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A doubly stochastic matrix is a non-negative function defined on {1,..., m} x
{1,..., TO} such that all row and column sums are 1. A hypermatrix is a non-
negative function defined on a set of the form X = {1,..., m\ }x...x{l,..., mn }.
A hypermatrix is called multiply stochastic if it satisfies a suitably generalized
version of the row and column condition for ordinary doubly stochastic matrices.
Note that this is a double generalization of doubly stochastic matrices: we not
only consider higher dimensions but allow "non-square matrices". Our goal is to
describe extremal multiply stochastic hypermatrices in terms of their support,
in terms of transfer vectors, and as local minima of the entropy function and to
characterize the set of such extremals for a certain class of 3 x 3 x 3 hypermatrices.

1. Introduction. An n X n matrix (mt j) is called doubly stochastic if
πiij > 0 for alH, j = 1,..., n and

n

Σ -t r -1

mi j = 1 lor j = 1 , . . . , n
i=l

and
n

iij = 1 for i = 1 , . . . , n .

A doubly stochastic matrix is called extremal if it is an extremal element
in the set of all doubly stochastic matrices. In other words, a doubly stochastic
matrix is extremal if it cannot be represented as a convex combination of
other doubly stochastic matrices. Garrett Birkhoff (1946) proved the following
characterization of extremal doubly stochastic matrices. It is known that the
theorem was later rediscovered independently by John von Neumann, but he
has not published his proof.
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A doubly stochastic matrix is extremal if and only if it is a permutation
matrix.

In this paper we are concerned with possible generalizations of Birkhoff 's
theorem to higher dimensions. This direction has already been suggested by
Gian-Carlo Rota and L. H. Harper (1971). We will investigate one particu-
lar situation in detail and give some general theorems which bear upon this
question. The proofs of the general theorems can be found in Li, Mikusiήski,
Sherwood, and Taylor (1993).

2. Basic Definitions. If n is a natural number, then (n) stands for the

set {1,2,..., n}. By an mi x . . . x mn hypermatrix we mean a function

A : (mi) x . . . x (m n ) —> 5ί.

We call the elements of (mi) x . . . x (mn) cells. The space of all mi x . . . x mn hy-
permatrices is denoted by 7ί((mi) x . . . x (m n )) . If A € H((mi) X . . . x (mn))
then by supp A we mean the support of A, that is the set of all i 6 (mi) x
. . . X (mn) such that A(i) φ 0.

Let S = {&i,..., kr} be a proper nonempty subset of (n). Then

Ps : (mi) x . . . x (mn) —• (mkl) x . . . X (mkr)

is the projection map defined by Ps(h-> ? in) = (ifci ? •? ύ r ) By a n S-row
or an (n - r)-row of (mi) X . . . X (m n) we mean a set of the form P J x ( i ) where
i € (mkl) X . . . X (mfcΓ). By the S-marginal of a hypermatrix A we mean the
function

S ( A ) : ( r o J f e 1 ) x . . . x ( r o f c p > — > »

defined by

S(A)(i)=

We will also say that S(A) is an r-marginal of A. Note that we can write

X . . . X (mn))—+n((mkl) x . . .X {mkr)).

We say that a hypermatrix A has a uniform ^-marginal provided S(A)

is a constant function.

Let M = (mi) x . . . x (m n ) and S = {Si,..., Sm} be a collection of
nonempty subsets of (n). A hypermatrix A £ H ((mi) x . . . X (m n )) is called
multiply stochastic if

1. A(ϊ) > 0 for all cells i,

2. Σ\A(i) = Δ,
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3. Sk(A) is a constant function for each k = 1, . . . , m,

where Δ is a fixed positive constant.

We can assume Δ = 1, but it is often more convenient to choose some
other constant.

