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DISTRIBUTIONS WITH LOGISTIC MARGINALS

AND/OR CONDITIONALS

BY BARRY C. ARNOLD

University of California, Riverside

Bell shaped marginals and conditionals are not uniquely associated with
multivariate normality. A trained eye is required to distinguish logistic and nor-
mal densities. Consequently it is of interest to study the variety of multivariate
distributions with logistic rather than normal marginals and/or conditionals. A
brief survey is provided. Selection of the particular model, as always, should be
driven by some knowledge of the stochastic mechanism generating the data at
hand.

1. Introduction. A random variable X will be said to have a logistic
distribution with location parameter μ(eR) and scale parameter σ(eR+) if its
survival function is of the form

x) = [l + exΊ>(?—!±)]-1, xeR. (1.1)
σ

If (1.1) holds, we write X ~ £(μ,σ). The standard logistic corresponds to
the choice μ = 0,σ = 1 and we typically use Z to denote a standard logistic
variable. Evidently E(Z) = 0 and, not so evidently, υar(Z) = 7r2/3. Our de-
velopment of multivariate logistic distributions (distributions with marginals
and/or conditionals of the form (1.1)) will exploit a variety of special features
and representations of the univariate logistic distribution. We begin by re-
viewing these univariate facts. For more details, see Johnson and Kotz (1970,
Chapter 23).

The quantile or inverse distribution function of the standard logistic dis-
tribution is of the form

^ - ) , 0 < W < l (1.2)
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16 LOGISTIC DISTRIBUTIONS

(here and henceforth all logarithms are natural logarithms). If U has a uniform

(0,1) distribution then using (1.2) it follows that

^ ) . (1.3)

The defining differential equation for the standard logistic distribution is

fz(z) = j-zFz{z) = Fz(z)Fz(z) . (1.4)

Insight into alternative stochastic models of random variables with logistic

distributions is provided by study of the moment generating function.

Mz(t) = E(etZ) = T(l + t)T(l-t), | t | < l . (1.5)

One can recognize the term Γ(l - t) as the moment generating function of an

extreme value random variable with density

f γ ( y ) = e~y e x v ( e - y ) , y e K (1.6)

and so if Z ~ £(0,1) then

Z = Y1-Y2 (1.7)

where Yi,Y2 a r e i.i-d- extreme value variables with common density (1.6). A
famous convergent infinite product

r1 (L8)
gives us immediately an alternative representation of a logistic random variable

in terms of independent Laplace (or double exponential) variables. Thus if

Z ~ £ ( 0 , l )

Z = ΣW3/j (1.9)

where the Wj's are i.i.d. standard Laplace variables with common density

) = i e - H , weR. (1.10)

Since a Laplace variable is representable as a difference of two i.i.d. standard

exponential variables we can give a conditionally convergent expression in

terms of exponential variables
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where the Ej's and J5' 's are independent with common density

f E ( x ) = e~x, x>0. (1.12)

Representations (1.9) and (1.11) are discussed in some detail and devel-

oped further in George and Devidas (1992).

A characteristic feature of the logistic distribution is its closure under

geometric minimization. Suppose Xi,X25 are i.i.d. C{μ,σ) variables and

TV, independent of the X 's, is a geometric(p) random variable (i.e. P(N —

n) = p(l-p)n~1, n = 1,2,...). Define

Y = minX; . (1.13)
i<N V '

By conditioning on TV, it is readily verified that Y, the geometric minimum of

the X 's, is again a logistic variable (Arnold and Laguna (1976)). Specifically

we have

Y ~ £ ( / i + σlogp,σ). (1.14)

The symmetry of the logistic distribution yields an analogous result for geo-

metric maxima. If we define

Z = ma,xXi (1.15)
i<N V ;

then

Z ~ C(μ-σlogp,σ) . (1.16)

From (1.14), following Arnold and Laguna (1976), we can observe that

Y-σlogp^X! . (1.17)

