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DOUBLY STOCHASTIC MEASURES:

T H R E E VIGNETTES

BY DAVID FELDMAN

University of New Hampshire

The first section contains a nonstandard analysis proof of Strassen's the-
orem. The second section contains a uniqueness theorem for doubly stochastic
measures on a family of supports that give rise in a natural way to certain dy-
namical systems. In the final section, we consider the action of SL2CL) on
C(G x Gf)*, G a compact abelian group, and study those orbits that consist
entirely of stochastic or doubly stochastic measures.

0. Introduction. Our present state of knowledge concerning extreme
doubly stochastic measures on Ixl (/ = [0,1]) and doubly stochastic measures
with prescribed support is meager compared with the the situation for doubly
stochastic finite matrices.

Recall that according to the Birkhoff-von Neumann Theorem, Birkhoff
(1946), the extreme doubly stochastic n x n-matrices are precisely the n x n-
permutation matrices. This being so, a set S C n X n (n = {l,...,n})
contains the support of a doubly stochastic matrix iff S contains the support
of a permutation matrix iff the bipartite graph whose incidence relation S
describes admits a perfect matching. P. Hall's theorem, Lovasz and Plummer
(1986), tells us that S fails to admit a perfect matching iff S is disjoint from a
set of the form 4 x ΰ , i , 5 C n , \A\ + \B\ > n. With the availability of highly
efficient algorithms for bipartite matching, Lovasz and Plummer (1986), our
understanding of doubly stochastic finite matrices may be considered quite
satisfactory.

One measure-theoretic analogue for the permutation matrices might be
the class of doubly stochastic measures supported on graphs of measure pre-
serving transformations. Alas, these form merely a proper subclass of the
extreme doubly stochastic measures, so the most straightforward generaliza-
tion of the Birkhoff-von Neumann Theorem is false. Indeed, extreme doubly
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stochastic measures may be quite pathological, Feldman (1992), Losert (1982),
and the determination of whether a given set, even of simple form, supports
a doubly stochastic measure can be a delicate matter, Kamiήski et al. (1988),
Sherwood and Taylor (1988).

This paper explores some ways in which the study of doubly stochas-
tic measures interacts with diverse branches of mathematics, including logic,
group theory, Fourier analysis, topological dynamics and ergodic theory. The
three sections of the body of the paper are independent aside from certain
comments.

The first section contains a proof by nonstandard analysis of an old the-
orem of Strassen, Strassen (1965), characterizing closed subsets S oΐ I x I
which support doubly stochastic measures: A closed set S C / X / Mis to
support a doubly stochastic measure iff S is disjoint from a set of the form
A x B {A, B Borel subsets of /) where m(A) + m(B) > 1 (m is Lebesgue mea-
sure). The statement about finite matrices that Strassen's theorem generalizes
is actually a consequence of the Birkhoff-von Neumann Theorem and P. Hall's
Theorem together and does not mention permutation matrices. The nonstan-
dard viewpoint offers a conceptual handle on why it should be this statement
that generalizes. No previous knowledge of nonstandard analysis is assumed
of the reader as we derive whatever we need from the most basic theorems of
mathematical logic. Our proof of Strassen's theorem suggests an experimental
approach to investigating whether a particular S supports a doubly stochastic
measure.

In Section 2 we give a uniqueness theorem concerning doubly stochastic
measures by using ideas from topological dynamics and ergodic theory. In
particular, these examples illustrate how small perturbations in a set S may
or may not affect the uniqueness of doubly stochastic measures supported on
S. This sensitivity is indicative of the limitations of the experimental approach
discussed in Section 1.

Section 3 discusses measure-theoretic analogues of "magic squares." Let
Z /(p) be the finite field with p elements. Let / be a real (or complex) valued
function on Z /(p) X Z /(p) and assume that the values of / sum to 1 over
every affine 1-dimensional subspace of Z /(p) X Z /(p). Then it is known that
/ must be a constant function always taking the value Ijp. We formulate some
measure-theoretic analogues of this statement featuring the modular group and
some of its subgroups.

It is my pleasure to thank Professors D. Had win, R. Shortt and A. Wilce
for discussions or criticisms that improved this paper.
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1. A Nonstandard Approach to Strassen's Theorem.

