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Let Fi(i = 1,..., k) be given univariate distributions and Π be the set of k-
variate distributions having marginals Fi. In this paper the extremal and quasi-
extremal multivariate distributions having the given marginals Fi are defined
and their properties are examined. Since the set Π is convex, all mixtures of
extremal distributions have the same marginals. Furthermore, the correlation
matrices of extremal distributions are extremal in the set of correlation matrices,
and there exists a one-to-one correspondence between the extremal distributions
and the extremal correlation matrices. For a given correlation matrix R, its
decomposition by extremal correlation matrices is proposed as an alternative
model to factor analysis. The methods are compared and the conditions of
their coincidence are indicated. All results obtained for the case of extremal
distributions are generalised to quasi-extremal distributions.

1. Introduction. Let a set of univariate distribution functions F{ (i =
l,...,fc) be given. We are interested in the set H(Fι,.. ,,Fk) — Π of all
A -variate distributions having the marginals F{.

In the case k = 2 the set Π has a minimal and a maximal element - the
so-called Frechet bounds (see Hoeffding (1940) and Frechet (1951)). If k > 2,
then the maximal element (in the sense of stochastic ordering) of the set Π
always exists (see Feron (1956), Dall'Aglio (1972), Kemp (1973), Ruiz-Rivas
(1979), Cuadras (1981), Tiit (1984)). In this paper some properties of the
maximal distribution will be presented (see Section 2). In general, a smallest
element of the set Π does not exist (see Feron (1956), Dall'Aglio (1960), Ruiz-
Rivas (1979), Tiit (1984), Kotz and Tiit (1992)). Some special cases in which a
minimal distribution does exist, are indicated in the literature (see Dall'Aglio
(1960) and (1991), Rϋschendorf (1991)).
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For each set of marginal distributions i<\,.. ,,Fk there exist 2k~λ distri-
butions having some special properties that allow one to say that they are
extremal (see Tiit (1984), (1986), (1992), Kotz and Tiit, (1992)). In this pa-
per the definition and analytical rule for the construction of these extremal
distributions for given marginals F{ (i = 1,..., k) is introduced (see Section 3).
The rule involves k-dimensional copulas (see Sklar (1959), Schweizer (1991)),
but in our paper another formalization will be used. Some properties of the
extremal distributions will also be considered in the same Section 3.

The set of extremal distributions can be expanded by introducing the
quasi-extremal distributions (see Tiit (1986), Tiit and Thetloff (1994)), i.e.
distributions, having several independent uni- or multivariate marginals which
are extremal. The definition and some properties of quasi-extremal distribu-
tions will be given in Section 4.

Let E(JPI, . . . , Fk) = E and Q(2*i,..., Fk) — Q be the sets of extremal and
quasi-extremal distributions having the given marginals. Then the following
obvious inclusions hold:

E(F1,...,Fk)cQ(F1,...,Fk)cτi(F1,...,Fk).

Since the set Π is closed under convex combinations (see Kellerer (1964),
Tiit (1984) etc.), it is of interest to investigate properties of mixtures of ex-
tremal or quasi-extremal distributions having the given marginals. These
mixtures and their corresponding convex combinations of extremal and quasi-
extremal correlation matrices will be considered in Section 5. In the same sec-
tion, the one-to-one correspondence between the extremal (or quasi-extremal)
distributions and extremal (or, correspondingly, quasi-extremal) correlation
matrices will be deduced. The latter connection seems to have useful applica-
tions in multivariate statistical analysis.

Traditionally, the aim of building multivariate statistical models is to get
an approximation of a function of exploratory variables for the given depen-
dent variable. Often, this function is considered to be linear. In several cases,
instead of the model on the level of variables, an alternative model on the level
of distributions can be introduced. The latter model is obtained by approx-
imating the given multivariate distribution by a convex combination of some
so-called explanatory distributions. One possibility for these explanatory dis-
tributions is the set of extremal distributions having the same marginals (see
Tiit, Thetloff (1994)). Since the multivariate extremal distributions are sin-
gular, i.e. equivalent to univariate distributions (which are either continuous
or discrete, depending on the character of the given marginals), the exploita-
tion of extremal distributions is especially effective in questions concerning the
reduction of dimensionality.
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In Section 6 the convex-extremal decomposition of a, correlation matrix
will be introduced as a methodological alternative to factor analysis (see Tiit
and Thetloff (1994)). The similarities and differences between the factor de-
composition (which forms the mathematical basis for factor and component
analysis) and the convex-extremal decomposition are considered.

