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Abstract: Identification of curvature in regression models is an important
aspect of data analysis. Partial residual plots have played a major role.
Recently a new class of plots has been developed. They are called CERES
plots and include partial residual plots as a special case. Implementation
of these plots necessitates modeling the relationships between certain
covariates. If these relationships are linear, a partial residual plot is
obtained. However, if the relationships are nonlinear, the more general
CERES plot is obtained. Generalized additive models (GAM) are another
method for identifying and estimating curvature. Again, implementation
of a GAM requires modeling the relationships between covariates and
the response. Here, we motivate and describe key features of interactive,
graphical methods which construct CERES plots and/or GAMs.
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1 Introduction
Conditional expectation residual plots (CERES plots, see Cook, 1993) and
Generalized Additive Models (GAMs, see Hastie and Tibshirani, 1990) have
been developed in the literature as diagnostic and modeling tools for re-
gression analysis. These methods are designed to detect curvilinear rela-
tionships between selected covariates and the response variate in regression.
When used interactively, these methods can help detect outliers, give in-
formation about possible heteroscedasticity.

In this paper, we outline the basic theory and assumptions underlying
CERES plots and GAMs. Using simulated data, we then illustrate how
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these methods are used and implemented. Both of these methods rely on
the use of scatterplot smoothers. The examples are intended to highlight
the usefulness of an implementation which (1) shows the data and asso-
ciated scatterplot smoothers and (2) has an interactive interface so that
smoothers can be easily changed and results compared.

2 CERES plots and GAMs - a primer
Consider the regression model (given X\ and X2) Y = c*o + gι(Xι) +
92(X2) + 6> where αo is an unknown constant and g\ and #2 are unknown
functions with E{gi(Xi)) = 0 and E{e\Xl, X2) = 0. In general, X\ and X2
may be random vectors, but for the purposes of this paper, X\ and X2 are
random variables. In other words, for the purposes of this paper, there are
two predictor variables.

The idea behind CERES plots (see Cook, 1993) is that if gλ is the
identity function and E{X\\X2) is known, then a CERES plot will display
the function #2- This display will be with error and possible vertical shift.
In practice, E{X\\X2) is unknown, so we estimate it by smoothing the
plot of X\ versus X2, and then estimate g<ι by smoothing the CERES plot
which is obtained by assuming that our estimate of E{X^\X*ι) is correct.
An implementation of CERES plots using the XLISP-STAT software (see
Tierney, 1990) is given in a paper by Wetzel (1996).

GAMs have the additional assumption that e is independent of {X\,X<ι),
and the basic idea is that if we know g\ then E(Y — αo — 9i(Xi)\X2) —
#2(^2)- In practice g\ is unknown, so we use an iterative algorithm to
estimate gi, then g<ι, then gi, etc. An implementation of GAMs is given in
the S-PLUS software.

The theory underlying both CERES plots and GAM is powerful; how-
ever, when used in practice, we need the implementations to be interactive
enough so that we can be critical users. When using the above methods in
exploratory data analysis, we need to be able to look 'behind the scenes'
to, in the CERES case, see the smooth which estimates E{Xτ\X<ι), and in
the GAM case, see the iterative process. In order to critically use these
methods, we must be able to adjust and see the new results quickly. This
need is demonstrated in the next section.

3 The need for interactive methods
In this section, we will look at a few examples which illustrate the need for
interactive methods when using either CERES plots and/or GAM.
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3.1 The influence of the choice of smoother in GAMs

The first example involves randomly generated data with the following
distributions: (1) Xλ ~ iV(0,l), (2) X2\X\ ~ N(4 + .25 * XI, .01), (3)

Figure 1: Estimated additive functions from GAM.

Two Generalized Additive Models were fitted and the summary plots
from S-PLUS are given in Figure 1. The top two plots are from the fit given
by the Splus command gam(y ~ lo(xl) + Io(x2)) and the bottom two
plots from the command gam(y ~ bs(xl) + Io(x2) , bf .maxit=20). Here
lo and bs correspond to a loess fit and b-spline fit, respectively.

The summary plots from S-PLUS show the estimated functions g\ and cj2
as well as the points used to estimate these curves. The horizontal axes have
the predictors X\ and X2, and the vertical axes have what can be thought
of as partial residuals. They are partial residuals, but are weighted in a
non-trivial way. As analysts, we are to know that if the points are closer
to the curve, then the fit will have smaller residual sum of squares.
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Notice that the predicted function of X\ in both cases appears to be
quadratic. In the first GAM, we see a loess curve, and in the second a
b-spline fit. However, the predicted functions for X2 are very different. In
the first case it appears that Y is dependent on X2 quadratically, and in
the second, we see the true logarithmic relationship.

This shows that the choice of smoothers in GAM is very important.
Ideally, a dedicated data analyst would see that in the first GAM, the loess
smooth for X\ is under-fitting for both the small and large values of X\. An
interactive interface should allow them to interactively change the smoother
for X\. An interactive investigation of the 'outlier', when X\ « 3, may also
be informative. In this case, deleting the 'outlier' does not significantly
change the predicted model, while changing the smoother does.
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Figure 2: Estimated E{Wλ\W2) and associated CERES plot.

