vectors, with direction as well as magni-
tude. The orientation of R(f) among other {R(z;)} will be roughly similar
to that of § among {z;}, but in a general sense the ranks display more
regularity than the original data, resembling the situation for univariate
ranks.

An important observation is that R(f) remains constant as § changes
locally. Furthermore, R changes value only when 6 crosses a line connecting
some z;, j. Then the increment to R(f) is Lu(xz;, zj;60). This observation
establishes the fundamental basic relationship between the direct diagram,
the plot of data {z;}, and the Oja rank plot, of the rank values. It can be
described as follows.
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Figure 1: Direct diagram (upper case): Black points are original four data
points; white points are secondary points. Tiles are numbered. Rank plot
(lower case): Numbered vertices are rank plots of corresponding tiles.
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Drawing in extended lines connecting all observation pairs z;, z; defines
a natural tiling in the direct diagram. The tiles are polygons with ver-
tices at observations, or at intersections of a line connecting z;, z; with a
line connecting zy, z;, for some 4, j, k, I. These intersections are called
secondary points. For n original data points in the general position (no
parallel lines), there are 3(}) = O(n*/8) secondary points. For the points
not in the general position, the number of secondary points (and conse-
quently the number of tiles) is smaller.

The ranks for all § within a tile of the direct diagram are constant
vectors. That constant is a point of the Oja rank plot, so rank plot points
correspond to tiles in the direct diagram. Neighbouring tiles have rank
values differing by a repulsion vector u. Therefore the rank value of any
point of a boundary between tiles can be any point in the rank plot on the
chord between the rank value points of the two tiles.

Furthermore, in the direct diagram, n observation points and 3(}) sec-
ondary points lie at the junction of several tiles. Correspondingly, their
rank values are not unique, but any value in the polygonal region of the
rank plot whose vertices are the ranks of the abutting tiles. For illustration,
see Section 4 and in particular Figure 1.

These observations lead to a number of further relationships between
direct diagram and rank plot, described in the next section.

4 Direct diagram and rank plots

4.1 Relations between the tiles

The regions of the rank plot are more regular than the tiles in the direct
" diagram. Figure 1 show a case of n = 4 data points with just 3 secondary
points. A small number of points minimizing the clutter in the figure was
used to illustrate the duality relationship in a simple case. See Figure 3 for
the rank plot of 10 points.

In general, every data point has n — 1 lines emanating from it, towards
other data points, so in the rank plot the rank region for a data point is
a 2(n — 1)-sided polygon whose opposite sides are parallel and of equal
length, i.e. an order-(n — 1) parallelogram. By contrast, the rank regions
of secondary points are conventional 4-sided parallelograms. Together, the
two types of parallelogram form an orderly tiling of R? in the rank plot.
All sides of regions are repulsion vectors as occurring in the definition of
Oja rank. Figure 2 provide illustrations.
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Figure 2: Direct diagrams and rank plots near a data point (lower case)
and near a secondary data point (upper case).
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There is complete projective duality between the two plots; that is,
points in the direct diagram are associated with regions in the rank plot,
chords in the direct diagram are associated with chords in the rank plot,

and regions in the direct diagram are associated with points in the rank
plot:

Direct plot Rank plot

point tile: (n — 1) parallelogram
secondary point | tile: 2 parallelogram
chord chord

extended line set of chords

tile point

Only the location information is lost in the rank plot: The original data
can be recaptured from the rank plot and the value of any data point (or
Oja median). Let B be the sample covariance matrix computed on the
Oja ranks. The standardized rank plot is then obtained if the rank
plot items are multiplied (from the left) by B~1/2. Both location and scale
information is lost in the standardized rank plot.

Note that the Oja rank vectors are location invariant and affine equiv-
ariant in the sense that if the original observation vectors are multiplied
by a full rank matrix A, the rank plot items will be multiplied by A* =
abs(det(A))(A™1)T. If A is orthogonal then A* = A and if A = diag(ay, as)
then A* = diag(az,a1). For elliptical distributions, the eigenvectors from
the Oja rank covariance matrix are then the eigenvectors of the conventional
covariance matrix but the eigenvalues are reversed. The fact is connected
to rank plot scale elongation occurring in orthogonal directions to scale
elongations in the direct diagram; see Section 4.3.

4.2 The rank plot boundary

In using a rank value to assess the position of a point among points in a
data cloud, it is useful to know the extremities of the rank plot. The rank
plots are not standardized and the rank plot boundaries are determined by
the data. The boundary tiles in the direct diagram each have an open face
extending to 0o, and the rank values of these tiles form the vertices of the
convex hull of the rank plot. Plotting these vertices will delineate the rank
plot boundary, but there is a quicker more informal method of describing
approximately where this boundary is.