If we begin with i.i.d. X^s and define Y as in (1.13) then if (1.17) holds for

every p e (0,1) then necessarily X\ is logistic. If (1.17) holds for only one value

of p, then a so-called semi-logistic distribution is possible for X. A random

variable X will be said to have a semi-logistic (p, φ) distribution if

) = [l + φ(x)}-\ xeΈL (1.18)

where φ is nondecreasing and right continuous and satisfies

φ(x) = -φ(x + σ log p) (1.19)
P

for some σ > 0. The nicest solution to (1.19) is of the form φ(x) = ea+bx

which takes us back to the logistic distribution.
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A final observation which will prove useful in Section 3 is that the logistic
distribution is representable as a scale mixture of normal random variables
(Andrews and Mallows, 1974). In this setting, let Z be standard logistic and
Z* standard normal. Now assume V, independent of Z*, has a Kolmogorov-
Smirnov distribution, i.e.

P(V<v) = l-2 ] Γ ( - i y + 1 exP(-2j V ) . (1.20)
3=1

It follows that

Z = 2VZ* (1.21)

2. Multivariate Logistic Distributions. When we speak of a mul-
tivariate logistic distribution we usually refer to a distribution with logistic
marginals. In Section 7 we will broaden the definition to include distribu-
tions with logistic conditionals, but in Sections 3-6 the requirement of logistic
marginals will be implicitly or explicitly invoked. Curiously it is possible to
encounter in the literature, multivariate logistic distributions which have nei-
ther marginals nor conditionals of logistic form (for example the elliptically
symmetric fc-dimensional logistic distribution introduced by Jensen (1985) and
discussed in some detail in Fang, Kotz and Ng (1990) is of this kind). Arnold
(1992) provides a broad coverage of methods which have been used to gener-
ate multivariate distributions with logistic marginals. In this paper we focus
on a detailed discussion of just three techniques: Mixtures, differences of ex-
tremes and geometric minima. In the final section we summarize results on
distributions with logistic conditionals.

3. Mixture Representations. Suppose that we begin with a joint
density fz,w{z^w) with a standard logistic marginal density for Z. We can
w r i t e .oo

fz(z) = / fzιw(z\w)dFw(w) (3.1)
J — oo

and view this as a mixture representation of the univariate logistic density.
An enormous variety of conditional densities fz\w(z\w) a n ( i °f mixture dis-
tributions Fw(w) can be used in the form (3.1). Equivalent but sometimes
more convenient representations might involve distribution functions, survival
functions, or moment generating functions.

/•oo

Fz(z) = / Fz\W{z\w)dFw{w) (3.2)
J—oo

Fz(z) = Γ Fzιw(z\w)dFw(w) (3.3)
J — OO
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/•oo

Mz(t) = / MZ\w{t\w)dFw(w) . (3.4)
J — OO

Any of the above mixture representations can be readily employed to
generate a multivariate logistic distribution, which is conditionally indepen-
dent (and hence exchangeable in the strong deFinetti sense). Thus the k-
dimensional versions are

/•oo κ

hU)= [\[}Z\w{zi\w)\dFw{w) (3.5)

» (3-6)

/•OO Λ

t/ —OO -«

and
/•oo ^

(w) (3-8)

In all these formulations, the random variables (Zi, . . . , Z^) are conditionally
independent given the mixing random variable W.

Scale mixtures provide an example of the use of representations (3.5).
For them, it is assumed that

fz\w(z\w) = fo(z/w) (3.9)

and that Fw(w) has support on the positive half line. If we accept (3.9) as
our model, we can alternatively write

Zi = WVi (3.10)

where the VJ's are i.i.d. and W is independent of the T̂  's, chosen of course
such that WV\ ~ £(0,1). Of course there are enormous numbers of choices
for the distributions of the independent variables, the V's and W. There
are some restrictions. Arnold (1992) observed that one cannot have such a
representation with W ~ Γ(α,l) where a < 1.5. It is possible to have a
representation with W ~ Uniform (0,1). As is shown in Arnold and Robertson
(1989), the appropriate density for V in that case (chosen so that WV is
standard logistic) is