2. Maximal and Minimal Distributions Having Given Marginals.
In the bivariate case Hoeffding (see Hoeffding, (1940)) and Frechet (see Frechet
(1951)) determined the maximal and minimal distributions F+ and F~ having
the given marginals F\,F2,

ux2) = mm(F1(x1),F2(x2)), (1)

and

F-(xux2) = max(0, F1(x1) + F2(x2) - 1). (2)

The distributions F+ and F~ are the so-called Frechet bounds (see Frechet
(1957), Dall'Aglio (1991), Kotz and Tiit (1992)).

In the case of bivariate distributions minimality and maximality follow
from the stochastic ordering

F~ <F < JF+, (3)

where F is an arbitrary distribution from the set Π(i<i, F2), The same ordering
(3) holds for several functionals depending on the bivariate distribution F. The
most important of these is the linear correlation coefficient, which satisfies

r+ < r < r~, (4)

as proved by Frechet (see Frechet (1951)).

The definition (1) of the maximal distribution F+ can easily be general-
ized to any number k of marginals.

DEFINITION 1. Let F{ be given univariate distributions (i = 1,...,Λ).

Then the k-variate distribution F +

? defined by

F+(xu...,xk) = min Fi(xi) (5)
l<i<k

is said to be the maximal k-variate distribution having the marginals F\,..., F&.

The expression (5) is an immediate generalization of the expression (1).
The maximal distribution belongs to the set Π and is its maximum in the
sense of stochastic ordering, i.e.,

F+ > F, (6)
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for any F in U. The maximal distribution F+ has the following well-known

properties (see, for instance, Tiit (1986), (1992) and Rϋschendorf (1991)).

1°. F+ is singular: its support lies on a curve in Rk.

2°. When all marginal distributions are identical and have support on [0, 1],

the support of F+ lies on the main diagonal of the A:-dimensional unit

cube.

3°. The curve supporting the maximal distribution is monotonically non-

decreasing in each coordinate.

4°. All g-variate marginal distributions (1 < q < k) of F+ are maximal.

5°. F+ is unique.

One important property of the maximal distribution is expressed in the

following theorem:

THEOREM 1. The multivariate maximal distribution F+ is uniquely de-

fined by its bivariate marginals Fij(i,j = 1, . . . , fc, i φ j).

PROOF. The proof for the case k = 3 is due to Dall-Aglio (1960). The

extension to higher dimensions is straightforward and well-known.

Theorem 1 has the following consequences:

COROLLARY 1. A k-variate distribution having the given univariate marginal

distributions F\,..., Fk, is maximal, iff all its bivariate marginals are maximal

(in the sense of Hoeffding-Frechet).

DEFINITION 2. Let i*i,. . ., Fk be given univariate distributions of the sec-

ond order (all variances exist). The correlation matrix ϋ + , consisting of maxi-

mal (in the sense of inequality (4)) correlation coefficients rf = r+(Fi, Fj) (i —

1,. . . , k — 1, j = i , . . . , k) is said to be maximal.

COROLLARY 2. The k-variate distribution, having the given univariate

marginal distributions JF\, . . . , Fk, is maximal, iff its correlation matrix is max-

imal.

The proof of Corollary 2 follows from Corollary 1 and the fact that the

only bivariate distribution with maximal correlation rf- is the maximal bivari-

ate distribution.

From Corollary 2 and the defining formula (1) the following simple con-

clusion follows:

COROLLARY 3. If all given marginals F\,..., Fk are of second order and

identical, then all elements of the maximal correlation matrix are equal to one.
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3. Extremal Multivariate Distributions with given Marginals.
The concept of extremal distributions forms a generalization of the concept of
maximal distributions. The extremal distributions exist for all (finite) sets of
given marginals, no matter if they are equal or non-equal, continuous, discrete
or mixed. This concept depends essentially on the partition of the index-set.

DEFINITION 3. Let 1° = {1,..., k} be a given index-set, and / = {zΊ,..., iq}
an arbitrary subset of 1°, satisfying the condition

1 € / . (7)

Let Ic = 1° \ I = {jfΊ,.. .,j s}, where s = k - q. Then we say that the pair
(7,/c) defines a partition of the index-set 1°.

