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Abstract: Interest in using option prices to estimate implied probabilities
of stock values has emerged out of evidence suggesting the lognormal as-
sumption of the Black Scholes model is no longer accurate. Most of the
evidence relates to stock index option prices, especially since October
1987. The Black Scholes model assumes stock prices follow a geometric
Brownian motion in continuous time - a lognormal distribution in discrete
time. The standard deviation or volatility of the stock price process is
the only unknown value in the formula so that implied standard devia-
tions (volatilities) can be deduced from observed option prices. Prior to
1987, however, the implied volatility tended to curve upwards at far from
at-the-money strike prices. Because of its shape, the relation came to be
known as the ”smile”. The smile implies a fat-tailed underlying distribu-
tion, a long recognized feature of stock prices. Since the 1987 crash, the
smile has deteriorated much farther from what it is supposed to look like
under lognormality. Not flat and now not even a smile, it skews signifi-
cantly to the left, indicating large probabilities of price decreases. This
has led to recent proposals that focus on nonparametric estimates of the
shape of the underlying distribution. A similar approach is followed here,
but rather than estimating specific distributions, bounds are derived for
the set of probability distributions that could have generated observed
prices. These may be considered as either the first step toward identify-
ing a single estimate, or as a nonparametric range of estimates for the

underlying probabilities.
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1 Introduction

Interest in using option prices to estimate implied probabilities of stock
values has emerged out of evidence suggesting the lognormal assumption of
the Black Scholes model is not very accurate. Most of the evidence relates
to stock index option prices, especially since October 1987. The Black Sc-
holes model assumes stock prices follow a geometric Brownian motion in
continuous time—a lognormal distribution in discrete time. .The standard
deviation or volatility of the stock price process is the only unknown value
in the formula so that implied standard deviations (volatilities) can be de-
duced from observed option prices.! Since European calls with different
strike prices, but the same expiration date, are governed by the same prob-
ability distribution, they will have identical implied volatilities when the
lognormal specification is valid. Prior to 1987, however, the implied volatil-
ity tended to curve upwards at far from at-the-money strike prices. Because
of its shape, the relation came to be known as the ”smile”. The smile im-
plies a fat-tailed underlying distribution, a long recognized feature of stock
prices; see, e.g., Mandelbrot (1963) and Fama (1965). Since the 1987 crash,
the smile has deteriorated much farther from what it is supposed to look
like under lognormality. Not flat and now not even a smile, it skews signif-
icantly to the left, indicating large probabilities of price decreases - what
Rubinstein (1994) calls, ” crashophobia”.

The initial response to understanding the smile was to generalize the ge-
ometric Brownian motion model by making volatility random, while main-
taining lognormality. Stochastic volatility models generate smiles because
they make the (unconditioned by volatility) underlying distribution fatter-
tailed than lognormal. (This corresponds to the well known Monte Carlo
trick for generating fat-tailed distributions: generate normal variates, but
with different variances).

The recent evidence on implied volatilities has led to proposals that
focus on estimating the entire shape of the underlying distribution; see, e.g.,
Shimko (1993) and Rubinstein (1994). These methods are nonparametric
and do not presume lognormality. A similar approach will be pursued
here, but rather than estimating specific distributions, bounds are derived
for the set of probability distributions that could have generated observed
prices. These may be considered as either the first step toward identifying a
single estimate, or as a nonparametric range of estimates for the underlying
probabilities.

! As the only free parameter, volatility stands for everything that affects option prices,
but which is not in the model; see Figlewski (1989).
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1.1 Convexity

The estimates are based on a connection between convex functions and
cumulative probability distributions. To any cdf F there is the associated
convex function:

g(K) = /: F(s)ds.

Convexity of g follows from the fact that its derivative is the nondecreasing
cdf F.2 The resulting convex function is not arbitrary as its derivative must
also satisfy the boundary conditions of a cdf; F(z) — 1 and 0 as £ — +oo0.
Conversely, to a convex function g (satisfying the boundary conditions),
there is the associated cdf that is its first derivative.3

This convexity correspondence arises with option valuation because arbi-
trage-free option prices are necessarily a convex function of strike prices.
Hence there is always a probability distribution implicit in such option
prices. Since convexity follows from arbitrage-free valuation alone, there
exists an implied cdf given any specification of risk preferences and any
stochastic process for the underlying stock price.

When investors are risk-neutral the implied probability distribution is
identical to the cdf of the underlying stock price at expiration. This also
occurs under assumptions, such as those in the Black Scholes model, where
call values are determined independently of investor risk preferences. In
the Black-Scholes model the underlying stock price is assumed to follow a
geometric Brownian motion, a lognormal distribution in discrete time (or a
binomial process that is Brownian motion in the limit). When prices follow
such a process, call values are determined by arbitrage considerations alone
- risk preferences do not matter - and the implied risk-neutral cdf is the
same as the one that governs the stock at expiration.