/ y ( t ; ) = M t a n h ^ s e c h 2 ^ , υeR. (3.11)
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A more attractive alternative is available using the representation (1.21). In

that framework (with notational changes to fit the present discussion) we can

choose

Vi~N(09l), i = l , 2 , - ,* (3.12)

and

W = 2W' (3.13)

where W has the Kolmogorov-Smirnov distribution. Since in this case V_ =

(VΊ,..., VJk) is spherically symmetric, so is any scale mixture. It follows that

we have at hand the means to construct an elliptically contoured multivariate

logistic distribution of the form

X_ = μ + 2W'AV_ (3.14)

where μ e R*, A is a non-singular k x k matrix, V_ ~ JV(O, I) and W7, indepen-

dent of y , has the Kolmogorov-Smirnov distribution. In general we cannot

write down the density for the model (3.14). An exception occurs in the 3

dimensional case. When k — 3 and A — I we can use properties of the inverse

Gaussian density to eventually obtain the following representation for fχ_(x).

The joint density corresponding to the model (3.14) was developed earlier

in the form μ + RAU_ where U_ is a fc-dimensional random vector uniformly

distributed over the unit fc-sphere and i?, independent of U_ was a positive

random variable whose density involved modified Bessel functions of the third

kind. (Arnold and Robertson (1989)). The present development is clearly

more aesthetically appealing.

Instead of a scale mixture, one could consider a location mixture (an ad-

ditive rather than a multiplicative model). Here we seek independent random

variables V and W such that V + W ~ £(0,1). Our k- dimensional logistic

distribution would then be of the form

Zi = Vi + W (3.16)

where the V^s are i.i.d., independent of W. A plethora of choices for the

distributions of V and W exist. Referring to equation (1.7), one obvious pos-

sibility is to choose V^s to be i.i.d. extreme value variables (with density (1.6))

and assume W is such that — W is an extreme value variable (independent

of the Vi's). This leads to the classical Gumbel-Malik-Abraham fc-variate lo-

gistic distribution (Gumbel (1961), Malik and Abraham (1973)). This model
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will be discussed in more detail and generalized in Section 4. Alternative

additive models for the logistic can be derived from the "sums of Laplace "

representation (1.9) or the conditionally convergent "linear combinations of

exponentials" representation (1.11). So, for example, the VJ's could be expo-

nential with an appropriate choice of distribution for W. Alternatively they

could be Laplace variables. Further discussion of such models is deferred to

the next section.

We turn now to mixture models generated using (3.2) or (3.3). Perhaps

the simplest examples involve powers of distribution functions (or of survival

functions). Thus to use (3.2) we might postulate that for every w > 0,

Fz]w(z\w) = [F0(zψ (3.17)

where FQ(Z) is a fixed distribution function. Then, provided that the support

of W is (0, oo), we may seek choices for the base distribution function FQ and

for the distribution of the mixing variable W so that

ΓOO

(1 + e-*)-i = / [F0(z)ΓdFw(w) . (3.18)
Jo

In this expression, the distribution F\γ can be chosen quite arbitarily and

the corresponding form of i*o can be expressed in terms of the inverse of the

Laplace transform of Fw Specifically, F0(z) = exp[-Mpλ{{l + e*)"1)] where

is the Laplace transform of Fw as defined following equation (3.21).

Our resulting fc-variate distribution with standard logistic marginals would

then have joint distribution function

\lb(zi)FdFw(w) . (3.19)

,t=i

An analogous development involving survival functions using (3.3) provides

closely related distributions. For these we choose a survival function GQ(Z)

and a mixing distribution Fw(w) such that

/ [Go(z)]wdFw(w) (3.20)
o

and obtain a joint survival function of the form

fFziz) = Γ[f[Go(zi)rdFw(w) . (3.21)
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Such models are typically described as frailty models (see Oakes (1989)). If
we denote the Laplace transform of F by