The set of all multiply stochastic hypermatrices A G W ( ( ^ I ) X . . X (mn))
with uniform SΊ-, , ̂ -marginals will be denoted by Tί(M,S). Note that
Tί(M^S) is a convex set. A hypermatrix A £ Tϊ(M,S) is called extremal in
7ί(AΛ,S) if it cannot be represented as a convex combination of elements of
H(M,S) different from A.

THEOREM 1. A hypermatrix A is extremal in 7ί(Λ4,S) if and only if
B — A whenever B £ 7ί(M,S) and supp B — supp A.

PROOF. Let A £ Tί(M,S) be extremal. Suppose B £ Jί(M,S) and
supp B =supp A. Then there exists a negative number λ such that C —
(1 - λ)A+ XB € H(M,S). But then

which is a contradiction, unless B = A.

Now assume that A is the only element of H(Λ4,S) with the given
support. Suppose that A = XoB + (1 - λo)C, where 0 < λ0 < 1, and
B,C £ W(ΛΊ,<S). Note that for every λ in some neighborhood of λo we have
λΰ + (1 - λ)C £ H(M,S) and supp (XB + (1 - X)C) =supp A. If the support
of B or C differs from the support of A, then XB + (1 — λ)C is different for
different λ. But this contradicts the assumption.

COROLLARY 2. A hypermatrix A is not extremal in H(M^S) if and only
if it is possible to find a B £ H(Λ4^S) such that supp B is a proper subset of
supp A.

3. Transfer Vectors. Birkhoff's original theorem can be easily proved
by regarding each entry of the matrix as the amount of "mass" in that par-
ticular cell and then carefully shifting mass from one cell to another in such a
way as to maintain the uniformity of the marginals. We now generalize this
idea of possible "mass transfer" to higher dimensions.

Let n £ λί and let S be a proper subset of (n). By a transfer vector in
the S-direction with domain (mi) x . . . x (mn) we mean a hypermatrix

T : (mi) x . . . x (mn) —> 5?

satisfying the following:
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There exist distinct cells i0 and i\ belonging to the same S-row in (mi) x
. . . x (ran) such that

{ 1 if i = i 0,

- 1 ifi = t ! ,

0 otherwise.

Let Q be a nonempty subset of M = (mi) X . . . X (mn) and let S be a

proper subset of (n). Let i be a cell in the range of Ps. By T(Q, S, i) we mean

the set of all transfer vectors T for which there exist jf0, j i G -P51(i) Π Q such

that

f l if i = Jo,

- 1 if i = Ji,

0 otherwise.

In other words, T G T(Qy S, i) if it transfers mass from one cell of Q to another
cell of Q along the S-row P^' 1(i). Let

T(Q,S)= (J

If Γ G T(Q,5) , then we say that T is a transfer vector in the direction S

between cells ofQ. We say that T Ί , . . . , Tr is a sufficient set of transfer vectors

between the cells of Q in the direction S provided T Ί , . . . ,Γ r G T(Q, 5) and

every element of T(Q, 5) can be written as a linear combination of Γ i , . . . , T r .

We will call T Ί , . . . , Tr a minimal sufficient set provided T\,..., Tr are linearly

independent.

Let SO, S Ί , . . . , Sq be distinct, proper, nonempty subsets of (n). Set S =

(So, S i , . . . , Sq). For the transfer vector

T : (mi) X . . . X (m n ) —• ?ί

we define the marginal transfer vector determined by S to be

Note that the transformation T —• <S(T) is a linear transformation.

The following theorem is a very general description of how the idea of

transferring mass between cells is used in determining extremality of matrices

and hypermatrices both in our work and that of others.

THEOREM 3. A hypermatrix A is not extremal in H(M^S) if and only

if there exists a minimal sufficient set of transfer vectors T i , . . . , T p in the

direction So between cells of the support of A such that <S(Ti),.. .,<S(TP) are
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linearly dependent. Furthermore, if there is one minimal sufficient set with
this property, then every minimal set of transfer vectors between the cells of
the support of A in any direction Si whatever must have this property.