THEOREM 1 (Strassen). Let S be a closed subset of I X I. Let m be
Lebesgue measure on I. Then the following statements are equivalent:

(I) There exists a doubly stochastic measure μ on I X I such that μ(S) — 1.

(II) If A, B C I are Borel sets such that (AxB)ΠS = 0, then m(A) + m(B) <
1.

PROOF. The easy direction is (I) implies (II). Indeed, if (A x B) Π S — 0
and μ is a doubly stochastic measure with μ(S) = 1, then μ(A X B) — 0. Thus

m{A) = μ(A x I) = μ(A X Bc) < m(I X Bc) = 1 - m(B) .

The idea behind our proof that (II) implies (I) is to associate doubly
stochastic measures μ satisfying μ(S) = 1 with models of a certain first order
theory T.

Suppose S satisfies (II).

Let C = {0, l}ω be the Cantor set. Let / : C = {0, l}ω -> I be the
usual map which regards 0-1 sequences as binary expansions, i.e. f((di)i^) —
Σ S i αi^~% We write m for both Lebesgue measure on / and its unique lifting
along / to C. Write Sc = (f X f)'1^).

We will actually prove the existence of a doubly stochastic measure μc on
CxC such that μc(Sc) = l Any doubly stochastic measure μc on CxC can
be pushed forward along / x / : C x C — > / x / t o a doubly stochastic measure
μ on / X /, so this will be sufficient. In fact, where there is no possibility of
confusion, we will refer to Sc simply as S and μc simply as μ.

We are now ready to describe the first-order theory T. Take note that
the theory T has an uncountable language and uncountably many axioms.

Begin with your favorite first order axiomatization of the real numbers.

Introduce a constant symbol cr for each (standard) real number r (not
just for 0 and 1 as is usual). The intended interpretation of cr is r, so adopt
whatever axioms are necessary to insure that these constants behave arith-
metically like the reals that index them, e.g. C2 + C2 = c±, c$ > C2 and CQ = 0.

Let T be the field of subsets of C X C generated by sets of the form
Ax B where A and B are finitely determined cylinder sets of C. For each
Γ G ^ , introduce a constant symbol CT and take as axioms statements of the
form CT > 0. The intended interpretation of CT is μ(T) where μ is a positive
measure.

For each disjoint finite family 7\,..., Tn of sets in T, introduce the axiom

CTi + + CTn = CTiU. .UTn
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For each set in T of the form Ax I (resp. / x 5 ) , introduce the axiom

Cm(Λ) ( Γ e s P

For each T £ T satisfying 5 c Γ , introduce the axiom CT = 1.

A model M of T determines a doubly stochastic measure μ on C X C as
follows. The underlying set of M is a priori a nonstandard extension of the
reals, but passing to the standard parts of the values CT determines a finitely
additive measure on the field of sets T'. Because C is totally disconnected
and the field T consists of clopen sets, this is actually a countably additive
measure on T. The σ-field generated by T is the Borel field on C X C and the
Caratheodory extension theorem gives us a unique Borel measure μ on C x C.
(It is also true that a doubly stochastic measure μ on I X I with μ(S) — 1
determines a model of T, but we do not use this fact here.)

Suppose now, for contradiction, that there is no doubly stochastic mea-
sure μ such that μ(S) = 1. We must find Borel sets A,B C C such that
(A x B) Π S = 0 and m(A) + m(B) > 1.

Since there is no such μ, the theory T has no model. By the compactness
theorem for first-order logic, some finite subset 7} of the axioms constituting
T already fail to have a model. The axioms in 7} involve only finitely many
of the constant symbols, and, in particular, only finitely many of the form cj,
T eJ7, say c T l , . . . ,c T n .

Now let us write π^ : C —• {0,1}* for the projection onto the first k
coordinates. Let T\~ be the (finite) subfield of T generated by sets of the form
(πfc X τr^)~1(α), a £ {0,1}* X {0, l}k. Choose k large enough so that all the
sets Γi,. . . , Tn belong to Tk.

Observe that since measures on the field Tk are determined by their values
on the atoms ^ , they are essentially 2k X 2k matrices.