MF(t)= Γ e~twdF(w)
Jo

we can write (3.21) in the form

fF 1 (( 1 + c * ) " 1 ) ) (3.22)

where F = Fw. This expression yields a valid joint survival function even if
MF is not a Laplace transform. It must however satisfy MF(0) = 1, M'F(t) < 0
and Mp(t) > 0, for every t > 0. In this generality it is an Archimedean
distribution (Genest and MacKay (1986)). The distribution (3.19) admits the
parallel representation

(3.23)

The choice MF{t) — (l + t)~a (corresponding to a gamma distribution for W),
in (3.23) yields a multivariate logistic distribution of the form

i + e~Zt ) 1 / a ~k + i )" α ( 3 2 4 )
t = l

(the choice a = 1 in (3.24) corresponds to the Gumbel-Malik-Abraham distri-
bution). Other examples may be found in Arnold (1992) and some extensions
are discussed in the section on frailty models in this paper.

Note that, in the above development, it is not required that the dis-
tribution of W be continuous. If W has a geometric distribution, then (3.2)
and (3.3) can be viewed as dealing with geometric maxima and minima respec-
tively. Referring to (1.17), we see that an admissible choice for the distribution
function F$ is translated logistic. Further discussion of such geometric extreme
models is deferred to Section 5.

The final class of exchangeable models obtained via mixtures involves
the use of moment generating functions. In (3.8) we assume that Fw(w) has
support (0, oo) and our joint moment generating function is of the form

/•oo k

Mz(t)= [T\Mo(ti)]wdFw(w) (3.25)
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where Mo(t) is an arbitrary infinitely divisible moment generating function (so

that [M0(t)]w is an m.g.f. for every w) and F\γ(w) is chosen so that

t)Γ(l - t) = Γ[M0(t)]wdFw(w) . (3.26)
Jo

Arguing in a manner analogous to that used in the frailty discussion, we can

write the resulting joint moment generating function in terms of the moment

generating function Mp^t) corresponding to Fw in (3.26). Thus we have

k

Mz(t) = MF(Σ M^(Γ(1 + U)T(1 - «,-))) (3.27)
t = l

For example if we choose Afp(ί) = (1 + t) a for a > 0, we obtain the

following joint moment generating function (with standard logistic marginals).

- k + l]a . (3.28)

The use of such models is complicated by the difficulty of "inverting"

joint moment generating functions. Having developed a spectrum of exchange-

able multivariate logistic models using the mixture paradigms (3.5)-(3.8), it

is immediately evident that more general families can be developed by mixing

dependent rather than independent variables. Thus if we have determined a

mixing distribution F\y(w) and a family of conditional densities fz\w(z\w)

such that (3.5) yields a multivariate logistic distribution, then, instead of us-

ing Πj=i fz\w(zί\w)i w e could substitute any k dimensional joint density with

marginals given by fz\w(zi\w)-> i = 1,2,...,A;. Analogous modifications of

(3.6) - (3.8) are of course possible.

Some of the distributions to be described in subsequent sections can be

viewed as mixtures of dependent distributions and so provide examples of

this technique. Note that in the extension of (3.19) to dependent mixtures by

replacing Πt=i ^o(zi) by F0(z) we must be sure that FQ(Z) is max-infinitely di-

visible to guarantee that [FoG?)]™ is a valid fc-dimensional distribution function

for every w. An analogous requirement of min-infinite divisibility is needed to

extend (3.21).

4. Differences of Extremes. As observed in Section 1, if Yi and Y2

are i.i.d. extreme value random variables (with density (1.6)) then Yλ - Y2 has

a standard logistic distributrion. This immediatedly permits us to construct

fc-dimensional logistic distributions of the form

Z_ = K-Y_ (4.1)
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where U_ and V_ are independent random vectors each with extreme value

marginals. The case where V\ = = Vk and where U\,..., Uk are indepen-

dent corresponds to the classical Gumbel-Malik-Abraham distribution with

joint moment generating function of the form

k k

Mχ(t) = Γ(l + £ U) Π Γ(l - U) . (4.2)
t = l t = l

If instead we allow U_ to have Gumbel's multivariate extreme distribution, i.e.