We now make the following

DEFINITION 4. Let F\,...,Fk be given univariate distributions, and let
(/, J c ) be a given partition of the index-set {1,.. .,&}. Then the distribution
FI}I°, defined via

FIJC(xu ...,xk) = max(0, (min Fi(x{) + min FJ(XJ) - 1)), (8)
%ei jeic

is said to be extremal.

The correctness of Definition 4 is a consequence of

THEOREM 2. The function F1'1*, defined by the formula (8), is a k-variate
distribution function belonging to the set Π.

PROOF. A. We first prove that FIjI° is a ά-variate distribution function.

1°. _F7'/C is a function of k real arguments x\,..., x^.

2°. From Definition 1 it follows that min2 e / Fi(x{) is a distribution function,
belonging to the set Π(i^ ),i G /, and similarly for minĵ /c FJ(XJ). Both
of them are singular (see property 1° of a maximal distribution) and hence
equivalent to a univariate distribution function.

3°. From formula (2) it follows that if min^/i^ and minĵ /c Fj are singu-
lar distribution functions, then FIiI°, defined by the formula (8), is a
distribution function, as well.

B. From the construction it follows that the distribution FIyIC has the
given marginals F{(i = 1,..., k), hence belongs to the set Π.

The number of extremal distributions defined by the formula (8) is equal
to the number of partitions of the index-set that satisfy the condition (7).
Assuming that the trivial partition (/°,0), defining the maximal distribution,
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belongs to the set of all partitions, we see that the number of such partitions

is 2k~1, whence the cardinality of the set E(JF\, . . . , Fk) is also 2/c~1.

Extremal distributions have several properties that are quite close to

those of maximal distributions (see Tiit (1992), Tiit (1994)).

1°. Any extremal distribution is singular. Its support lies on a curve in Rk.

2°. In the special case, when all marginal distributions are symmetric, iden-

tical and have support in [0, 1], the support of each extremal distribution

lies on one of the diagonals of the fc-dimensional unit cube.

3°. The support of every extremal distribution FIjIC is a curve in Rk which is

monotonic, non-decreasing in coordinates £ i , . . . , # g and non-increasing

in the rest.

4°. Any multivariate marginal distribution FJ of the extremal distribution

F1'1*, defined by an index-set J = {#i, . . . , #*} is maximal, if J C I or

Jc/C.

5°. Bivariate marginals F{j of the extremal distribution F / j / c are minimal if

i £ I and j £ Ic or if i £ Ic and j £ /.

6°. If all given marginals are of the second order (that means, all variances

exist), then the correlation matrix R1'10 = R(FIiIC) of the extremal dis-

tribution FI}I° is defined by its elements in the following way:

ί rt^ if « G / and j £ / or i £ / c and j £ J c ,
rif = 1 (9)

[ r~, if i £ / and j £ Γ or i £ Ic and j £ /,

where rf and rj are, respectively, the maximal and minimal correlation

coefficients of the marginals i^ , Fj {i,j= 1, . . . , &), see the formula (5).

DEFINITION 5. A correlation matrix consisting of maximal and minimal

correlations only is said to be an extremal correlation matrix.

From Definition 5 and property 6° the following is immediate:

COROLLARY 4. The correlation matrix of an extremal distribution is ex-

tremal

We will denote the set of all extremal correlation matrices, defined by the

marginals F i , . . . , i^, by the symbol R / ( ί i , . . . , J^). If all marginal distribu-

tions F{ (i = 1, . . . , k) are equal and symmetric, then the extremal correlation

matrices consist solely of ones and minus ones. In this case the extremal cor-

relation matrices depend only on the partition (/,/ c ), and we will denote this

set by the symbol R/. AS regards the connection between the extremal dis-

tributions and extremal correlation matrices, we have the following theorem

(see Tiit (1986)):
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THEOREM 3. Let the univariate distributions F χ , . . . , i ^ be given. Then
the set of extremal distributions E(Fi, . . . , i7^) and the set of extremal corre-
lation matrices R ^ F i , . . . , Fk) are in one-to-one correspondence.

PROOF. From Corollary 4 the correspondence E =Φ- R/ follows immedi-
ately.

