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PROXIMITY OF PROBABILITY MEASURES WITH

COMMON MARGINALS IN A F I N I T E NUMBER OF DIRECTIONS

BY L. B. KLEBANOV* AND S. T. RACHEvf
Institute of Mathematical Geology, St. Petersburg

University of California, Santa Barbara

We provide estimates of the closeness between probability measures defined
on Mn which have the same marginals in a finite number of arbitrary directions.
Our estimates show that the probability laws get closer in the λ-metric which
metrizes the weak topology when the number of coinciding marginals increases.
Our results offer a solution to the computer tomography paradox stated in Gut-
mann, Kemperman, Reeds, and Shepp (1991).

1. I n t r o d u c t i o n and S t a t e m e n t of t h e Prob lem. Let Q\ and Q2
be a pair of probabilities, i.e. probability measures defined on the Borel σ-
field of M. Lorentz (1949) gave criteria for the existence of a probability
density function g(-) on JR2 taking only two values, 0 or 1, and having Q\
and Q2 as marginals. Kellerer (1961) generalized this result, obtaining the
necessary and sufficient conditions for the existence of a density /(•) on M2

which satisfies the inequalities 0 < /(•) < 1, and has Q\ and Q2 as marginals
(see also Strassen (1965) and Jacobs (1978)). Fishburn et al. (1990) were able
to show that Kellerer's and Lorentz's conditions are equivalent, i.e. for any
density /( ) » 0 < / < l , on M2 there exists a density g( ) taking the values 0
and 1 only, which has the same marginals. In general, similar results hold for
probability densities on iRm, m > 2, when the (m- l)-dimensional marginals
are prescribed. A considerably stronger result was established by Gutmann
et al. (1991). This is that, for any probability density / ( • ) ? ( ) < / < 1, on
JRm and for any finite number of directions, there exists a probability density
g(-) taking the values 0, 1 only, which has the same marginals as /(•) in the
chosen directions. It follows that densities having the same marginals in a
finite number of arbitrary directions may differ considerably in the uniform
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metric.

Let us note that the problem of the existence of probability measures
with fixed marginals is important for the theory of probability metrics. This
is especially true in studying the structure of minimal metrics (see Rachev
(1991)). Most of our results will make use of relationships between different
probability metrics, analyzed in the monograph by Kakosjan, Klebanov and
Rachev (1988), referred to below as KKR (1988).

The purpose of this work is to show that, under moment-type conditions,
measures having a "large" number of coinciding marginals are close to each
other in the weak metrics. Our method is based on techniques used in the
classical moment problem. The key idea in showing that measures with large
numbers of common marginals are close to each other in the weak metrics
is best understood by comparing three results. The first is the Theorem of
Guttman et al. (1991) mentioned above. The second (see Karlin and Stud-
den (1966), p. 265) states that if a finite number of moments μi, ,μn of
a function /, 0 < / < 1, are given, then there exists a function g which
takes the values 0 or 1 only, and possesses the moments μi, ,μn. It is
clear that these two results are similar; however, the condition of equality of
the marginals is more complex than the condition of coincidence of the mo-
ments. Finally, the third result (see KKR (1988), p. 170-197) gives estimates
of the closeness in the λ-metric on M1 for measures having common moments
μi> ? Mn(̂  < oo) These estimates are expressed in terms of the truncated
Carleman's series βm = Σj=iA*2J > (^m < n ) ^ke r e s u ^ shows that the
closeness in the λ-metric is of order βm ' . Of course, since the condition of
common marginals seems to be more restrictive than the condition of equal
moments, one should be able to construct a similar estimate expressed in terms
of the common marginals only. Furthermore, the technique required for such
a construction should be similar to that used in this paper.

Following this plan we derive estimates for closeness of measures in JR2

having coinciding marginals in n directions. We first consider the case when
one of the measures has compact support: in this case, the λ-closeness of
measures has order 1/n. Further, the compactness assumption will be relaxed
by Carleman's assumption in the problem of moments. Here the λ-closeness
of measures is of order β~J . We also display estimates of the closeness of
measures with ε-coinciding marginals. These estimates differ from the cor-
responding ones with equal marginals by an additional term of order l//n~.
We conclude the paper by applying our results to the problems of computer
tomography. In particular, we offer a solution of the paradox in computer
tomography stated in Gutmann, et al. (1991), and compare this solution with
analogous results in Khalfin and Klebanov (1990).