4. Local Minima of the Entropy. The following result stands on its
own and somewhat in isolation from the other results of this paper.

THEOREM 4. A hypermatrix A is extremal in H(M,S) if and only if the
function

has a local minimum on Ή,(M,S) at A.

5. Distribution Matrices. In this section we restrict our consideration
to Λ4 = (ft)3, that is to hypermatrices of the form

A : (nf —* 5R.

We also assume that S = S2 = ({1,2} , {1,3}, {2,3}). In other words, H{M,S)
is the collection of all (n)3-hypermatrices with uniform 2-marginals. For con-
venience we take Δ, the sum of all entries in A, to be n2. This set of hyper-
matrices will be denoted by 7i((n)3 ,£2).

Let n £ Λί be fixed. Let P i , . . . , Pn\ be all the nxn permutation matrices.
A vector (vi,..., υn\) is called a covering vector if 0 < V{ < 1 and ΣΓ=i v*Pi 1S

the matrix all of whose entries are 1.

A n x nl matrix M = (rriij) is called a distribution matrix if

1. 0 < rriij < 1,

2. C(M) = (ΣΓ=i mϊ,i> -> ΣΓ=i mhn\) is a covering vector,
3 Σ j l i ™>ij = 1 for i = 1,..., n.

Note that for every multiply stochastic matrix A £ H((n)3 ^2) there
exists a distribution matrix M such that the matrix Σ?=i mkjPj represents
the A -th "floor" of A, which allows us, by a slight abuse of notation, to write

The mapping Λ assigns a hypermatrix to a distribution matrix.

An n x n ! distribution matrix is called extremal if it is extremal in the
set of all n X n! distribution matrices. Note that this is different from the
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extremality of a distribution matrix with fixed marginals. For example, one
can check that the matrix

M =

is extremal in the set of all 3 X 6 distribution matrices with fixed covering
vector (1/4,1/4,1/4,3/4,3/4,3/4). On the other hand it is not extremal in
the set of all 3 x 6 distribution matrices, because
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For this reason Lemma 7 in the next section requires a separate proof.

Notice that the set of all n X n\ distribution matrices is a bounded convex
set, the same is true for the corresponding set of hypermatrices, and Λ is a
linear mapping from the first set onto the second. It follows that the inverse
image of any extremal point must be a convex subset of the set of distribution
matrices and contain an extremal point. Thus we have the following:

THEOREM 5. Every hypermatrix extremal in 7ί((n)3 ,£2) has an extremal
distribution matrix.

6. Extremal Elements of 7ΐ((3)3 ,£2). In this section we are going
to use the developed tools to give a complete characterization of extremal
elements of W((3)3 ,£2). First we name all 3 x 3 permutation matrices:

/0 1 0\

0 0 1

VI 0 0/

/0 0 1\

0 1 0

Vi 0 0/ \0 0 1 Vo 1 0/

LEMMA 6. Let M be a distribution matrix for an element ofH({3) ,

Then t i e covering vector of M has the form (α, α, α, 1 — α, 1 — α, 1 — α) for

some α 6 [0,1].
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PROOF. Let (v i , . . . , VQ) be a covering vector. Then

+ ^3 =

Thus every solution is of the form (α, α, α, 1 — α, 1 — α, 1 — α). Since 0 < v% < 1

we must have a G [0,1].

LEMMA 7. A distribution matrix is extremal if and only if it is uniquely
determined by its support.

PROOF. Let M be an extremal distribution matrix. Suppose Mi is an-
other distribution matrix such that supp Mi =supp M. If C(M) = (1,1,1,0,0,0)
or C(M) = (0,0,0,1,1,1), then the assertion follows from Theorem 1. Now
assume that C(M) = (α,α,α, 1 - α, 1 - α, 1 - α) with 0 < α < 1. As in
the proof of Theorem 1, there exists a negative number λ such that every
entry of M2 = (1 — λ)M + λMi is nonnegative. Moreover, since C(M2) =
(1 — λ)C(M) + λC(Λfi), we can make sure that |λ| is small enough so that
C(M2) is still a covering vector. Now the proof can be finished as the proof of
Theorem 1.