To establish the opposite correspondence, we show that a given extremal
correlation matrix R* uniquely defines a partition (/,/c) of the index-set 1°.
For, given the extremal correlation matrix R* = (r^ ), it is easy to recover the
partition (/, Ic) in the following way:

i e /, if rjt. > 0, ie Ic, if rj f < 0 (i = 1,..., Jfe).

Since no element of the extremal correlation matrix can be equal to zero,
the definition of the partition (/, /c) is unique. Using the partition (/, Ic)
the distribution FIyI° can be defined in the standard way with the aid of the
formula (8).

The number of different extremal correlation matrices RI}I° is naturally
equal to the number of extremal distributions, hence 2k~1. From this it follows
that the number of different correlation matrices of order k consisting of ones
and minus ones, hence having minimal rank, is equal to 2h~λ as well.

4. Quasi-Extremal Multivariate Distributions. To enlarge the
set E of extremal distributions having given univariate marginal distributions
JF\, . . . , Fk, we have to use more complicated partitions of the initial index-set
1°.

D E F I N I T I O N 6. Let 1° be the index-set {1 , . . . , & } . We say that ( i i , . . . , £ * ) =

L is a t-partition (1 < t < k) of the index-set 1° if the subsets Lj =
{i{,..., iqΛ(f = 1,..., t) of 1° are non-overlapping and fulfill the following
conditions:

i f < i f , i f / i < / 2 ( / i = l , , . . , / 2 - l , / 2 = 2, . . . , ί ) (10)

and

U L< = I0

ί=ι

Naturally, the cardinalities qj of the subsets Lf satisfy the condition
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The quasi-extremal multivariate distribution corresponding to a ̂ -partition
L is defined in the following way:

1°. All ^/-variate marginals, corresponding to subsets Lf of indices (/ =
1,...,/), are extremal.

2°. The #/-variate marginals, corresponding to different subsets Lf(f =
1,.. Λ) are independent.

For the precise formulation of this concept we need the definition of a
t-double partition of the initial index-set 1°.

DEFINITION 7. Let L be a t-partition of the index-set 1°. We say that

(X, J) is a t-double partition of the index-set 1° if, for every subset Lf, there is

defined a two-partition (J/, Jcj) so that the subsets Jj = ( j / , . . . , j/^) and Jj =

(/(,..., l{) of Lf are non-overlapping and satisfy the following conditions:

j{ = i(, (11)

It is easy to see that condition (11) generalizes condition (7) to the case
of a ^-partition of the initial subset Jo.

DEFINITION 8. Let univariate distributions F\,..., Fk and a t-double par-
tition (X, J) of the index-set 1° be given. Then, the distribution F(L ' J) defined
via

,(mmFi(xi) + rαinjjixj) ^ 1)))^ (12)

is said to be quasi-extremal

Definition (12) is an immediate generalization of definition (8).

We shall use the symbol Q(Fi, . . . , i^) = Q to denote the set of all
quasi-extremal distributions having the marginals Fi , . . . , i ^ The cardinality
of the set Q, which depends on fc, can be calculated (see Tiit (1986), Tiit,
Tammet (1994)) and increases rapidly with k. The correlation matrix of a
quasi-extremal distribution is said to be a quasi-extremal correlation matrix.
The quasi-extremal correlation matrix can be defined immediately by the t-
double partition ( i , J) and the given marginals in the following way.

DEFINITION 9. Let (X,J) be a t-double partition of the given index-set

1°. The correlation matrix i£(L'J) = (rj. ' )̂ is said to be quasi-extremal if it
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is defined element-wise in the following way:

0, if i G Lh and j G Lj2, /i φ /2,

r>7' ' = < rf , if i G J/ and j G Jf or i G Jy and j G J) (/ = 1,..., t)> (13)

r~ , if i G J/ and j G Jy or i G Jf and j G J/ (/ = 1,..., t).

where rf and r~ are the maximal and minimal correlation coefficients for the
given marginals Fi,Fj, respectively.

Definition (13) is an immediate generalization of definition (9) for the
case in which the correlation matrix consists of / independent blocks.

When all the given marginals in the formula (12) are equal and symmet-
ric, all minimal correlation coefficients rj- are equal to - 1 and all maximal
correlation coefficients are equal to 1.

We shall use the symbol R( L ' J )(Fi, . . . , Fk) to denote the set of all quasi-
extremal correlation matrices for the given marginals F\,..., Fk If the marginals
are equal and symmetric, we shall simply write R( L ) J ).