2. The Case of Probability Measures on M2. To avoid drowning
the basic ideas in too much detail, let us consider only the 2-dimensional case
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in full.

Let 0i, ,0 n be n unit vectors on the plane and Pι,P<ι be two prob-
abilities on JR2, having the same marginals in the directions 0i, # >0n To
estimate the distance between Pi and P<ι, different weak metrics can be used;
however, it seems, that the λ-metric is the most convenient for our purposes.
This metric is defined as follows (see, e.g., Zolotarev(1986))

\(P1, P2) = min max { max | ί ei^(P1 - P2)(dx) \, i } , (1)
l >υ <. \\t\\<τ jjR2 l J

where ( , •) is the inner product and || || is the Euclidean norm. Clearly, λ
metrizes weak convergence.

Our first result concerns the important case where one of the probability
measures considered has compact support.

THEOREM 1. Let 0i, 0n be n > 2 unit vectors in M2, no two of which
are collinear. Let the support of the probability Pi be a subset of the unit
disc, and let the probability P2 have the same marginals as Pi in the directions
01,. . 0n. Set

- ' F T 1 ] . <2>
Then

r (3)

ffere [r] denotes the integer part of the number r. We can replace the right-

hand side of (3) by C/s, where C is a constant; note that, as s —>• 00, ί Jj V+ 1 ~

e/s.

PROOF. The metric (1) is invariant under rotations of the coordinate
system, so that we can assume the following conditions to hold:

(a) the directions θj(j = 1, ,n) are not parallel to the axes.

(b) there exists at least one pair of directions, say, 0^, and 0j2, such that
θjχ = (α, 6), θj2 = (α, —6), where α φ 0, b φ 0, i.e. the vectors θjx and θj2

are symmetric about the horizontal axis.

Since Pi has all moments and the marginals of Pi and P2 coincide, for
any k we have

/ (x,θj)
kPι(dx)= f (x,θj)kP2(dx), (4)

Jm Jm?
j = l, ,n.

We first show that P2 has moments of any order. Consider (4) with
3 = 3\,3 = h and x = (a i , ^ ) then

/ (xια±X2θj Pι(dxι,dx2j = / \x\α±x2b\
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where the signs on the left-hand and right-hand side should coincide. It follows
that,

/ [(xia + x2b)k + {xia - x2b)k]Pι{dxι,dx2)
Jm?

= / [(xιa + x2b)k+ (xιa-x2b)k]P2(dx1,dx2),
Jm?

and all integrals are finite. Note that when k is even, the terms of the integrand
all have positive coefficients and even powers. Therefore

k/2

bx2)
k + (ax! - bx2)

k = 2 ^
r=0

Prom this inequality and (5), we readily obtain the existence of the moments
of P2 of even order for each distinct coordinate, and therefore the moments of
all orders.

Next we show that all moments of Pi and P2 of order < n — 1 agree. Let

μ>rt{Pι) = / XιX2Pι(dx), I = 1,2.
Jm2

Then setting θj = {UJ,VJ) in (4) yields

k / , v

Σ ( / Γliυtl Wk-l{Pi) - μi.fc-iίft)] = 0,
z=o ^ '

j = 1, , n; k > 0. Now setting Zj = VJ/UJ in the last equation leads to

k
\~my (k\ Jc—i Γ 1
λ,{l)zJ [m-ιpι ~ μι,k-ι P2 \ - 0,

j = 1, n. Since no two of the directions #i, , θn are collinear, the points
zι, - , z2 are distinct. Hence from (6) we find that the following polynomial
of degree k of the variable z

has n distinct roots zi, , zn. If n > k + 1 then this is possible only if all
coefficients of (7) are equal to zero, i.e.,

μι,k-ι(Pi) = μι,k-ι{P2), (8)
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I = 0, , k; k = 0, , n — 1. Then from (8) we get that for any unit vector ί,

/ {t^P^dx)^ [ (t,x)kP2(dx), (9)

Jm? Jm2

fc = 0,l, , n - 1.