Let S' be the smallest subset of {0, l}*x{0,1}* such that S C {Jaes'(πkχ

π^)~1(α). There can be no 2k x 2k doubly stochastic matrix (rows and columns
indexed by {0,1}*) which is 0 outside of S', because 7} has no model. By
Birkhoff-von Neumann and P. Hall, there must be sets P, Q C {0,1}^ such
that P x Q is disjoint from S' and |JP| + \Q\ > 2k. Finally, setting A = π
and B — τr^"1(Q) gives us the desired contradiction.

The referee has kindly observed that the construction underlying the
proof above is essentially Loeb's extension trick, Cutland (1988).

Note that this proof is easily modified to yield Strassen's more precise
result:
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THEOREM 2. Let S be a closed subset oflxl. Let m be Lebesgue measure
on I. Then the following statements are equivalent:

(I) There exists a doubly stochastic measure μ on Ixl such that μ(S) = 1—e.

(II) IfA.B C I are Borel sets such that(AxB)nS = 0, then m(A) + m(B) <
l + €.

What makes our nonstandard proof of Strassen's theorem work is the
fact that the property of being a doubly stochastic measure with support in a
closed set S is finitely refutable, in the sense that if μ is not such a measure,
then this is already evident upon examining the values of μ on finitely many
sets. For example, we may either exhibit a vertical or or horizontal strip where
μ does not have the correct measure, or a set on which the measure of μ is
negative, or a set disjoint from S on which the measure of μ is positive.

This suggests many problems. For example, let V (resp. V) be the
closed convex hull of the set of extreme doubly stochastic measures which are
symmetric about the diagonal x = y of / x / (resp. symmetric about the
diagonal x — y of / X I and supported off of it). (Note that the symmetric
extreme doubly stochastic measures are a subset of the extreme symmetric
doubly stochastic measures.) Is V finitely refutable? This question is a natu-
ral one in light of the analogy to finite combinatorics. Strassen's theorem may
be regarded as a measure-theoretic analogue for the matching theory of bipar-
tite graphs. One might regard a criterion for whether a closed set S supports
a measure in P, or what amounts to the same, whether S supports a sym-
metric extreme doubly stochastic measure, as a measure-theoretic analogue
for the matching theory of arbitrary graphs. For the basic matching theory
of arbitrary graphs, especially Tutte's theorem, Gallai's Lemma and Berge's
Formula, see Chapter 3 of Lovasz and Plummer (1986). For the Matching
Poly tope and Perfect Matching Polytope, the matrix analogues of V and V1',
and for Edmonds Theorem, see Chapter 7.

Some interesting examples of finitely refutable closed convex sets of dou-
bly stochastic measures appear in Section 3.

2. Dynamics and Doubly Stochastic Measures. We turn now to
a theorem concerning the uniqueness, when they exist, of doubly stochastic
measures on a certain family of supports in the square Ixl. The supports of
these measures will be simple closed curves Θ satisfying three conditions. The
first two conditions are:

(I) Θ meets the interior of each side of the square once;

(II) Θ meets every other vertical or horizontal line in the square exactly twice.

Observe that Θ is the union of two graphs, but is never a hairpin in the
sense of Kamiήski et al. (1988),Sherwood and Taylor (1988) since Θ avoids
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the corners of the square. We shall write /, r, t and b for the unique points
where Θ meets the left, right, top and bottom edges of the square.

To state the third condition, we need some terminology. Associated to a
curve Θ satisfying (I) and (II) are two natural orientation-reversing involutive
self-homeomorphisms, vertical exchange V and horizontal exchange H. In
detail, V(x) = y (resp. H(x) = y) iff either x and y are distinct points on Θ
on the same vertical (resp. horizontal) line or x = y — I or r (resp. x = y = t
or b). The composition VH is then an orientation-preserving fixed-point-free
self-homeomorphism of Θ. The third condition on Θ is:

(III) There exists a homeomorphism φ : Θ —>• RJ7L such that φVHφ~1(x) =
x + q where q is irrational.

In other words, VH is conjugate to an irrational rotation.

THEOREM 3. A curve Θ satisfying conditions (I), (II) and (III) supports
at most one doubly stochastic measure.

In particular, if such a curve does support a doubly stochastic measure,
the measure must be extreme.