-aUi)1/a], (4.3)
t = l

(where α > 1) and assume Vi = = Vk (with density (1.6)) then, with Z_

defined by (4.1) we have

e-az')1/a)-\ (4-4)

a distribution introduced by Strauss (1979). A serious problem with such a

distribution is that p(Zi,Zj) > \ for every i φ i' and such strong correlation

may not be desirable. An easy alternative with a full range of non-negative cor-

relations is provided by choosing U_ and V_ to be independent, each with Gum-

bel multivariate extreme distributions (given by (4.3)), perhaps with different

values of a for U_ and V_ respectively. A technique to construct a fc-variate lo-

gistic distribution with completely arbitrary covariance structure was outlined

in Arnold (1992). The trick is to use the conditionally convergent represen-

tation (1.11) for logistic variables or, alternatively, the absolutely convergent

representation

2i-Yf2.+ y; ari (4.5)
j=J+l

for any integer J, where the Ej's, E"s and Wj's are independent, the Ej's

and Ej's having a common exponential density (1.12) and the Wj's having

a Laplace density (1.10). We use representations (4.5) for Z\, Z<ι,..., Zk and

achieve the desired correlation by allowing some of the exponential variables

to appear in the expressions for more than one Z{. For example if

=l J j=l J
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k = 1,2 and if for j = 1,2,..., J

j ~ 3

and

then

which will be arbitrarily close to —1 for J sufficiently large.

5. Geometric Extremes. It was remarked in Section 1 that if Xi, X25...

were i.i.d. logistic (μ, σ) variables and if N ~ geometric(p) is independent of

Xϊs then

Y = minX2 ~ C(μ + σlogp, σ) . (5.1)
t<JV

Thus in order to get Y to have a standard logistic distribution we may begin

with X t 's with a £(— logp, 1) distribution. To generate multivariate logistic

distributions with standard logistic marginals we may define for i — 1,2,..., &,

Z{ = min Xij (5.2)

where TV is a random vector with geometric^) marginals (i = 1,2, ...,fc)

and (XLJ, X2j? ? ^fcj) îre i.i.d. fc dimensional random variables with logistic

(—logpt , l ) marginals, i — 1,2, ...,&. Any multivariate geometric distribu-

tion and any multivariate logistic distribution can be used. A hierarchy of

multivariate logistic distributions can be constructed paralleling the hierar-

chy of multivariate exponential distributions described in Arnold (1975). A

complete listing is impossible. Certain special cases merit attention.

If N\ = N2 = - - = JVjb(= TVsay) where N ~ geometric (p), and if Fχ_{x)

is a fc-dimensional survival function with logistic (—logp, 1) marginals then

the joint survival function of the random vector Z_ defined by (5.2) is

h(z) = PFχiz)l{\ - (1 - p)FχU)) . (5.3)

From experience in the univariate case we are aware that it is possible that the

distributions Fχ_ and F^ in (5.3) could be of the same type for every p. When

Z_ = X_ — c(p) in (5.3) we say that the distribution is min-geometric stable

(following, for example, Rachev and Resnick (1991)). As outlined in Arnold

(1992), using results of Rachev and Resnick, the general form of min-geometric
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stable distributions with standard logistic marginals is

FzU) = 11 + / max [/;(s)e2 ]<J , z e Rk (5.4)

L Jo !<*<*; J

where Λ(θ),..., fk(s) are non-negative functions on [0,1] satisfying /J" fi(s)ds =
1, i = 1,2,..., k. Clearly a broad spectrum of such distributions exists, since
the fi(s)'s are quite arbitrary in (5.4). The semi-logistic version of (5.4) re-
sults if we replace each eZi by gi(z{) where the flft (^ )'s are non-decreasing right
continuous functions satisfying gi(zi) = \gi(zi + logp*). The type of such dis-
tributions is preserved under geometric(p*) minimization for one fixed choice

Examples of the min-geometric stable paradigm (5.4) are the "Strauss"
model

k

a*) 1/*]- 1 (5.5)

(cf. (4.4)) and

- 1

, zeΈLk . (5.6)
i=l

A random variable Z_ will be said to be max-geometric stable if -Z_ is
min-geometric stable. It has the property that geometric maxima will be
of the same type. Trivially Z_ is max-geometric stable with standard logis-
tic marginals if and only if -Z_ has its survival function of the form (5.4).
An interesting open question is that of estimating the structure functions
/i(θ),.. ., Λ(«s) in (5.4) based on a sample from the distribution Z_.