Denote by i j ' the marginal of P[(l = 1,2) in the direction t and by
w( τ>*)( τ £ 1R) its characteristic function. The support of P^ is in the
segment [—1,1]. Then (9) is equivalent to

^ ) ( r ; ί ) | r = o = ^ ) ( r ; ί ) | r = o , fc = 0,. . , n - l , (10)

where ψ\ \τ\ t) is the fcth derivative of φι(r; t) with respect to r(l = 1,2) The
Taylor expansion now gives

φi(τ;t) -φ2{τ;t)

kl l

k=0

where f is some number lying between zero and r. Prom (10), the first sum
on the right-hand side of (11) is equal to zero. Furthermore, since s is an even
number,

[
jR

< [ zspW{dz) = / z*P?\dz) < 1, / = 1,2.
JΊR J-i

Thus for all τ e M,
τs

~~ s\
Now, from the condition

2TS 1

choose T > 0 so that T = (f )5+ϊ. Therefore

sup
|τ|<Γ

i.e.
Γ Γ

ς i i n I / J τ { t , x ) p ( J \ _ I J τ ( t , x ) l

\τ\<τ Jm2 Jm2

The last inequality is equivalent to (3) since t was chosen arbitrarily on the
unit circle. This proves the theorem. I
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In particular, the proof of the theorem leads to the following corollaries:

COROLLARY 1. Let 0χ, , θn be n > 2 directions in M2 no two of which
axe collinear. Suppose that the marginals of the probabilities P\ and P<ι with
respect to the directions θ\, , θn have moments up to the even order k <
n — 1. Then the marginals of Pi and P<χ with respect to any direction t have
the same moments up to order k.

COROLLARY 2. Theorem 1 still holds if we replace the assumption that
Pi and P2 have of coinciding marginals with respect to the directions θj(j =
1, ,n), with the assumption that these marginals have the same moments
up to order n — 1.

Let us now relax the condition that the support of Pi is compact, assum-
ing only the existence of all moments together with Carleman's conditions for
definiteness of the moment problem.

For convenience, we introduce some new notation at this point. Set

/
θes1 JJR2

(a-2)/2

where the number 5 is determined from equation (2), and 5 1 is the unit circle.

THEOREM 2. Let 0i, , θn be n > 2 directions in M2 no two of which axe
collineax. Suppose that the measure Pi has moments of any order. Suppose
also that the marginals of the measures Pi and Pi in the directions 0χ, , 0n

have the same moments up to order n — 1. Then there exists an absolute
constant C such that

PROOF. Let t be an arbitrary vector of the unit circle. Prom Corollary 1
we have that the marginals P± and P 2 have the same moments up to order
5. Prom KKR (1988), p. 180, and Klebanov and Mkrtchian (1980) it follows
that

C {S~Σ [w(t)] -1/m [μo(t) + tfit)]1/4, (12)
3=1

where μk(t) = / ^ ukP^ (du), k = 0,1, , 5. The theorem now follows from
the obvious inequality
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THEOREM 3. Suppose that, in addition to the conditions in Theorem 2,
the characteristic function of the measure Pi admits analytic continuation in
some disc centered at the origin. Then

λ(PuP2)<CPl/lns, (13)

where the constant Cpx depends on the measure P\, and not on the measure
P<ι or the number of directions.

PROOF. The proof is similar to that in Theorem 2, but instead of (12) we
need to use Theorem 3.2.3 in KKR (1988). I

Let us now consider a more realistic situation where the marginals of Pi
and P<ι in the directions 0χ, θn are not the same but are close in the metric
λ. We shall make use of the notation introduced in Theorem 1.