COROLLARY 8. A distribution matrix A is not extremal if and only if it is
possible to find a distribution matrix B such that supp B is a proper subset
of suppA.

Observe that a permutation among the first three columns, or the last
three columns, or any permutation of the rows of a distribution matrix pro-
duces another distribution matrix. In what follows, when we say a permuta-
tion of a distribution matrix we mean a permutation in this restricted sense.
Note that permutations of a distribution matrix induce permutations of the
corresponding hypermatrix.

THEOREM 9. Every extremal element of7ί((3)3 ,S2) is a permutation of
a hypermatrix generated by a permutation of one of the following two distri-
bution matrices:

/ I 0 0 0 0 0'

0 1 0 0 0 0

\Q 0 1 0 0 0,
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or

B =

(\ § 0 0 0 0'

o o \ \ o o
Vo o o o i i

PROOF. Let M be an extremal element of 7ΐ((3)3 , £2)- We will show
that the assumption that M cannot be generated by a permutation of A or a
permutation of B leads to a contradiction.

Let C = (ct ,j), i = 1,2,3, j = 1,2,3,4,5,6, be an extremal distribution
matrix generating M. Since its covering vector is (α, α, α, 1 - α, 1 - α, 1 - a)
with 0 < α < 1, every column of C must contain at least one nonzero element.
Denote C\ = (ct j), i = 1,2,3, j = 1,2,3 and C2 = (c2j), i - 1,2,3, j = 4,5,6.
Note that C\ cannot contain a permutation matrix, because M is extremal
and not generated by a permutation of A. Consequently, C has to be of the
form:

> ? ? ? ?\

C =

\0 0

(a indicates a cell we know is in the support of C, a 0 indicates a cell we
know is not in the support of C, and ? indicates a cell we are not sure about).

Now suppose that

• ? ? ? ?\

= ? ? ? ? ?

,0 0 ? ? ?/

Then, again because C\ cannot contain a permutation matrix, we would

have

C =
• ?\

0 0 ?

Vo o ?

But then, since the sum of each row of C is 1 and the entries in rows 2
and 3 of C\ are less than α, rows 2 and 3 in C2 would have to have at least two
nonzero entries each, which would violate extremality of C (transfer vectors
possible).



LI, MIKUSINSKI, SHERWOOD, TAYLOR 195

Therefore we can assume that

/• ? ? ? ?

C = ? ?

Vθ 0 0 ? ,

and also

C =

because if
\0 0 0 0 ,

I A ? ? ? ? λ

\0 0 0 t

then M could be also generated by a distribution matrix of the form

I ? ? ? ?\

\ ? ? ??/

which violates extremality of M (the support of M would contain a multiply
stochastic matrix generated by a permutation of A).

Since M is not generated by B we must have

• ? ? ? ?\

? 0 ? ?

\0 0 0 0 •/

/• ? ? ?\

C = ? ? 0 ?

and then

\0 0 0 0 •/

because C must have a nonzero element in the fourth column. But this implies
that

/• ? ? ?\
C = ? ? 0 0 0

Vo o o o •/
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since C2 cannot contain a permutation matrix. Now note that if

/• ? ? ?\ /• ? ? ?\

C = or C = • 0 0 0

\0 0 0 0

0 0 0

\0 0 0 0 •/

then C would contain a permutation of B. Thus

• ? ? ?

C= I 0 0 0 0 0

,0 0 0 0

But this is impossible, because the mass in the middle row has to be 1. Con-
sequently there does not exist an extremal multiply stochastic matrix which
cannot be generated by a permutation of either A or B.

THEOREM 10. Every extremal element of Ή((3)3 ,£2) is a permutation of
one of the following two hypermatrices:

Note: the 3 x 3 matrices represent the "ήoors" of the cube.
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