PROOF. We shall need the following

LEMMA 1. Let τ\, r2 be orientation-reversing self-homeomorphisms of
S1 = R/Z . Assume that τ\ — r\ = id, the identity map, and that T1T2 = p
is an irrational rotation, that is p(x) = x + q (mod 1), where q is irrational
Then τ\ and τ2 are reflections.

PROOF. Lift τ\ to a map f\ : R —> R and define p(x) := x + q for
x € R Now set f2 = fi/3; then f2 is a lift of r2. Since r2 is an orientation-
reversing homeomorphism, the lift f2 satisfies f2{x + 1) = τ2(x) - 1, so by the
Intermediate Value Theorem f2 must have a fixed point. Thus we have

τ2

2 = fλρτλp = id,

not just modulo 1, but exactly! Similarly, f\2 = id, so we obtain pfip = f\.
Now define u(x) := —f\{x + q) — x. Since

we obtain u(x + q) = u(x). Since f\ is the also the lift of an orientation
reversing homeomorphism, τ\{x + 1) = τ\{x) - 1 and thus u(x + 1) = u{x).
So u(x) is a continuous function with two irrationally related periods, hence a
constant function. From the definition of u we see that τ\ is a reflection, and
so likewise τ2. I

(Observe how the irrationality of q in Lemma 1 is essential.)
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If Θ satisfies (I), (II) and (III), then by the lemma, we may choose φ so

that φVφ~ι(x) = -x and φHφ~1(x) = q - x. Without loss of generality, we

may assume that φ(l) = 0 and φ(b) = g/2, both modulo 1.

We write 7rt : J x J —• J for projection onto the i t h coordinate.

Now suppose that μ is a doubly stochastic measure stochastic on Θ. Let

fi be the Borel measure on RjTL determined by the condition that fi(B) =

μiφ-1^)) for all Borel sets B C RjTL .

If # ι-» φ(x) defines a self-homeomorphism of RjTL , we shall write fiψ(x)

for the result of pushing fi along ^ . The double stochasticity of μ may now be

expressed in terms of μ as follows:

fix + fi-χ = V\

and

fix + fiq-x = "2

where the measures v\ and v<ι depend only on φ, not on μ. For example, for

0 < a < 1, z/i([O,α]) = τιφ~1{a) and z/2([0?«]) = 7Γ20~1(«) Combining these

equations shows that fi satisfies the inhomogeneous difference equation

μq-x - fi-x = ί/2 - PI . (*)

Suppose μ ; were a distinct doubly stochastic measure supported on Θ. Then

μ' would be a distinct solution of the inhomomogenous difference equation (*),

and the signed measure ξ = μ1 — fi would satisfy the homogenous difference

equation

ξq-χ-ξ-χ = 0

or ξq+x = ξx. Since irrotational rotations are ergodic maps, the Radon-

Nikodym derivative of ζ with respect Lebesgue measure must be constant,

and indeed must be 0 since ξ(R/Z ) = 0. Thus fi — fi' and μ — μ'. |

Using Fourier techniques, one may obtain at least a formal expression for

the Fourier series of the measure fi (exclusive of the constant term which one

knows anyway) in terms of the Fourier series of v2 - v\. On the other hand,

the question of whether the Fourier series one obtains is the Fourier series of

even just a signed measure depends in a delicate way on the Fourier series of

V2 — v\ and on the diophantine approximation of q by rationale.

To see that the hypothesis that q is irrational is essential to Theorem 3,

one need only consider the cases where Θ is a rectangle symmetric about the

diagonal. Then q is rational if the ratio of the lengths of the sides are rational,

and in that case one sees easily that Θ supports uncountably many distinct

doubly stochastic measures.
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It is also easy to see that the rotation number q does not, by itself de-
termine the existence of a doubly stochastic measure supported on Θ. In
particular, if ζ : I x I —> I x I is a, homeomorphism of the the square of the
form ζ(x,y) = (ζι(x),ζ2(y)), then the curve Θ' obtained by pulling Θ back
along ζ has the same rotation number as Θ. On the other hand, we may choose
ζ so that Θ ; is entirely concentrated near the sides of / X /. If Θ' is disjoint
from, say [1/5,4/5] X [1/5,4/5], then Θ ; cannot support a doubly stochastic
measure, by the easy direction of Strassen's theorem above.