THEOREM 4. Let 0i, , θn be n > 2 directions in M2, no two of which are
collinear. Suppose that the supports of the measures P\ and P2 lie in the unit
disc, where they have ε-coinciding marginals with respect to the directions
θj(j = l, ,n), i.e.,

= mmmaxjmax \φi{τ\θj)-φ2{τ\θj) |,\φi{\j)φ2{\j) | , / } < ε,

j = 1,2, ,n. Then there exists a constant C depending on the directions
θj(j = 1, , n) such that for sufficiently small ε > 0, we have

l/ 5 ), (15)

where, as before, s is determined from equation (2).

PROOF. Let

^ ( τ ) = fPi (τ ;β i )- V 2 (τ ;β i ) ϊ i = l r iΛ. (16)

When 0 < ε < 1 we have
sup I ψj(τ) \< ε. (17)
H<i

(β.\ (ΘΛ

Furthermore, since the supports of the measures P{ 3 and P 2

 a r e subsets
of [—1,1], for any even number k > 2 we have,

sup I φf\τ) I

" A;!
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Many results exist in the literature which can be used to evaluate the uniform
norm of the Z-th derivative of an arbitrary k > I times differentiate function,
through the norm of the function itself and its fc-th derivative. In particular,
some convenient results of that type can be found in KKR (1988). Corollary
1.5.1, in KKR (1988), states that there exist constants Cik such that

—
sup I φf{τ) \< Clk{ sup I φj{τ) | }

x { s u p | ^ * ) ( τ ) | } i , i = O,l|. >fc.

Choosing k > 2s, Z < s in our case, and taking into consideration (17) and
(18), we obtain the inequality

sup | ^ O ( r ) | < C 5 ε 1 / 2 , Z = O , l , . . . , 5 ; i = l , . . . , n , (20)
|r|<l

where Cs is a new constant depending on s only. In particular, from (20) it
follows that

In other words, the moments of order up to s of the marginals with respect
to the directions 0χ, , θn are close: they can differ by no more than Csε

1/2.
This fact is expressed by the inequality:

- ί {x,θj)kP2{dx)<Csε
ιl\ (21)

JWL2

k = 0,1, , s; j = 1, , n. Following the notation in Theorem 1, we can
rewrite (21) in the form

-μι,k-l{P2)) |<

ι=o

Thus, setting

k

(22)

= Vj/uj, we obtain

I nkj |< Cε1/2, (23)
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where C depends on the directions 0i, ,0 n only. For any fixed k(k
2, , s) consider:

(i) the matrix Ak with elements

(ii) the vector Bk with elements

b\k) = W - 1 > Λ _ ί + i ( P i ) - W _i , fc_ m (Pi ) , I = 1, , k + 1;

(iii) the vector Dk with elements

Then (22) and (23) imply the equations

AkBk = Dk (fc = l , . . . , * - l ) (24)

and the estimate

II Dk | |< Cε 1/ 2. (25)
Of course, the matrices Ak are invertible. Therefore

\\Bk\\<\\A^\\\\Dk\\<Cεy\ (26)

where the constant C depends on the directions 0χ, , θn only. Inequality (26)
shows that the first s — 1 moments of the two-dimensional distributions are
close when ε > 0 is sufficiently small. Such an evaluation of closeness holds
for the first 5 — 1 moments of the marginals corresponding to an arbitrary
direction t, i.e.

I / (:c,t)*iΊ(ώO- / {x,t)kP2{dx)\<Ceιl\ (27)
Jm? Jut?

k = 0, , s — 1. Now we have

3=0

^ ?! ' ' 5! "" 5!

Setting \τ\ < T above, we find
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and, since ί is arbitrary on the unit circle, we obtain

λ(Pi,P2) <

which proves the theorem. |

REMARK 1. The statement in Theorem 4 still holds if instead of the ε-
coincidence of the marginals as in (14), we require the ε-coincidence of the
moments up to order s of these marginals. For the latter, we require that the
inequalities

I / ix,θ )kI\{άc)- f (x,θj)
kP2(dx)\<ε, (28)

JjR2 JJR?

j = 1, , n; k = 0, , s, to hold.

Indeed, (28) is only a reinforcement of (21), and we can repeat the argu-
ments of Theorem 4 which follow from the bound (21).