The existence of implied probabilities however holds generally and does
not require the lognormal specification. There is an implied distribution

2This does not require that g be differentiable or that F' be continuous. When F
corresponds to a discrete distribution, g is a polyhedral convex function. F can be
recovered from g via the directional derivative, where the direction is determined by the
left /right continuity convention adopted for cdfs. For properties of convex functions and
their derivatives see Rockafellar (1970).

3This convexity/probability connection arises in unexpected places. One case is the
generalized Lorenz curve used for determining second degree stochastic dominance. The
generalized Lorenz curve is the g function derived from the quantile (inverse of F') income
distribution. A different context where the convexity is useful is in verifying that a
particular linear function of regression quantiles defines an empirical cdf. It is not at all
obvious, for example, that a combination of regression quantiles defines an empirical cdf
until the combination is recognized as the derivative of a convex function; see Bassett
and Koenker (1982, Theorem 2.1, p.409) and Koenker and Bassett (1978).
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when F' is not lognormal, and even if investors do not have explicit prob-
ability assessments about future values. In situations where risk matters,
there will be an implied cdf, though it need not agree with the process that
governs prices at expiration.

Section 2 briefly describes the connection between convex, arbitrage-free,
call values and the implied risk-neutral probability distribution. Arbitrage-
free call values were first described in Merton (1973) (also, see Cox and
Rubinstein (1985)), and Breeden and Litzenberger (1979)). By proceeding
from prices to inferred probabilities, we reverse the standard approach in
which prices arise out of causally prior probabilities. Bounds for the un-
derlying cdf, given a discrete set of option prices, are presented in Section
3 along with the modifications needed when convexity is invalidated by
non-zero transaction costs, bid-ask spreads, and nonsynchronous prices.

2 Option values and probabilities

Let ¢(K) denote the time ¢ value of a European call option with expiration
T > t. The underlying asset’s current value is S; and the unknown value at
expiration is Sp. Suppose initially that no dividends are paid between t and
T, and that there is a continuum of strike prices in the interval [0, Kmax],
where Ky« is large enough that ¢(Kpax) = 0.

2.1 Risk-neutral call values

Let the risk free rate of return be denoted by . Suppose investors are risk-
neutral; that is, indifferent between a riskless return and a random return
with the same expected value; see Harrison and Pliska (1981). Prices in
equilibrium are then determined by expected values. Let F(s) = Pr[Sr < s
represent a cdf for St. Since the value S; invested today in risk free bonds
at rate r yields e"T~% S, at time T, the expected value for a risk-neutral
investor must grow at the risk free rate. Hence, the expectation of F' is
required to satisfy, E(St) = e" T~ S;, but otherwise F is arbitrary.

The value of ¢(K) at expiration is the random variable, max{0, St — K},
whose expected value is,

E[max{0, Sy — K}] = / (s — K)dF(s).
K
Integration by parts yields the convenient expression,

K
Elmax{0, Sy — K}] = E(St) + /0 (F(s) — 1)ds.



Nonparametric bounds for the probability of future prices ... 291

Finally, let g(K : F') denote the discounted present value of the expectation,

g(K : F) = e T E[max{0, Sy — K} = S + e~ 7T~ /K(F(s) —1)ds
0
(1)
This provides the basic expression for determining prices from probabilities,
or probabilities from prices. In a risk neutral world with distribution F,
call prices are ¢(K) = g(K : F). Alternatively, given call prices c(K) there
exists the implied distribution F' such that g(K : F) = ¢(K).

From expression (1) we see that the first derivative of g with respect
to K recovers the underlying cdf, and the second derivative produces the
probability density; the respective derivatives are F(K) —1 and f(K), each
scaled by the discount factor. Since the functions are related by integra-
tion/differentiation, the call price curve will be smoother than the cdf,
which will be in turn smoother than the density. Finally, expression (1)
shows that g(0 : F') = S, reflecting the equivalence between the underlying
stock and a zero-strike call option. Since the shares, but not the options,
may receive dividends, the identity has to be modified when dividends are
nonzero.

In view of (1), risk neutral call prices satisfy certain basic properties:
there has to be an F' such that ¢(K) = g(K : F). What does this imply
about the form of ¢(K)? The following are the features of risk-neutral call
values.

1. ¢(K) is nonnegative with ¢(0) = S;.
2. ¢(K) is decreasing with —e"*~T) < dc/dK < 0.
3. ¢(K) is convex.

