PARAMETRIZING DOUBLY STOCHASTIC MEASURES

By Richard A. Vitale* University of Connecticut

Doubly stochastic measures can be identified with the trace of a pair of (Lebesgue) measure preserving maps of the unit interval to itself.

It has been of traditional interest in probability theory to produce a random vector (or metric space element), which has a given distribution and is defined on a standard space, such as [0,1] endowed with Lebesgue measure. In a classic work, Lévy (1937, section 23) used an approach based on conditioning. For the purpose of the Skorokhod representation, Billingsley (1971, Theorem 3.2) considered the case of random elements of a general metric space. Whitt (1976, Lemma 2.7) considered general measures on \mathbb{R}^n and employed a Borel isomorphism to treat questions of extremal correlation and minimal variance. Rüschendorf (1983) used a similar approach to consider a general class of optimization problems.

In this note, we revisit the question of representing a random element in the special case of a doubly stochastic measure on the unit square. First we show the existence of a random element (using essentially Whitt's approach) with a refinement to a *canonical* representation. Then we turn to criteria for extremality of a doubly stochastic measure. Our aim is to provide the reader who is interested in extremality with different settings.

This paper was invited for presentation at the AMS-IMS-SIAM Joint Summer Research Conference on Distributions with Fixed Marginals, Doubly-Stochastic Measures, and Markov Operators, July 31–August 6, 1993. At the Conference, the author learned of *A Representation for Doubly Stochastic Measures* by W. F. Darsow and E. T. Olsen. Subsequently, a revision (Darsow and Olsen, 1994) was provided to the author. Interested readers are directed to this work for variant arguments and related topics, including copulas.

^{*} Supported in part by ONR Grant N00014-90-J-1641 and NSF Grant DMS-9002655.

AMS 1991 Subject Classification: Primary 62E10; Secondary 60E99.

Key words and phrases: Doubly stochastic measures. .

1. Doubly Stochastic Measures via Pairs of Measure-Preserving Mappings. A doubly stochastic measure is a Borel measure on the square with Lebesgue marginals. We use I and $I \times I$ for the unit interval and unit square respectively. \mathcal{B} and $\mathcal{B} \times \mathcal{B}$ will denote their respective Borel σ -algebras (associated Lebesgue measures m and $m \times m$). U will stand for a random variable uniformly distributed on [0,1].

DEFINITION. A Borel measurable function $\sigma: I \to I$ that satisfies $m(\sigma^{-1}(B)) = m(B)$ for each $B \in \mathcal{B}$ is measure-preserving (m.p.). The class of such maps will be denoted Σ .

DEFINITION. A doubly stochastic measure μ on $\mathcal{B} \times \mathcal{B}$ is realized by a pair (σ, τ) of elements of Σ if for any Borel subset B^2 of the square $\mu(B^2) = m(\sigma, \tau)^{-1}(B^2)$.

We can now assert the following representation.

THEOREM 1. (i) If $\sigma, \tau \in \Sigma$, then the measure μ on $\mathcal{B} \times \mathcal{B}$ defined by $\mu(\mathcal{B}^2) = m((\sigma, \tau)^{-1}(\mathcal{B}^2))$ is doubly stochastic. (ii) Conversely, every doubly stochastic measure μ can be realized as a pair $(\sigma, \tau) \in \Sigma \times \Sigma$. (iii) In (ii), one may assume that $(\sigma, \tau)^{-1}(\mathcal{B} \times \mathcal{B}) = \mathcal{B}$. In this case, we say that (σ, τ) is canonical.

Before proceeding to the proof, we collect some well-known results.

THEOREM 2. (Kuratowski, see Royden (1988)). Every uncountable, complete, separable metric space S is Borel equivalent to I, that is, there is a 1-1 map $\varphi: S \to I$ such that both φ and φ^{-1} are Borel measurable.

PROPOSITION 1. (e.g. Vitale, 1991). Let X be a random variable with continuous distribution function F. Then U = F(X) is uniformly distributed on [0,1] and $X \stackrel{\text{a.s.}}{=} F^{-1}F(X)$, where $F^{-1}(u) = \inf\{x | u \leq F(x)\}$ is left-continuous.