This method, yielding an approximate boundary of the rank plot, is as
follows.

Consider @ far away from the original data cloud, in direction «, i.e.
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e=a+r(C?Sa>
sin o

with 7 — oo, where 6 is the Oja median. For r large, R(d) does not
depend on r. Then the contribution to R(f) in direction « of the vector
(1/2)u(z;, zj;6) is approximately of magnitude

approximately

5Tij|sin(a — aig)l, 1)
where 73 = |z; —z;| and the line joining z;, z; has direction as; (or oyj+).
The sum of terms like (1) is awkward because of the absolute value, but a
smooth approximation comes from using

1
|sin:r|:a+§(1—a)(1—cos2a:), —T<T<T (2)

Any value of a with 0 < a < 1 may be used; the error of approximation
varies between a at £ = 0 and (—1/2)(1 — 2a)%/(1 — a) when |sinz| =
(1/2)(1 — a)~. The minimax error is (2 — 21/2)/4 = 0.1464 at a = (2 —
21/2) /4 = 0.1464 and this is a convenient choice for a. Then summing over
terms in (1), using (2), gives

R(O) = —(1 +a)) rij— (1 — a)ycos(2a — 2w),

i<j

= 4_1(1 +a)R— Z(l — a)v[cos(2ax) cos(2w) — sin(2¢) sin(2w)],

where
R= Z Tijs
1<j
72 = (D rijcos(2045))% + (D rijsin(2045))?,
i<j 1<J

cos(2w) = y7? Z 745 €08(20)
and

sin(2w) -1 Z 745 sin(20y;).

The parameters cos(2w), sm(2w), w, v and R are easy to calculate and
along with a, describe R(f) as a simple cosine function of «, minimum
at @ = w £ 7 and maximum at & = w. The corresponding shape of the
approximate rank plot boundary is approximately an ellipse whose major
and minor axes give a rough indication of the principal components of the
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cloud of Oja ranks. See Figure 3 for the rank plot of a data set of 10
observations.
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Figure 3: Rank plot for a data set of ten bivariate observations.

Note that
. 1 Z '(33'2—1»'1'2' )
lim R(0) = = i< %5 :
61200 ) =3 <— Yicj sign(zje — zi2)(zj1 — zi1)

If z1,...,z, are i.i.d. from a spherical bivariate distribution with marginal
Gini mean differences 7 = E(|z11 — z21|) = E(|z12 — z22|) then clearly

-1
. n 1/71
o (2> R)=r3 (0)

9=00+r(cosa),

sin a

-1
. n T [ cos o
rlggo (2) R(e)_)P§ (sin a) ’

The approximative boundary then is the sphere

{%u : wfu=1}.

and, for
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For observations from an elliptical distribution
PCzq,...,PCzy,

where P is orthogonal and C = diag(cl,c2) diagonal, the asymptotic
boundary is then the ellipse

{ ZZ-PC*u c wlu=1},

where C* = diag(c2, cl). Major and minor axes give the principal compo-
nents for the original bivariate distribution.

4.3 Slopes of rank regions

In the rank plot, the rank region of a data point is the order (n — 1)
parallelogram of rank values attributable to that point, whose vertices are
the rank values of all the tiles in the direct diagram which abut at the point.
There is considerable information in the shape of a rank region as to the
position of a data point within a data cloud : The lengths and directions
of the n — 1 chords surrounding the rank region give the distances and
directions of the other n — 1 points in the direct plot. (The direction is
perpendicular (£7) to the direction of the chord.) Figure 4 illustrates how
the rank region of an outlier will be elongated in a direction perpendicular
to the direction of the rest of the data.

If a rank region has sides predominantly of one direction, the rest of the
data is mostly oriented in a perpendicular direction from the data point
in question. The lengths of the sides of a rank region are proportional to
distances to other data points. Thus an outlier is distinguished by having
a rank region with long sides, all with a similar direction.

Other remarks can be made.

(i) If all rank regions tend to have sides of similar direction, then the
whole data cloud is elongated in a perpendicular direction.

(if) Data points towards the center of a data cloud tend to have rank
regions whose sides are of mixed lengths. The directions will reflect the
general orientation of the data cloud.

(iii) Other data cloud patterns will have corresponding rank plot fea-
tures. For instance, two separated mini-clouds yield a rank plot whose rank
regions have sides tending to be distinctly short, in assorted directions, or
distinctly long, in a definite direction perpendicular to the direction be-
tween the mini clouds.
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Figure 4: Direct diagrams and data plots for six observations: In the
upper case observation d is moved to be an outlier.
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