The first property follows from max{0,Sr — K} > 0; the second says
the derivative is nonpositive,

de/dK = dg/dK = e "T)(F(K) — 1) < 0;

and the third follows from the fact that the first derivative increases with
K, or, when there is a density the second derivative is e T f(K) > 0.

2.2 Arbitrage-free call prices

Suppose now that risk neutrality is relaxed and investors have arbitrary
risk preferences and perhaps even know nothing of probability. Suppose,
however, that all arbitrage opportunities are exploited; that is, call prices
c(K) are such that there are no riskless profit opportunities from buying
or selling calls, or investing at the risk free interest rate (assuming zero
transaction costs). What does this imply about c¢(K)?
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Tt is now well known that arbitrage-free call prices are identical to risk-
neutral call prices; call values are arbitrage-free if and only if there is an
F such that ¢(K) = g(K : F). In a risk neutral world the F' representing
the beliefs of investors is the same as the F' implied by call prices, whereas
in a non risk-neutral world the F implicit in call prices is the equivalent
martingale measure. This may seem surprising since the arbitrage-free
requirement says nothing about probabilities. The intuition behind the
equivalence is similar to Dutch book explanations for coherent beliefs re-
garding probability assessments. When your beliefs are not consistent with
the probability axioms you can make book against yourself and win (lose).
To see why arbitrage-free call values must be nonnegative, decreasing, and
convex, as well as the risk free arbitrage opportunities that would occur
if one of the conditions is violated, see Cox and Rubinstein (1985, p.237);
also, see Cox and Ross (1976) for option valuation with stochastic processes
other than geometric Brownian motion.

2.3 Call price curves

Given expression (1) we can identify an F from a ¢(K), or a ¢(K) from an
F. The types of curves that arise in simple special cases are illustrated in
the following examples. For simplicity r is assumed to be zero.

2.3.1 Discrete probabilities

Suppose St is a discrete random variable that takes values s; with proba-
bilities p;, j = 1, ..., J. Then the cdf F(s) = Pr[Sr < s] is a discontinuous
jump function, and call prices are a linear spline,

c(K) = c(sj) — (1 = F(s))(K = s), 8 < K < sj41.
This situation is illustrated in Figure 1.
2.3.2 Histogram probabilities

Let the probability density for prices at expiration be a histogram: in the
interval, [sj,s;j+1], St is uniformly distributed. Integrating a histogram
gives a piecewise linear cdf, and integrating again gives a quadratic spline
for call prices. To see this, write St as a mixture of uniform distributions,

J
F(s) = piUj(s)
j=1

where,
0 § < 8j
. — 578 : .
UJ (S) - Sj4+1—Sj 3.7 S s S SJ+1

8§ > 8
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Figure 1
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Substituting into (1) gives the quadratic spline,

j—1 e 2
o(K) = C(Sj)+j§pj(K_5j)+%pj [%{;l—j;);j] —(K—sj), s; <K < sj11.

Conversely, if ¢(K) were a quadratic spline then the implied F' would be a
histogram density. This situation is illustrated in Figure 2.

2.3.3 Mixture models

The representation of the histogram as a mixture of uniform distributions
can be extended directly to cases where the mixing distributions are not
uniform. That is, now let

J
Fls) = " w;Fy(s).
j=1

This says that St is, with probability w;, the random variable S; with cdf
F;. In the case where all the Fjs are lognormal with different variances,
this corresponds to a lognormal stochastic volatility model in which Hull
and White (1987) showed that call prices are the average of the call prices
over the mixture. This extends to risk-neutral valuation with any mixing
distributions, because

i=1

J J
g (K : ijFj(s)) = ijg (K : Fj(s)) -
j=1

3 Estimating and bounding implied probability
distributions

We first consider the case where call prices are arbitrage-free and hence con-
vex, but where there are only a discrete number of strikes. Let ¢; = ¢(Kj),
i = 0,...,n, denote European call option prices on the same underly-
ing asset with the same expiration date T', but different strike prices K;,
where K; < K;i+; and Ky = 0. The price of the zero price call is set
equal to the current price of the stock, S;. (If there are dividends then
¢(0) = e=9T-% S, where § is the payout rate through the expiration date).
Assuming arbitrage-free valuation, the remaining call prices must satisfy,
¢; = g(K; : F), for some unknown cdf F'.
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Figure2
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The estimation problem is to identify the F' that generates the call prices
(co, ..., cn). Additional structure can be imposed by introducing restrictions
on the set of allowed cdfs. When F is restricted to be lognormal with
unknown variance the problem reduces to estimating the volatility smile.
Less structure is imposed by Shimko (1993), who essentially estimates F
and its associated density from a smoothed quadratic fit to the implied
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volatilities. The method in Rubinstein (1994) is still more general as it
essentially finds the risk-neutral density that is (least squares) closest to
the lognormal density that could have generated call prices.