There is a correspondence between quasi-extremal distributions and quasi-
extremal correlation matrices which is similar to the one between extremal
distributions and extremal correlation matrices (see Theorem 3). Specifically,
we have

COROLLARY 5. Let univariate distributions of the second order F i , . . . , Fk
be given. Then the set Q of quasi-extremal distributions and the set R(L ' J)
of quasi-extremal correlation matrices (with the same given marginals) are in
one-to-one correspondence.

The important subclasses of quasi-maximal distributions and quasi-maxi-
mal correlation matrices can be extracted from the classes of quasi-extremal
distributions and quasi-extremal correlation matrices.

DEFINITION 10. Let L be a t-partition of the given index-set 1°. The
distribution FL is said to be quasi-maximal if it is defined via

(

The correlation matrix RL of a quasi-maximal distribution is said to be
quasi-maximal The quasi-maximal correlation matrix can be defined element-
wise by the /-partition L and the given marginal distributions JF\ , . . . , Fk in
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the following way:

Γ 0, if i e Lh and j G LhJt φ / 2 ,
Vij = \ 4. ( M )

r.ΐ if i £ Xf and j £ £/, (/ = 1, . . . , £ ) .

Formula (14) is a special case of formula (13), when all 'negative' subsets

Jj of the parts Lj are empty (/ = 1,.. .,£). In the case of equal marginal

distributions all maximal correlation coefficients equal to one.

We shall use the symbol R L ( F χ , . . . , i^) to denote the set of all quasi-

maximal correlation matrices having the given marginals. If the marginals are

equal, we shall simply write R L .

It is clear that the sets of correlation matrices satisfy

R L c R(L,J) R / c R(L,J)

5. Mixtures of Extremal and Quasi-Extremal Distributions. It
is well-known that the set Π is closed under the formation of mixtures. That is

why the use of mixtures of extremal distributions seems to be quite promising

in solving different multivariate problems.

DEFINITION 11. Let the k-variate distributions G i , . . . , G m and the non-

negative numbers (weights) w\,..., wm such that

be given. Then the distribution G*, defined via

9Gg, (16)

is said to be a mixture of the distributions Gα.

The mixture of fc-variate distributions is, naturally, ft-variate and has the

following useful properties (see Tiit (1986) and Tiit (1992)):

1°. If all components of the mixture have the same marginals, then the mix-

ture has these same marginals as well.

2°. All initial (marginal and mixed) moments Vh of the mixture are expressed

as convex combinations of the same moments of the components and with

the same weights as in the mixture.
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3°. If all components of the mixture have the same marginal distributions
(of the second order), then the correlation matrix of the mixture is the
convex combination of the correlation matrices of the components, where
the weights are again the same as in the mixture.

Using the property 3° for the mixture of extremal (quasi-extremal) dis-
tributions, defined by the formulae (15, 16), we obtain the following:

COROLLARY 6. Let G* be a mixture (16) of extremal (quasi-extremal)
distributions, having the fixed marginal distributions (of the second order)
Fu...JFk,i.e.,let

Gg := F'tJS or Gg := F^^ (g = 1,..., m).

Then the correlation matrix of the mixture G* can be expressed as a convex
combination of the extremal (quasi-extremal) correlation matrices:

. (17)
9=1

The correspondence between the extremal (quasi-extremal) distributions
and the corresponding correlation matrices, established in Theorem 3 and
Corollary 5, remains valid in the case of their mixtures and convex combina-
tions having the same weights.

COROLLARY 7. Let the univariate distributions F\^...,Fk be given and
let i2* be a convex combination (17) of some extremal (quasi-extremal) cor-
relation matrices Rg corresponding to the marginals Fi (i = 1,. ..,&). Tien
the mixture G*, defined by formula (16) using the extremal (quasi-extremal)
distributions corresponding to Rg and the same weights wg, belongs to the set
Π(i<i, . . . , Fk) and has the correlation matrix R*.

6. Convex-Extremal Decomposition and Factor Decomposition
of a Given Correlation Matrix. Formula (17) can also be considered as a
decomposition of the correlation matrix R(G*) in the following sense:

DEFINITION 12. Let R be a correlation matrix of order k > 2, and let R
be a class of correlation matrices of the same order. If there exist non-negative
coefficients wg, fulfilling condition (15), so that the equation

wgRg, (18)
3=1

holds, with
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then we say that the correlation matrix R has a convex decomposition in the
class R, or, briefly, that the matrix R is decomposable in the class R.