PROOF OF THEOREM 1. For (i), note that if $B^2 = B^1 \times I$, $B^1 \in \mathcal{B}$, then $\mu(B^2) = m(\sigma^{-1}(B^1)) = m(B^1)$ and likewise for the other marginal.

For (ii), recall the standard fact that there exists a pair of random variables (X,Y) with joint distribution μ . From Theorem 2, there is a Borel equivalence $\varphi:I\times I\to I$. Set $W=\varphi(X,Y)$, and let F be its distribution function. F has no jumps since this would imply an atom in the distribution of (X,Y). By Proposition 1, U=F(W) is uniformly distributed and $W\stackrel{\text{a.s.}}{=} F^{-1}(U)$. It follows that $(X,Y)\stackrel{\text{a.s.}}{=} \varphi^{-1}F^{-1}(U)$, and we can take $(\sigma,\tau)=\varphi^{-1}F^{-1}:I\to I\times I$.

For the final assertion note that by Theorem 2 $(\varphi^{-1}F^{-1})^{-1}(\mathcal{B} \times \mathcal{B}) = (F^{-1})^{-1}\varphi(\mathcal{B} \times \mathcal{B}) = (F^{-1})^{-1}(\mathcal{B})$. The last expression is equal to \mathcal{B} since $(F^{-1})^{-1}([0,F^{-1}(u)]) = [0,u]$ for every $u \in I$.

2. Extreme Doubly Stochastic Measures. The class of doubly stochastic measures is a convex sub-class of the Borel measures on $\mathcal{B} \times \mathcal{B}$. The Douglas-Lindenstrauss condition for extreme points (Douglas (1964); Lindenstrauss (1965) takes the following form.

THEOREM 3. The doubly stochastic measure realized by $(\sigma, \tau) \in \Sigma \times \Sigma$ is extreme iff given any Borel-measurable $f: I \times I \to R$ such that $E|f[\sigma(U), \tau(U)]| < \infty$ and $\epsilon > 0$, there are functions $g, h: I \to R$ such that

$$E|f[(\sigma,\tau)(U)] - g[\sigma(U)] - h[\tau(U)]| < \epsilon. \tag{1}$$

Approximation by simple functions leads to the following variant, which is more convenient to apply in some cases (see the following example).

THEOREM 4. The measure realized by (σ, τ) is extreme iff for every $A \in \sigma^{-1}\mathcal{B}$, $B \in \tau^{-1}\mathcal{B}$, and $\epsilon > 0$ there are measurable partitions $A_1, A_2, A_3, \dots, A_m \in \sigma^{-1}\mathcal{B}$ and $B_1, B_2, B_3, \dots, B_n \in \tau^{-1}\mathcal{B}$ and constants $a_i, 1 \leq i \leq m$ and $b_j, 1 \leq j \leq n$ such that

$$E|1_{A\cap B}(U) - \sum_{i=1}^{m} a_i 1_{A_i}(U) - \sum_{j=1}^{n} b_j 1_{B_j}(U)| < \epsilon.$$
 (2)

For the sufficiency part, the sets A and B can be specified to be of the form $(-\infty, t]$.

EXAMPLE. Consider the doubly stochastic measure which places mass 1/3 uniformly on each of the 3 line segments:

$$(u,u), \quad 1/3 \le u \le 1$$

 $(u,1/2(u-1/3)), \quad 1/3 \le u \le 1$
 $(u,2u+1/3)), \quad 0 \le u \le 1/3.$

This can be parametrized by the pair (σ, τ) , where

$$\sigma(u) = \begin{cases} 2u + 1/3, & 0 \le u < 1/3 \\ u - 1/3, & 1/3 \le u < 2/3 \\ 2u - 1, & 2/3 \le u \le 1 \end{cases}$$

and

$$\tau(u) = \begin{cases} u, & 0 \le u < 1/3 \\ 2u - 1/3, & 1/3 \le u < 2/3 \\ 2u - 1, & 2/3 \le u \le 1 \end{cases}.$$

Note that for any a, b, the set $[\sigma \le a] \cap [\tau \le b]$ is (modulo a null set) a union of sets among $[0, c_1], [1/3, c_2], [2/3, c_3]$, where $0 \le c_1 \le 1/3, 1/3 \le c_2 \le 2/3$ and $2/3 \le c_3 \le 1$. It is enough to observe then that $1_{[0,c_1]} = 1_{[\tau \le c_1]}, 1_{[1/3,c_2]} = 1_{[\sigma \le c_2 - 1/3]}$, and $1_{[2/3,c_3]} = 1_{[1/3 \le \tau \le 2c_3 - 1]} - 1_{[\sigma \le c_3 - 2/3]}$, which implies that the associated doubly stochastic measure is extreme (cf. Shiflett (1972)).