Consider the set of all cdf’s that are consistent with the observed call
prices, namely,

{F | ¢(K;:F)=cK;),i=0,..,n}.

If there was a continuum of strike prices, this set would consist of a single
F and the implied cdf would be exactly

F(K) = e T Y[de(K)/dK] + 1.
For the discrete strike case, let F‘(Kl) be the analogous difference quotient,

ﬁ(K,L) = er(T_t) C(K'H-l) - C(K'L)
K1 — K;

+1 i=0,..,n—1,

and set F’QKn) =1
These F'(K;) values can be used to bound the set of cdfs that could have

generated call prices. Substitute g(K; : F) for ¢(K;) in the definition of
F(K;) and use

FK) < / N p(s)ds < F(Kis)
;) < s)ds < F(K;
(Kiv1 — K;) Jk; i
to show, R
F(K;_1) < F(K;) < F(K).

This yields upper and lower bounds on F' at each strike price; namely,
F(K;_1) < F(K;) < F(K;).

When the K;s are close together this interpolation provides tight bounds
for the allowed probabilities. When strike prices are far apart the bounds
will be correspondingly large as it is then necessary to interpolate F' over
a large range of unobserved strike values.

Since F is nondecreasing, the F(K;) values can be used to bound the
entire F' function. Upper and lower cdfs are given by the discrete cdfs
with jumps at the K; values. Tighter bounds are given by assuming the
underlying F' is continuous. In this case the upper and lower cdfs are given
by linearly interpolating between the I?‘(K,-) values.

Define an upper cdf by,

Fy(K) = F(K;) + (K — K;) [F (Ksp) = F (K")} ,

K1 - K;
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KiSKSKi+1, i=0,...,n—1,

and a lower cdf by,

Fu(K) = F(Ki_1) + (K — K;_1) [F(Ki) ~ F(Ki_l)] |

K; - K;_1

Ki <K<K; i=1,..n.

These upper and lower cdfs bound the F' that could have generated call
prices, the only restriction being that the underlying cdf is continuous.

The bounds are illustrated in Figure 3. The data is from an example
in Rubinstein (1994, p.781) in which call prices are generated by the Black
Scholes model. For comparison the figure also shows a lognormal cdf. Since
the call prices are generated from the Black Scholes model the lognormal
cdf falls nicely between the bounding cdfs.

Figure 3
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Another illustration, also from Rubinstein (1994, p. 784), is shown in
Figure 4. Call prices are for the S&P500 Index at 11AM on January 2, 1990.
The reference lognormal cdf is now seen to not fall within the bounding
cdfs. The bounding cdfs are consistent with the estimated density function
shown in Rubinstein in that the upper tail is much shorter and the left
tail much longer than lognormal. Market prices imply a cdf with much
greater chance of downward price movements than would be suggested by
a lognormal cdf.



298 Gilbert W. Bassett Jr.

Figure 4
S&P500 Index Options
January 2, 1990; 11AM, 164 Days to Expiration
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Remark 1 The distributions that fall between the upper and lower cdfs do
not all have the same expectation. The allowed risk-neutral cdfs are those
that fall within the bounds and which have their discounted expectation equal
to the current stock price.

3.1 Estimation

Now let g(K; : F) be a model for actual prices that are observed with
error. The error term stands for all the non arbitrage reasons for differences
between the call price and its g value. These reasons include: the bid-ask
spread, nonsynchronous prices, and positive transaction costs.

(It will be assumed that the difference between g and observed option
prices does not depend on K. A more general analysis would permit the
error variance to depend on trading volume, or, what is practically the
same, the moneyness of the option, |S; — K|.)

The presence of the error term means actual prices need not be convex.
Hence, linear interpolation between adjacent strike prices need not yield a
convex function, the resulting implied ” cdf” based on the difference quotient
need not be decreasing, and the implied density and probabilities could be
negative.

Figure 5 shows call prices for the closing S&P500 call on July 13, 1995.
Prices are almost convex; there is slight concavity in the deep in the money
calls. (Note that, unlike the above example with 11AM prices, these closing
prices are likely susceptible to slight departures from convexity on account
of nonsynchronous prices near the close.) Since prices are nearly convex,
the convex hull of observed prices is used for the values of g at the given
strike prices.
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Figure 5
S&P500 September Call
July 13, 1995
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The interest rate and dividend discount factors were estimated using
put-call parity as in Shimko (1993). Bounds based on the convex hull of
call prices are shown in Figure 6. The figure depicts bounding cdfs that are
jumpier than shown in the previous figures, perhaps due to nonsynchronous
closing prices. Similar to the other figures, however, there is a fat left-hand
tail and a large difference from lognormality.

Figure 6
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