Property 3° of the mixture of distributions gives us the key for the inter-
pretation of the convex decomposition: we can regard the initial distribution as
a mixture of distributions, characterized by correlation matrices Rg, in which
the marginal distributions of all components of the mixture are the same. The
weights of the mixture are equal to the coefficients wg of the convex decom-
position (18).

To us it seems to be very appropriate to use as the class R either the
class of extremal correlation matrices R7, the class of quasi-extremal correla-
tion matrices R(L>J), or the class of quasi-maximal matrices RL. The reason
is the fact that distributions having these correlation matrices, i.e. extremal,
quasi-extremal and quasi-maximal distributions, are in some sense the sim-
plest possible ones. This methodology seems particularly fruitful when all
marginals are equal (up to linear transformations) and symmetric. In this
case all elements of the sets R7, R(L'J) and RL depend on the dimension k
only, but do not depend on the marginal distributions. Hence, in this case,
the matrices are in some sense standard.

We shall introduce the term convex-extremal decomposition to indicate
the decomposition (18) when R = R7 or R(L 'J).

The following are some properties of the convex-extremal decomposition
of a correlation matrix (see Tiit (1986)):

1°. If the convex-extremal decomposition of a correlation matrix R exists,
then there exists a decomposition having not more than m = k(k—l)/2+l
terms.

2°. There exist correlation matrices that are not decomposable in the classes
R7 andR(L 'J).

3°. If a correlation matrix R is decomposable in the class R7 or RL, then it
is, evidently, also decomposable in the class R(L 'J).

4°. If all given marginals are equal and symmetric, then every correlation
matrix decomposable in the class R( I?J), is also decomposable in the
class R7.

5°. In general, the decomposition (18) is not unique in the class R(L ' J \

In the following discussion we assume for the sake of simplicity that the
given univariate distributions F{ are of the second order, identical and sym-
metric. In this case all extremal correlation matrices consist solely of ones
and minus ones, and quasi-extremal matrices consist of ones, minus ones and
zeros.
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Our aim is to compare the convex-extremal decomposition with the most

commonly used decomposition of the correlation matrix - the factor decom-

position.

As is well-known, factor analysis uses the decomposition of the given

correlation matrix R of order k by its eigenvectors and eigenvalues:

R = HAH', (19)

where H is the matrix of eigenvectors hg = {h\,..., hg

k), g = 1,..., k, Λ is

the matrix of non-increasingly ordered eigenvalues, Λ = diαg(\χ,..., λ^) and

k is the order of the matrix R. We assume for the sake of simplicity that the

eigenvalues are different, λt φ λj, if i φ j. In factor analysis, instead of the

matrix H, the block of H, consisting of q first columns (q < k), is used.

The convex-extremal decomposition of the correlation matrix has the

form (18), where Rg := RIg. Here the number m of components satisfies the

condition 1 < m < k{k—l)/2-\-l (see property 1° of the convex decomposition).

The factor decomposition of a correlation matrix can be interpreted as

a linear transformation of variables - the initial variables are expressed as

linear combinations of a small number of hypothetical factors having some

good properties, e.g., standardization or orthogonality.

The convex-extremal decomposition of a correlation matrix can be in-

terpreted as a mixture of extremal matrices and from this it follows that the

initial distribution can be expressed as a mixture of extremal distributions,

or - on the level of applications - the population can be expressed as a sum

of subpopulations having the same marginal distributions but a substantially

different dependence structure.

In certain cases the above mentioned decompositions give identical re-

sults. To determine these cases we proceed as follows.

Let A = (αij) and B = (b{j) both be p x g-matrices. We say that they

are orthogonal, if the equation

t=l j = l

holds.

Let R be a correlation matrix and rewrite the factor decomposition (19)

as follows:

k k

R = Σxghgh'g = ΣvgQa9 (20)
£=1 0=1
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where vg - λg/k and the matrix Qg - khgh'g is denned by its elements:

$ = hh\h]. (21)

Concerning this decomposition, the following lemmas hold:

LEMMA 1. Tie coefficients vg of the sum (20) satisfy the condition (15).