Of course the model (5.3) can be used to generate new multivariate lo-
gistic distributions beginning with a non-min-stable distribution for X_. For
example if X has independent standard logistic marginals, then the version of
(5.3) with standard logistic marginals is

Σ **+'i+" (5-7)

" 1
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Further examples can be generated if we allow TV to be a more general

multivariate geometric distribution. For example, in two dimensions for nota-

tional economy, if we assume that (Ni, 7V2) has a bivariate distribution of the

form
P(N! >nuN2> n2) = p^0(p10 + poo)712'711 , nλ < n2

= Poo(Poi+Poo)ni-n\ n1>n2

 ( ' }

and if we assume X_ has independent logistic marginals, then (5.2) yields a

non-min-stable bivariate distribution with standard logistic marginals of the

form

pio

( }

Following Arnold (1990) if we consider a sequence of independent tri-

als with k + 1 possible outcomes 0,1,2, ...,fc and associated probabilities

Po->Pι > -iPk(Σi=oPί = 1)? w e c a n define a multivariate geometric random

vector jV = (JVi,..., TV̂ ) such that 7V« represents the number of outcomes of

type i which precede the first outcome of type 0. If we use this distribution

in (5.2) and assume X_ has independent logistic marginals, we are eventually

led to a flexible fc-dimensional distribution with standard logistic marginals of

the form

i=i nΦk

• 7J 7, /J CJU2J3C yo.iv)Δ-j L-j Δ^ί

I -1

As Arnold (1990) points out, although in the above development the c's in

(5.10) are functions of po?Pi> ->Pk > the expression (5.10) continues to repre-

sent a genuine survival function with standard logistic marginals for a much

broader spectrum of choices of c's.

6. Frailty. The general class of frailty type multivariate logistic dis-

tributions may be defined as follows. Choose a univariate survival function

Go(z) and a mixing distribution Fw(w) so that (3.20) holds, i.e.

(1 + ez)-λ = I [G0(zψdFw(w) . (6.1)
Jo

Now take any A -dimensional survival function G(z_) with marginal survival

functions of the form Go(zi) (independent marginals is a possibility as dis-
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cussed in Section 3). Then define a A -variate logistic distribution by

Fz.(z) = / [G(z)]wdFw(w) . (6.2)
Jo

If we denote the Laplace transform of F\y by Mp, then (6.2) can be written

as

FzU) = MF(-logG(z)) (6.3)

where the marginal survival functions of G(z) must be of the form

Go(zi) = exp[-M^(( l + e*')"1)] (6.4)

to guarantee standard logistic marginals in (6.3). If for example Mp(t) =

(1 + ί ) " 1 , then

Go(*0 = exp(-e*) ( 6 5 )

Any joint survival function G(z_) with marginals of the extreme type (6.5) can

be used to generate a &-variate logistic distribution of the frailty type (6.3).

For example if we take a Gumbel multivariate extreme survival function of the

form

j (6.6)

for some a > 1, then (6.3) yields

, z β R* , (6.7)

which is the survival function of minus 1 times a Strauss multivariate logistic

variable (cf. (4.4)). By choosing Go(z) to be an arbitrary min-stable distribu-

tion with marginals given by (6.5) we can recognize that all the min-geometric

stable distributions with standard logistic marginals (displayed in (5.4)) may

be viewed as frailty models. Marshall and Olkin (1990) describe several mul-

tivariate logistic distributions using what they call product survival functions.

This technique is closely related to the frailty approach, using (6.4).