3.2 Looking at intermediate plots for CERES

As demonstrated in Wetzel (1996), the intermediate step of estimating
E(X\\X2) has a great influence on the resulting prediction. Here, we
generate data similar to Wetzel (1996): (1) W2 ~ Uniform[l,26], (2)
Wι\W2 ~ N(l/W2i .01), (3) Z = Wι + 1/(1 + exp (-W2)). In this example
g2(w2) = 1/(1 + e~W2). A graph of the function g2 after being shifted both
horizontally and vertically, looks exactly like the lower right plot in Figure
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2. The plots in Figure 2 show two choices of smoother used to estimate
J5(Wi|W2) and the associated CERES plot. These plots were obtained us-
ing the XLISP-STAT package and the code developed in Wetzel (1996).
The leftmost plot shows the smooth used to estimate i£(Wi|W2) and the
rightmost plot shows the CERES plot. (W\ and W2 are centered in all
plots.) As analysts, the CERES plot should be smoothed and the resulting
smoother used to estimate #2- Again, the further the points in the CERES
plot are from the smooth, the larger the residual sum of squares for a final
fit.

The plots in Figure 2 show that the choice of smoother has a large effect
of our perception of the amount of noise in the prediction of #2 (W2) Again,
a dedicated data analyst would be able to interactively adjust the smoother
and see that for a coarse smooth for £7(Wi|W2)> the apparent noise in the
prediction of 52(^2) ιs reduced. Although experience has shown that a
coarse smooth for J5(Wi|W2) often results in a more accurate display of p2?

the point here is that the user should easily be able to experiment with
smoothers and parameters. In this case, experimentation allows us to see
that it is not the coarseness of the smooth that makes the second CERES
plot give a more accurate smooth, but instead it is the fact that the coarser
smooth is closer to the truth for small values of W2- In fact, if we estimate
E?(Wi|W2) with a piecewise linear using only two lines, the CERES plot
looks virtually the same as the the lower right plot of Figure 2.

3.3 Influential Points

Imagine that in our first example, we had an error in measurement in the
observation where X\ is largest. This point is already a suspected outlier,
but imagine that instead of a response value of 15.04, a response of 19.04
was recorded. We fit the same GAMs used in section 3.1, and the plots in
Figure 3 are obtained.

The error in measurement actually serves to allow the loess smoother for
Xι to begin to capture the true parabolic relationship between X\ and Y for
positive values of X\. GAM. Notice that although the estimated functions
for the model fit by the Splus command gam(y ~ lo(xl) + Io(x2)) do
not differ much from those in Figure 1, the observations with values of
X2 between 4.2 and 4.6 are fit much better when we have the error in
measurement.

This shows that single points may be highly influential in the estimated
fit as well as the perception of fit.

4 Interactive Methods

The above examples illustrate that there is a need for interactive meth-
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ods which will aid the data analyst in understanding the regression. Such
methods should:

• allow the user to interactively change the smoothers.
• allow the user to investigate the influence of individual points.
• not be too cumbersome for practical use.

Figure 3: Estimated additive functions from GAM.

In Wetzel (1996), such a set of methods was developed for CERES plots.
The estimation of E{X\\X<ι) is displayed and the user may easily change
smoothing parameters, and/or the points used in the calculation. A set of
reasonable defaults were established, but the analyst was presented with
all of the relevant plots. Smoothers can be changed and points deleted and
after a few mouse clicks, all of the plots are updated.

An outline of a similar set of methods for GAM is described below. Since
the GAM procedure is iterative, we need to be able to monitor the process
through all of the iterations. This process is described by the following
algorithm (see Hastie and Tibshirani, 1990).

• initialize: g\ — g\, #2 = ff°-
• cycle: g\ = apply a smoother to the plot of Y — g^~ (-X2) versus XL,

gτ

2 = apply a smoother to the plot of Y — g\{X\) versus X2,
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• continue until g\ and #2 don't change
Interactive methods for GAM should allow the user to see each of the

plots which are smoothed. An analyst's perception of the appropriateness
of these smoothes will allow that analyst to proceed with another iteration.
If the smooth is seen to be inappropriate, a different smoother is chosen,
and then another iteration is performed. Similarly, if a point is deemed an
outlier, the analyst will take appropriate action and continue with another
iteration. The software should keep track of which smoothers were used at
which iteration as well as which points were used. At some point, we need
to 'continue until g\ and #2 don't change.' At this point, the observations
which will be used and the smoothers should be fixed. We have not proven
a result, but it seems clear that the first few steps of the iterative procedure
should have little bearing on convergence results.

In order to illustrate these methods, we return to our first example.
Using Xlisp-Stat and an initialization of g\ = 0 and g® = 0, we obtain the
plots in Figure 4. The ordering of these plots is left to right, and top to
bottom. The curves shown in the plots are the smoothes used to estimate
g\ and g\. The indicated numerical argument for lowess is the value used to
call the lowess function in Xlisp-Stat. No weighting is used in this example.
For example, the plot in the upper right hand corner shows Y — Y — g\(X\)
versus X21 where the smooth shown in the upper left plot is used for g\.

We notice that the lowess smooth used in the first iteration under es-
timates at the extremes, so in the second iteration we use a 2nd degree
polynomial and obtain better estimates for both g\ and #2-

The code for such methods is currently underway; the first plot in Figure
4 was created with a command from the keyboard, but the other five plots
in Figure 4 were created with a series of mouse clicks. A final mouse click
had the iteration continue until a crude convergence criteria was met. The
final fits do not appear significantly different from the third row of plots in
Figure 4.

5 Discussion
Finally, it should be clear that there is a connection between CERES plots
and GAMs. Both find nonlinear relationships between the response and
predictors. CERES plots assume that all of the predictors act linearly
except for one! GAMs add additional assumptions to the errors. Berk
and Booth (1995) compare CERES and GAMS to each other as well as
other methods. Also, since at each stage in the iterative process GAMs
use partial residual plots, and partial residual plots assume that the re-
lationship between predictors is at most linear, strong nonlinear relation-
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ships between the predictors may results in poor GAM performance. An
approach to combining these two ideas is being investigated (see Croos-
Dabrera, 1994). Implementation of these methods should allow interaction
as described above.
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Figure 4: Sequential Partial Residual Plots.
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