PROOF. This follows immediately from the well-known properties of the

eigenvalues of the correlation matrix:

Λ;>0, g ί i = l.

LEMMA 2. Tie matrix Qg (g = 1, . . . , k), defined by the formula (20), has

the following properties:

1°. Qg is positive definite;

9° ΎrΠ — b-

3°. Ifgφf, then Qg and Qf are orthogonal.

PROOF. These facts follow from the definition of the matrices Qg and

from the properties of eigenvectors of a correlation matrix, exhibited in the

following three equations:

k k k

k k

i=l i=\

t
i=l j=l i=ι

LEMMA 3. Tie matrix Qg, defined by the formula (20), is a correlation

matrix if and only if all components of the eigenvector hg have equal absolute

values.

PROOF. A. Let us suppose that | h9- \— maxι<i<k I h{ I a n d that there

exists an index / so that the inequality | b?χ | < | hg \ is valid. Let us use the

following notation: h{2) = l / ^ Σ ί = i ( ^ ) 2 T h e n H2) i s t h e average of the
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squares of the components of the eigenvector hg\ and from the properties of

an average we have the following inequality:

Hence | qg- \ > 1 and Qg cannot be a correlation matrix.

B. Let \ h? \= h for i = l,...,fc, then h = 1/k and | q^ | = 1 for

i = 1,. . . , fc; and from Lemma 2 it follows that in this case Qg is a correlation

matrix.

COROLLARY 8. If all components of an eigenvector h9 of a correlation

matrix R have identical absolute values, then the matrix Q9 defined by the

formula (19) is an extremal correlation matrix. The partition (/,/c) corre-

sponding to Qg is defined in the following way:

f/ îfΛf >0,
{

The following result follows from Lemmas 1 - 3 and Corollary 8:

THEOREM 4. A. Tie factor decomposition of a correlation matrix R is

at the same time the convex-extremal decomposition of the given correlation

matrix R whenever all components of every eigenvector used in the decompo-

sition have, correspondingly, equal absolute values:

I h 9 i \ = h 9 (i= 1 , - . . , * , 9 = 1 , . - . , ? ) .

B. The convex-extremal decomposition of a correlation matrix R is at the

same time its factor decomposition, whenever all extremal correlation matrices

used in the decomposition are orthogonal.

From this it follows that, in this case, the number of components q of the

decomposition cannot be greater than k.

7. Example. Analysing Changes in the Anthropological Struc-
ture of Estonian School Children. In this section a real data-set and real

problem will be discussed.

With the aim of analysing the development of Estonian children's body

structure with age, measurements were made on schoolchildren aged 6 to 18,

both boys and girls. About 150 to 200 children in each age and sex group

were measured. The choice of schools was representative for Estonia. For

every schoolchild the following 12 most informative measurements were used:
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(the number of each variable is given in parentheses): weight (1), height (2),
cervical height (3), foot length (4), upper limb length (5), lower limb length
(6), chest circumference (7), pelvis circumference (8), biacromial breadth (9),
chest breadth (10), chest depth (11), pelvis breadth (12). On the basis of these
data 26 correlation matrices of order 12 were calculated, one for each age-
sex group. Using component or factor analysis in all subpopulations several
principal components/factors can be found, but there is no effective procedure
for establishing and modelling the changes in the factor structures of childen
of different age groups.

Next, the convex decomposition of correlation matrices by quasi-extremal
ones was used. The assumptions used in the study were the following: All an-
thropological measurements have distributions quite close to the normal distri-
bution and the deviations from normality are almost the same - small positive
skewness and very small kurtosis (see Kaarma, 1981). Hence the assumption
about the equality of the distributions (up to a linear transformation) is valid.
As all the correlations between the measured variables were positive, it was
reasonable to use the decomposition by quasi-maximal distributions. In this
case the assumption about symmetry of all marginals is not necessary. The
main advantage of the extremal decomposition over the principal component
decomposition is the existence of the same standard base elements for all cor-
relation matrices to be considered - these are the quasi-maximal correlation
matrices, consisting of ones and zeros only.

In this case the construction of the model of change can be carried out
by analysing the change of the coefficients in the decompositions.

In order to obtain comparable decompositions, several quasi-maximal
correlation matrices, which were common in decompositions of different age-
groups, were chosen.