3. SL2(7L ) Actions and Double Stochasticity. Let G be a compact
abelian group. In this section we study a special class of doubly stochastic
measures on G X G.

We begin with notation. Haar measure on G, normalized as a proba-
bility measure, we denote by m^. The Pontrayagin dual of G, the group
of continuous complex characters, we write as G. If χ G £?, then χ is the
complex conjugate of χ. When ffi,.. .,</n

 a r e elements of a (discrete) group,
(<7i,..., gn) is the subgroup they generate. If α and b are integers, GCD(α, b) is
their greatest common divisor. If M is a matrix, Mτ is its transpose. Where
we distinguish between row vectors and column vectors, this notation appears
frequently.

If X is a topological space, then C(X) is the space of continuous complex-
valued functions on X. The Riesz representation theorem provides a corre-
spondence between complex regular Borel measures on X and C(X)*, the
bounded complex-valued linear functionals on C(X). We shall systematically
abuse notation by letting the same symbol, usually μ, stand at once for the
measure, the associated functional on C(X) and the extension of this func-
tional to L\(μ).

Let Γ = SL2{7L ) denote the group of 2 x 2 matrices over the integers with

determinant 1 or —1. We understand Γ to act on G x G on the left:

ία b\ ίgΛ _ (αg2 + bg2\
\c d) \gj " \cflfi + dgj'

Then Γ also acts on C(GxG) by (7/)(flfi,£2^= f(l(9u92)T) and on C(GxG)*

by (7/i)/ = μ(7/). The action of Γ on G X G is actually a special case of the

action on C(G X G). Using the canonical isomorphism GxG = GxGwe can

write χ G ( ? x G a s (χi,X2), Xi € G, i = 1,2, where χ(gι,g2) = Xi(flfi)χ2(ff2)-

T h e n 7 χ = (χi,X2)7Γ

Let π{ : GxG -± G be projection onto the ith coordinate (i=l,2). A pos-

itive measure μ G C(G X G)* is stochastic in the ith variable if μ(hπi) — moiK)

for all h G C(G) and doubly stochastic if it is stochastic in both variables.
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LEMMA 2. A positive measure μ G C(G x G)* is stochastic in the ith

variable if and only if μ(l) = 1 and μ(χπ 2 ) = 0 for all nontrivial χ G G.

PROOF. If μ G C{G X G)* is stochastic in the ith variable, then μ(χπi) =

moix) which is 1 or 0 according as χ is trivial or not. Conversely μi(h) —

μ(hπi) defines a measure on G and such a measure is determined by its behav-

ior on characters. If μ(l) = 1 and μ(χπ t ) = 0, then we must have μz =

LEMMA 3. Let H be an abelian group. Let A be a subgroup ofT such

that for any ordered pair of relatively prime integers (α,c), either ( α , c ) τ or

(—α,—c)τ occurs as the first column of an element of A. Then following are

equivalent:

(I) Every finitely generated subgroup of H is cyclic;

(II) HxH = { 7 ( M ) T I 7 € Δ,Λ G H};

(III) H is isomorphic either to a subgroup of Q or a subgroup of Q/Z .

PROOF.

(I) implies (II): If every finitely generated subgroup of H is cyclic, then

given (hi)h,2)τ G H x H, let h be a generator of (/&i,/&2) We may always

choose h so as to write {h\,h,2)τ = (αh, c/ι)τ, where α and c are relatively prime

integers. Then there exists an element 7 of Δ which has either the form (̂  *)
O Γ (Zc *) ' ^ n ^ e ^Γ S^ c a s e > w e have immediately that 7(/ι,0) τ = (/ii,/i2)T;

otherwise we must first replace h by — h.

(II) implies (I): Assume H x H = { 7 ( M ) T | 7 G Δ,/ι G H}. Given

elements hi and h2^ we may write (hι^h2)
τ = 7(/ι,0) τ for some 7 G Δ.

Thus (/&i,/i2) — W? s o {^1^2) is a cyclic group. By induction, if every pair

of elements of H generates a cyclic subgroup, then every finitely generated

subgroup of H is cyclic.