3. Multidimensional Generalizations. All theorems in Section 2
admit generalizations to probability measures defined on Mm. However we
cannot choose the directions 0i, ,0n in an arbitrary way. Furthermore, to
obtain the same order of precision in JRm,m > 2 corresponding to the n
directions in JR2 we need nm~ι directions. The results can be obtained by
induction on the dimension m.

We define next the set of directions we are going to use. Choose n > 2
distinct real numbers ui, , ιtn, all different from zero, and first construct the
set of n two-dimensional vectors

Then construct n 2 three-dimensional vectors

Repeating this process, by the last step, we shall have constructed nm~ι m-
dimensional vectors

{liUj^Uj^ ΊUj^Ji = l, ,n,Z = l, , r a - l . (29)

Denote these m-dimensional vectors by 0i, ••,##> where N = nm~ι (the
choice of enumeration is irrelevant here). These inductive arguments lead to
the following extensions of Theorems 1 - 4 .

PROPOSITION. The results in Theorems 1-4 still hold if we consider the

measures Pi and P2 in JRm, and we choose as directions the N = nm~ι vectors

in (29). Further, s = 2[(n - l)/2].
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To prove this, it is sufficient to note that instead of the m-dimensional vec-
tors we can first consider a pair of one-dimensional probability distributions;
the first component is the distribution of the inner product of the projections
of the vector x and the vector θj upon the (m — l)-dimensional subspace, while
the second is the law of the last coordinate of the vector x. This allows us to
decrease the dimensionality by one. To complete the proof it is sufficient to
apply inductive arguments.

4. Concluding Remarks. The above results are concerned with close-
ness between the probability measures Pi and P2 only in the case of the λ-
metric. We can also consider the cases of the Levy-Prohorov distance and the
distance in variation with the additional assumptions of existence and differ-
entiability of the densities of the relevant probabilities. To obtain the corre-
sponding estimates, it is sufficient to use the results comparing the respective
distances with the λ-metric given in KKR (1988). We do not formulate the
corresponding theorems since the inequalities already obtained are far from
being final. In our opinion, the estimates of closeness between the densities of
smoothed distributions are more interesting.

For example, in the conditions of Theorem 2 there exists an absolute
constant C such that

s u p I Ί\ * hη(x) - P2 * hη(x) \< C { μ o + μ l I / , (30)
ηβs1

where hη(x) is the two-dimensional density of the Cauchy distribution, i.e.,
the probability distribution whose characteristic function is exp{-7y||a:||}.

The proof of this statement repeats that of Theorem 2, inequality (3.2.22),
in KKR (1988).

The bounds of the deviation between probability measures with coincid-
ing marginals offer a solution to the computer tomography paradox as stated in
Gutman et al. (1991): "It implies that for any human object and correspond-
ing projection data there exist many different reconstructions, in particular, a
reconstruction consisting only of bone and air (density 1 or 0), but still hav-
ing the same projection data as the original object. Related non-uniqueness
results are familiar in tomography and are usually ignored because CT ma-
chines seem to produce useful images. It is likely that the "explanation" of this
apparent paradox is that point reconstruction in tomography is impossible."
Indeed, the results in the mentioned paper and our Theorem 1 show that,
although the densities of the probability measures Pi and P2 (given that such
densities exist) can be quite distant from each other for any "large" number
of coinciding marginals, yet the measures P\ and P2 themselves are close in
the weak-metric λ .

Khalfin and Klebanov (1990) have analyzed this paradox, and obtained
some bounds for the closeness of probability measures with coinciding marginals
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for specially chosen directions for the case of uniform distance between the
smoothed densities of these measures. The methods used in their work are
different from those used here, and were based on evaluations of the conver-
gence rate of interpolation processes.

In tomography the observations are, in fact, integrals of body densities
along some straight lines. Using quadratic formula enables us to evaluate the
moments of a set of marginals; these in turn make it possible to apply the result
in Remark 1, to evaluate the precision of the reconstruction of densities. The
classical theory of moments makes it possible to give numerical methods for
reconstructing the probability measures using the moments (see, e.g., Ahiezer
(1961)).

Acknowledgement. Our thanks are due to our colleague Dr. J. Gani
for his very helpful comments.
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