DEFINITION. If \mathcal{B}_1 and \mathcal{B}_2 are two sub σ -algebras of \mathcal{B} , then we write $\mathcal{B}_1 \approx \mathcal{B}_2$ if they differ only by null sets, i.e., for any $B_1 \in \mathcal{B}_1$ $(B_2 \in \mathcal{B}_2)$, there is a $B_2 \in \mathcal{B}_2$ $(B_1 \in \mathcal{B}_1)$ such that $m(B_1 \Delta B_2) = 0$.

Theorem 4 has the following immediate consequence.

COROLLARY 1. The property of being extreme for (σ, τ) depends only on $\sigma^{-1}\mathcal{B}$ and $\tau^{-1}\mathcal{B}$. That is, if for any other pair $(\tilde{\sigma}, \tilde{\tau})$,

$$\tilde{\sigma}^{-1}\mathcal{B} \approx \sigma^{-1}\mathcal{B}$$
 and $\tilde{\tau}^{-1}\mathcal{B} \approx \tau^{-1}\mathcal{B}$.

then either both pairs $(\sigma, \tau), (\tilde{\sigma}, \tilde{\tau})$ are extreme or neither is.

One might ask from the Corollary whether every pair of candidate sub σ -algebras can be realized (modulo \approx) as $\sigma^{-1}\mathcal{B}$ and $\tau^{-1}\mathcal{B}$. The next result implies that this is the case.

PROPOSITION 2. Given a non-atomic sub σ -algebra $\mathcal{B}_1 \subseteq \mathcal{B}$, there is $\sigma \in \Sigma$ such that $\sigma^{-1}\mathcal{B} \approx \mathcal{B}_1$.

PROOF. Let D_1, D_2, \cdots be the respective dyadic subintervals of I, i.e., $D_1 = [0, 1/2], D_2 = [0, 1/4] \cup [1/2, 3/4], \cdots$. Their indicator functions are stochastically independent, symmetric Bernoulli random variables. Define a random variable U on I by

$$U = \sum_{i=1}^{\infty} \frac{1}{2^i} 1_{D_i}(\cdot). \tag{3}$$

Suppose in addition that D_0 is any other Borel subset of I. By the Carathéodory isomorphism theorem for measure algebras (Royden (1988) p. 399), there is a system of subsets B_0, B_1, \cdots of \mathcal{B}_1 such that

$$m(B_i) = m(D_i) \tag{4}$$

for all i and

$$m(B_i \cap B_j) = m(D_i \cap D_j) \tag{5}$$

for all $i \neq j$. Define the random variable $\sigma: I \to I$ by

$$\sigma = \sum_{i=1}^{\infty} \frac{1}{2^i} 1_{B_i}(\cdot). \tag{6}$$

We claim that

$$\sigma^{-1}(\mathcal{B}) \approx \mathcal{B}_1. \tag{7}$$

Note that $\sigma^{-1}(\mathcal{B})$ is the σ -algebra generated by B_1, B_2, \cdots . It is enough to show "inclusion" from the right in (7), so consider $B_0 \in \mathcal{B}_1$ (by the isomorphism theorem, we can assume that such an arbitrary choice is the image of some D_0 under the isomorphism). Now it is standard that $m(D_0\Delta \liminf_{n\to\infty} D_n^*) = 0$ for a sequence D_n^* in the algebra generated by $\{D_1, D_2, \cdots\}$. By the isomorphism, i.e., (4) and (5), it must be that $m(B_0\Delta \liminf_{n\to\infty} B_n^*) = 0$ for the image sequence B_n^* in the algebra generated by $\{B_1, B_2, \cdots\}$ and hence in $\sigma^{-1}(\mathcal{B})$.

3. A Second Characterization. We turn to another way of characterizing extreme (equivalently, non-extreme) doubly stochastic measures.