(I) implies (III): Assume that every finitely generated subgroup of H is

cyclic. A pair consisting of a torsion element and nontorsion element can't

generate a cyclic subgroup, so H must be either torsion or torsion-free.

If H is torsion free, pick any element u φ 0 in H. Given υ in H, let w be

a generator of (u, v), so (u,v) = (πi\w,m2w) for integers mi, m2 Note that

mi φ 0. Define a function φ : ϋΓ —• Q by ^(v) = πi2/mi. One checks easily

that 0 is a well-defined injective homomorphism.

If H is a torsion group, choose a sequence of positive integers ni, ri2,...,

such that

1) n t is the order of some element of H;

2) n t divides n t + i ;
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3) if m is the order of some v in H, m divides Πi for i sufficiently large.

Next, choose a sequence of elements Wi, i ^ , . . . such that the order of W{ is n t .

Now we may inductively define a new sequence w[, w'2,... such that wι = w[

and w[ — (rii+ι/7ii)w'i+1 by using the fact that {w'^Wi+i) = (ttft+i) since

both groups are cyclic of order ra, +i. Now mapping w\ to l/n t defines a

homomorphism from H to Q/Z .

(Ill) implies (I): Take common denominators. |

For any abelian group H, write OH for the set {η{h, 0 ) τ | 7 G Δ, /ι G # } •

The set (9j/ coincides with {(/&i,/&2)Γ | (^1,^2) is cyclic}, as one sees from the

proof of Lemma 3.

THEOREM 4. Let G be a compact abelian group. Let A be a subgroup

ofT such that for any pair of relatively prime integers (α,6), either (α,6) or

(—α, -6) occurs as the first row of an element of A. Then the following are

equivalent:

(I) G is isomorphic either to a subgroup ofQ or a subgroup of Q/Z

(II) If μ is a measure on G x G such that ημ is stochastic in the first variable

for all 7 € Δ, then μ is Haar measure on G X G.

PROOF. Assume that G is isomorphic either to a subgroup of Q or a

subgroup of Q/Z . Assume further that μ is a measure on G X G such that

ημ is stochastic in the first variable for all 7 G Δ. Clearly μ(l) = 1, so to see

that μ is Haar measure, it suffices to show that μ(χ) = 0 for every nontrivial

character χ 6 G. Write χ = (χi,X2) as above. Then by the analogue of

Lemma 3 for right actions, χ = (χ3,0)7 T for some nontrivial xs £ G and some

7 G Δ. Since ημ is stochastic in the first variable,

0 = mG(χ3) = (7AO(X3*"I) = (7M)(X3,0) = μ(χ3,0)ητ = μx .

Thus μ is Haar measure.

For the other direction, we observe that by Lemma 2, a positive mea-

sure μ satisfies the hypothesis of (II) provided that its Fourier coefRcents are

supported outside of (9g. So, for example, if χi,X2 6 G generate a noncyclic

subgroup, let μ be the measure on G X G with Radon-Nikodym derivative

Then μ is a real measure and positive if e is sufficiently small, and ημ will be

stochastic in the first variable for every 7 G Δ. I

The next theorem is a straightforward generalization of Lindenstrauss'

characterization of extreme doubly stochastic measures, Lindenstrauss (1965).

Combined with the previous theorem it yields an interesting corollary.
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THEOREM 5. Let G be a abelian compact group and A be a subgroup

of SL2(7L ). Let M be the convex set of all measures μ on G X G such that

ημ is stochastic in the first variable for every 7 £ Δ. Then μ is an extreme

point of Λί if and only if Lχ(μ) is the norm closure of the space spanned by

functions of the form (^1,^2) •-• h(αgι + cg2) with h £ LI(TΠG) and (α,c)τ the

first column of a matrix in A.

PROOF. Suppose μ £ M. Recall that the dual of L\{μ) is L^μ). For

k £ Zoo(μ), u(h) = μ(kh) defines a signed measure o n G x G absolutely

continuous with respect to μ, and the Radon-Nikodym theorem says that all

such signed measures arise in this fashion.

So let V be the norm closure in L\(μ) of the space spanned by all functions

of the form (#1,#2) •-• h(α9i + cff2)? where h £ Li(mo) an<JU(α,c)τ is the first

column of a matrix in Δ. Then V = L\(μ) if and only if whenever k £ Loo(μ)

satisfies μ(kh(αgι + cg2)) — 0 for all h £ Lι{mG) , then k = 0.