7. Distributions with Logistic Conditionals. The preoccupation
with development of models with specified marginals overlooks the inherent

difficulty of envisioning marginal densities of dependent distributions. With

this in mind, Arnold, Castillo and Sarabia (1992) have advocated the use

of distributions with specified conditional distributions. They provided some

material on distributions with logistic conditionals. That material will be
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reviewed and extended somewhat. The general problem of determining all k-

variate distributions for which all conditionals are logistic remains tantalizingly

open.

We consider a fc-dimensional random vector X_ = (Xi , . . . , Xk)- For each

i, let X_^ denote the vector X_ with the i'th coordinate deleted. Analogously

for a vector x_ in R*,:cM is x_ with X{ deleted. We seek to identify all joint

densities for X_ such that, for each i and each αMcR*""1, the conditional density

of X{ given X}%> = #(*) is logistic with location parameter μi(x_^) and scale

parameter σt (x^)). If a distribution has such properties, then there will exist

corresponding marginal densities

ft(*(i)) = / i ( θ ( i ( < ) ) (7-1)

and, writing the joint density as a product of conditional and marginal densi-

ties in k available ways, we have

[1 +
g2(£ ( 2 )) exp[(x2 - μ2(xS

(7.2)

exp[(xfc - μk(x

If we define

we can rewrite (7.2) in the form

= φ2{x^ >) cosh t ^ ^(7U f ^

- μk(χ{k))

This harmless looking system of functional equations awaits solution.

Arnold, Castillo and Sarabia (1992) pointed out that if we are willing to assume



30 LOGISTIC DISTRIB UTIONS

that σi(χ(%>) = σ{, i = 1,2,...,k (constant conditional scedastic functions),

then a solution can be obtained. If σ,(zM) = σt , then denning Yi = ex*lσi, i =

1,2,..., k we find that Y_ has Pareto conditionals. It then follows that the joint

density of Y_ must be of the form

My) = Σ'Λl*
- 2

, 2/>Q (7.5)

where &. is the set of all vectors of O's and l's of dimension k. All the δ^s are

non-negative in (7.5). Some but not all can be zero. Transforming back we

get the following family of logistic conditionals densities

*=1

- 2

xe ΈLk (7.6)

We turn next to discuss the possible existence of centered logistic condi-

tionals distributions, i.e. distributions for which Xi\X^^ = x^ ~ £(0, σi(x_^))^

i.e. those in which μi(x^) = 0, for all i's. A trivial example is provided by the

case in which the X^s are independent so that σ^zW) = σ;, i = 1,2,. ..,&.

It is conjectured that no other examples exist. To buttress this claim consider

the bivariate case. Equation (7.4) reduces to

φι{x2) cosh( Cθsh(;
X2

'2σ2(Xl)
J '

Set xi = 0 in (7.7) to obtain

Φi(x2) = 02(0) c o s h ( ^ — ) .

Analogously, setting x2 = 0,

02(&i) = 0i(O) cosh( 1 ) .
2σχ(0)

Evidently also 0i(O) = 02(0). Substituting back in (7.7) yields

cosh(

(7.7)

2σ2(x\)'
(7.8)

If we change variables letting

yi = z;/2σ;(0), * = 1,2
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and define
= σ2(0)/σ2(y12σ1(0))

then (7.8) can be written in the form

cosh(αi(yi)y2) = cosh(y2) cosh(α2(y2)yi) . (7.9)

Taking logarithms in (7.9) and differentiating we conclude eventually that

only solutions of the form a\(y\) = OL\ and α 2 (y 2 ) = α 2 are possible. Then

σi(xi) = σ\ and σ 2(x 2) = σ2. Consequently the only centered bivariate logistic

conditionals distributions are those with independent marginals. If this result

can be extended to k dimensions, it suggests the possibility that (7.6) may

actually exhaust the possibilities for logistic conditionals distributions. Finally,

it may be observed that in the class of distributions (7.6), logistic marginals are

only encountered in the case of independence. It is consequently conjectured

that an assumption of logistic marginals and logistic conditionals can only be

satisfied in the trivial case in which the marginals are independent.

Acknowledgement. I am grateful to a referee for pointing out an error

in the original version of this paper.
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