DEFINITION. A random variable valued in I is of class BD (Bounded Density) if it has a bounded density with respect to Lebesgue measure. In particular, a uniform random variable is of class BD.

THEOREM 5. Let (σ, τ) canonically represent a doubly stochastic measure μ . Then μ is not extreme iff there is a nonuniform BD random variable X such that both σX and τX are uniform.

PROOF. (i): Suppose the existence of such an X. Let μ_1 be the bivariate measure induced on the square by $(\sigma,\tau)X$. For any Borel subset B^2 of the square, $\mu_1(B^2) = \Pr(X \in (\sigma,\tau)^{-1}B^2) \le c \cdot m((\sigma,\tau)^{-1}B^2) = c \cdot \mu(B^2)$. Here c>1 is any number which exceeds the essential supremum of the density of X. Note that $\mu_1 \neq \mu$ since there is some Borel B in the interval such that $\Pr(X \in B) \neq \Pr(U \in B)$. By the canonical nature of (σ,τ) , we have $B = (\sigma,\tau)^{-1}B^2$ for some B^2 , which implies that $\mu_1(B^2) \neq \mu(B^2)$. Now define $\mu_2 = (1-1/c)^{-1}(\mu-(1/c)\mu_1)$. We have $\mu = (1/c)\mu_1 + (1-1/c)\mu_2$, which exhibits μ as non-extreme.

(ii): If μ is not extreme, $\mu = \theta \mu_1 + (1 - \theta)\mu_2$, $\mu_1 \neq \mu$, then by the Radon-Nikodym theorem, there is a bounded density f, not identically unity, such

that for any Borel subset B^2 of the square

$$\mu_1(B^2) = \int_{B^2} f(x, y) \mu(dx, dy),$$

or, using that (σ, τ) realizes μ ,

$$\mu_1(B^2) = Ef(\sigma U, \tau U) 1_{B^2}(\sigma U, \tau U) = Ef(\sigma U, \tau U) f(\sigma U, \tau U) 1_{(\sigma, \tau)^{-1} B^2}(U).$$
(8)

Note that

$$Ef(\sigma U, \tau U)1_B(U)$$

defines a nonuniform probability measure on Borel subsets B of the interval. If X has this probability measure, then

$$Pr(X \in B) = E1(X \in B) = Ef(\sigma U, \tau U)1_B(U),$$

and (8) may be rewritten

$$\mu_1(B^2) = \Pr((\sigma X, \tau X) \in B^2).$$

Since μ_1 is doubly stochastic, it follows that σX and τX are uniform.

REMARK. We should emphasize that this result does not hold if the boundedness of the density of X is relaxed. This can be seen in an example of Losert (1982, p. 391).

References

- BILLINGSLEY, P. (1971). Weak Convergence of Measures: Applications in Probability. Regional Conference Series in Applied Mathematics No. 5, SIAM, Philadelphia.
- DARSOW, W. F. and OLSEN, E. T. (1994). A representation for doubly stochastic measures. *IIT Research Report*, Illinois Institute of Technology.
- Douglas, R. G. (1964). On extremal measures and subspace density. *Michigan Math. J.* 11, 243–246.
- LÉVY, P. (1937). Théorie de l'Addition des Variables Aleatoires. Gauthier-Villars, Paris.
- LINDENSTRAUSS, J. (1965). A remark on extreme doubly stochastic measures. Amer. Math. Monthly 72, 379–382.

- Losert, V. (1982). Counter-examples to some conjectures about doubly stochastic measures. *Pacific J. Math.* **99**, 387–397.
- ROYDEN, H. L. (1988). Real Analysis (third edition), Macmillan, New York.
- RÜSCHENDORF, L. (1983). Solution of a statistical optimization problem by rearrangement methods. *Metrika* 30, 55-61.
- SHIFLETT, R. C. (1972). Extreme Markov operators and the orbits of Ryff. Pacific J. Math. 40, 201–206.
- VITALE, R. A. (1991). Approximation by mutually completely dependent processes. J. Approx. Theory 66, 225–228.
- WHITT, W. (1976). Bivariate distributions with given marginals. *Ann. Statist.* 4, 1280–1289.

DEPARTMENT OF STATISTICS
BOX U-120
UNIVERSITY OF CONNECTICUT
STORRS, CT 06269-3120
rvitale@uconnvm.uconn.edu