Let us describe the first step of the approximation used (further approxi-
mations are given in Tiit, Thetloff (1994)). At first the decomposition by three
matrices i?i, consisting of all l's, RQ = / (unit matrix) and i?2, was made.
The last matrix corresponds to the following partition:

L = {{1,7,8}, {2,3,5,6}, {9}, {10}, {11}, {12}}
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/I 0 0 0 0 0 1 1 0 0 0 0\

0 1 1 0 1 1 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0

1 0 0 0 0 0 1 1 0 0 0 0

1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

Vo o o o o o o o o o o i /

In finding the approximations, the standard regression procedures were

used, i.e., the elements of the given correlation matrix were taken as the val-

ues (measurements) of the dependent variable and the elements of extremal

or quasi-extremal correlation matrices as explanatory variables. The model

without constant term was used, and the estimated regression coefficients bg

were taken as weights wg. In order to satisfy the condition (15), the follow-

ing additional transformation was made: Y := Y — X^ Xg := Xg — X^,

(<7 = l , . . . , / ι - l ) . Then Wh = 1 - Σp=i ™g- The solution was acceptable only

if all regression coefficients wg were non-negative.

For example, in the case of the six-year old boys we obtained the following
decomposition:

R = 0.158JRO + 0.613Λi + 0.229#2. (22)

One possible interpretation of the model (22) is the following. On the

basis of their body structure, the population of 6-year-old boys can be divided

into three groups. The first group corresponds to R\ - all body measurements

of the boys in this group are linearly dependent (proportional). Hence the

body structure of all boys in this group is quite similar, but their sizes can be

different. From the decomposition formula (22) it follows, that about 61% of

all boys belong to this group.

The second group, corresponding to i?2, can be characterized by two

sets of proportional measurements - the first consisting of the measurements,
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characterizing the tallness of the boys - height, cervical height, upper and
lower limb lengths; the second consisting of measurements characterizing the
thickness of the boys - weight, chest and pelvis circumference. Typically, the
variables belonging to different sets are uncorrelated (independent). These
measurements are uncorrelated with all other measurements (foot length, bi-
acromial breadth, etc.), as well. Hence the boys who can be either thick or
thin and are characterized as pycnic and leptosomous anthropometrical types
belong to this group. The frequency of 6-year old boys belonging to these
types is about 23%.

The third group corresponds to the unit correlation matrix, where all
body measurements can be considered as uncorrelated. In fact, we can assume
that the correlations between body measurements are rather weak and that
the higher correlations might be situated in random cells of the correlation
matrix. It follows from formula (22) that the percentage of such 6-year old
boys is about 16%.

In a similar fashion, the correlation matrices characterizing the body
structure of boys and girls of all age groups were obtained. As a result, two
3-dimensional time series - one T(B) for boys and the second T(G) for girls,

T(B) = (ή(B),tXB)9ή(B))9 T{G) = $(G),t}(G),1$

were constructed. Here the index i characterizes the age, and the following
general condition,

l ( ϊ = 6,...,18, A = B,G)
3=0

is satisfied.

Analysing the time series £•(•) we see the following trends in the coeffi-
cients:

1°. The rate of the full dependence set, characterized by the correlation ma-
trix R\, i.e., the entirely proportional body types, decreases, for both boys
and girls, about 1.2 to 1.5 per cent per year, the change is statistically
significant, p < 0.05.

2°. The other characteristic subpopulation, described by the correlation ma-
trix i22, i.e., the children belonging to different anthropometrical types,
increases, on average about one per cent per year, whence the change is
strongly significant (p < 0.01).
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Remarks.

A. The advantages of the convex-extremal decomposition are the follow-
ing:

1) The set of elements of the basis (extremal/quasi-extremal correlation ma-
trices and hence distributions) is standard and does not depend on the
concrete sample.

2) The number h of parameters (weights) that one has to estimate is much
less than in the case of principal factor decomposition, where h k factor
loadings must be estimated, h being the number of factors.

3) The mixture of distributions can be interpreted as a mixture of popula-
tions and hence is quite easy to understand.

4) No rotation procedure is needed to improve the solution.

B. The shortcomings of the convex-extremal decomposition are:

1) The level of the best possible approximation is not always 100%.

2) The solution is not always unique.

3) There is no standard software for this procedure.

As regards (1) and (2), we note, that they are more or less typical in
most multivariate models, including factor analysis.
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