Now suppose μ = (l/2)(μi + μ2) for μz £ Λ4. Then v — μ — μ\ is a

signed measure satisfying \v{A)\ < μ(A) for every Borel set A C G X G. Then

there is a A; £ £oo(μ) with ||X||oo < 1 such that v{j) = μ(kj) for all j £ Lχ{μ).

Moreover, for all 7 £ Δ and h £ Li^mo)-, we have

( 7 ) ( i ) ( 7 μ ) ( i ) ( 7 A i ) ( i ) G ( ) G ( ) = 0 .

Thus

μ(kh(αg1 + cg2)) = μ{kηhπ{) = v{ηhπι) = (7i/)(Λπi) = 0.

Now if V = i i ( μ ) , then k = 0, 1/ = 0, μ = μi = μ2, so μ is an extreme
point.

Conversely, if V φ L\(μ), then we can find a fc £ Loo(μ) with ||X||oo < 1

such that μ(kh(αgι + c^)) = 0 for all h £ Zi(raG<). Then A; determines a

signed measure ί/ satisfying |^(A)| < μ(A) for every Borel set A C G x G, and

the measures μ + u and μ — v belong to Λ4. So μ is not an extreme point. |

COROLLARY. Let G be a abelian compact group such that every finitely

generated subgroup ofG is cyclic. Then Lι(rriGχG) is the norm closure of

the space spanned by functions F of the form (51,52) ^ h(αgι + cg2) where

h £ LI(TΠG) and α and c are relatively prime.

PROOF. If every finitely generated subgroup of G is cyclic, then ΛΊ con-

tains just the single measure rncxG which is then trivially extreme. |

The following theorem is a variation on Theorem 4:

THEOREM 6. Let G be compact group. Let A be a subgroup

with the property that given any pair of relatively prime integers (α, b), either
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(α,6) or (—α, — b) occurs as one of the columns of some element of A. Then

the following are equivalent:

(I) G is isomorphic either to a subgroup of Q or a subgroup ofQ/Έ

(II) Ifμ is a measure onGxG such that ημ is doubly stochastic for all η G Δ 7

then μ is Haar measure on G X G. |

There are subgroups Δ of arbitrarily large index in SL<ι{ΊL ) satsifying

the hypothesis of this theorem. For example, fix a prime p and consider the
\α b~

subgroup Γo(p) of SLϊiΊL ) consisting of elements g = where p divides
c d

c. The index of To(p) is p2. Given a relatively prime pair (α,6), find a matrix
α ~

in SL<ι{7L ). The other elements of SL2(% ) whose first row is

b
. If α is not divisible by p, then we can choose k so that

c + kα d + kb
\-e -d]

c + kα is divisible by p. If α is divisible by p, then G Γ0(p).
[α b \

When the compact abelian group G has a measure-preserving Borel iso-

morphism to the unit interval, we can interpret these results in the context

of measures on / x / in a straightforward if perhaps unnatural way. If G is a

prime cyclic group, then we recover the well-known theorem about matrices

to which we alluded in the introduction.

Given a compact abelian group G and a subgroup Δ of the SL2(7L ), the

set of measures μ such that ημ is stochastic in the first variable for every 7 G Δ

forms a convex set, let us call it Λ4G,A SO one may consider the problems of

constructing and classifying the extreme points in MG,ΔI
 a n ( ^ of deciding the

existence of elements of MG,Δ w ^ h prescribed support. Actually each closed

convex set Λ4G,A is finitely refutable in the sense of Section 1, so one may

hope for extensions of the techniques of that section.

More generally, given a compact abelian group G, and closed subsets

Si C G X G and S2 C G X G, one may consider the existence of probability

measures μ supported on S with j5, the Fourier transform of μ, supported on

5*2. (If, for example, 5*2 contains the identity but not the rest of the "axes"

then such a μ is automatically doubly stochastic.) Questions of this sort relate

to the uncertainty principles of quantum mechanics. These questions should

even be of interest even in the case of finite groups G, in which case one is

dealing with matrices.
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