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RANDOM VARIABLES, DISTRIBUTION FUNCTIONS,
AND COPULAS — A PERSONAL LOOK BACKWARD AND FORWARD

By A. SKLAR
Illinois Institute of Technology

The author recalls his initial involvement with the basic notions of prob-
ability theory, which began in the late forties in the context of number theory,
continued through his work with B. Schweizer on probabilistic metric spaces,
and culminated in a correspondence with Fréchet that led to the identification
and naming of copulas. The author speculates about possible future applications
of the theory of distribution functions with given margins: In particular, there
is the prospect of productive treatment of situations where, say, no common
probability space can be found for a given set of “random variables,” but such
common probability spaces exist for arbitrary proper subsets of the given set.

This paper presents my recollections of, and outlook on, one phase of the
development of our subject, up to the early sixties. It also indicates what I
believe to be a promising direction for future work. I thank the organizers of
the conference for the opportunity to do this, and I thank the referees for their
very helpful comments.

My serious engagement with probability began in the late forties, in the
context of number theory, where one meets statements such as: “almost all
numbers are composite” [Hardy-Wright (1960), p. 8] and: “The probability
that a number should be quadratfrei is 6/7%” [ibid, p. 267; “quadratfrei” is
now usually anglicized to “squarefree”]. They refer to a function, often denoted
by é and called the “density,” defined for certain sets of positive integers by

6(4) = lim %#(A N {1,2,---,n})

whenever the limit exists, where #(5) denotes the number of elements in the
(finite) set S. But § is not a measure, since its domain is not closed under the
binary Boolean operations: as pointed out in Niven (1951), p. 424 “sequences
A and B can be constructed [Buck (1946), p. 571] so that 6(A) and é§(B) exist
but §(AU B) and 6(AN B) do not.”
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Nevertheless, despite this apparent deficiency, by the late forties a large
body of results involving §, of strikingly probabilistic flavor, had been achieved.
For a contemporary survey of the situation see Kac (1949); Billingsley (1969)
provides an elegant exposition of an important special case; and a more recent,
concise survey appears in Section 5 of Galambos (1982).

Elementary combinatorial arguments enabled me to contribute to this
body of results the following straightforward extension of the quoted statement
about squarefree numbers:

For any integer n > 2, the probability [i.e., density] of the set of positive
integers that are n-free, i.e., not divisible by the nth power of any prime, is
1/{(n), where ((n) is the value of the Riemann zeta-function at n (recall that

1/¢(2) = 6/?).

As one consequence of this result, consider the function h defined on the
positive integers by h(1) = 0 and

h(m) = max(eq,---,a) for m > 1,

where m = k' ---k;* is the standard representation of m as a product of
prime-powers. Then for any positive integer n, the probability that A assumes
the value n is equal to the probability of the set of integers that are (n+1)-free
but not n-free, and so is equal to 1/{(2) for n = 1, and 1/{(n + 1) — 1/¢{(n)
for n > 2. Since the sequence 1/{(n) is strictly increasing and has the limit
1, and since the difference 1/{(n+ 1) — 1/{(n) behaves like 27"~ for n large,
one can not only define a cumulative distribution function F for h by

F(z) = 6{n | h(n) < 2},

but show that this distribution function has finite moments of all orders. In
particular, the mean value of h is

ﬁé”(min-«b) :”;(“ﬁ)’

a number slightly larger than 1.7.

At this time I was essentially ignorant of measure theory and the measure-
theoretic foundations of probability theory as codified in Kolmogorov (1933).
(Having mentioned this classic book, I cannot resist the temptation, in a con-
ference devoted to work ultimately based on that of Fréchet’s, to note that in
Chapter 1, Section 5, Kolmogorov says: “Random variables from a mathemat-
ical point of view represent merely functions measurable with respect to P(A),
while their mathematical expectations are abstract Lebesgue integrals. This
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analogy was explained fully for the first time in the work of Fréchet.”) But
as I only found out later, I was not exactly alone in this. Even if not afflicted
by my lamentable ignorance, a good part of the mathematical community was
apparently beset by inertia. To this day, I find it remarkable that 21 years
after the appearance of his book, Kolmogorov himself, speaking to an audience
of colleagues and specialists, still felt it desirable to repeat his basic definitions
and axioms [Kolmogoroff-Prochorow (1956), pp. 113-114]. As for the general
situation in the late forties, there is a remark by Eduard Marczewski. He had
edited and published some papers of his teacher Stefan Mazurkiewicz, who had
“died immediately after the war, as a result of wartime difficulties” [Zygmund
(1951), p. 8]. In a note at the end of Mazurkiewicz (1949), Marczewski says:

“Il est cependant & remarquer que, pour les probabilistes, les distributri-
ces des variables sont préférables aux variables mémes et le jeu de pile et face
est préférable a ’espace des fonctions mesurables.”

In a footnote to this note, Marczewski referred to Paul Lévy and J. L.
Doob, whose contrasting practices were illustrated in Lévy (1937) and Doob
(1947). As for Lévy, we read in Taylor (1975), p. 308 that:

“He never learnt to use the machinery of modern measure theory so that
when he studied sample paths he did not speak of points w in an underly-
ing probability space Q and o-algebras of sets which determined the correct
conditioning fields for a proper definition of the Markov or the strong Markov
property. His intuition was almost infallible, and this is all the more surprising
because many of the truths he discovered go counter to the normal intuition
of an analyst. One can only explain his success with the belief that he was
using subconsciously and informally the points of a probability space to which
he never referred.”

Doob, of course, expressed the opinion (most explicitly and emphatically
in Doob (1953)) that probability theory was simply a branch of measure theory,
a point of view gently but firmly rebutted by M. Loéve [(1977), pp. 172-174,
unchanged from previous editions]. In any case, by the middle fifties, most,
if not all, probabilists would have defined a random variable as a measurable
function on a probability space. Statisticians, on the other hand, would most
likely have behaved differently, and defined a random variable, if at all, as (a
rather vague) “anything to which a distribution function can be attached.”
This contrast was forcefully pointed out by Karl Menger in his talk at the
Third Berkeley Symposium on Mathematical Statistics and Probability, which
he begins by saying:

“In his great book Sequential Analysis, Wald defines a random variable
as a variable z such that ‘for any given number ¢ a definite probability can
be ascribed to the event that z will take a value less than ¢’ ---. In 1947, 1
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submitted to Wald the following two observations: (1) the concept ‘variable’
on which the notion of random variable is based does not appear to be that
of a numerical variable, the only one then clearly defined; (2) the statement
and example on page 11 seem to be at variance with the definition of random
variables on page 5.

“I believe that I carry out Wald’s intentions by saying that he fully agreed
with both remarks and expressed the hope to clarify the statistical concept
of random variables at a later occasion. His untimely death in 1950, after
the completion of his fundamental book on statistical decision functions (in
which he essentially retained the treatment of random variables of Sequential
Analysis) prevented him from carrying out this plan.” [Menger (1956), p. 215.]

I mention Menger and Wald because each had earlier written about “sta-
tistical metric spaces” [Menger (1942), Wald (1943)] in which distances are
statistical objects rather than fixed numbers. Menger defined these spaces
in terms of distribution functions rather than random variables; and Wald,
while retaining Menger’s definition, in effect treated distances as independent
random variables. Now when I arrived at the Illinois Institute of Technology
in 1956, I met Berthold Schweizer; and Bert, having some time back been
struck by a remark in Menger (1949), had come to IIT in order to work on
statistical metric spaces under Menger’s direction. Bert introduced me to the
subject and persuaded me to work together with him on it; so began our long
collaboration.

As we started to work together, I felt that I needed to learn much more
about modern probability theory. I decided to do this by developing the sub-
ject, from the ground up, as far as possible in my own way. (I recommend this
as a good way to learn virtually anything, provided that in thus “reinventing
the wheel” one does not lose sight of the fact that one is redoing something
that has been earlier, and most likely better, by others.) Individual (numer-
ical) random variables were no problem: I defined them as functions on the
unit interval. It was only later that I found out that I had been anticipated in
this by at least 31 years. As Doob says in his Appreciation of Khinchin:

“In 1925 Khinchin and Kolmogorov initiated the systematic study of
the convergence theory of infinite series whose terms are independent random
variables - --. It is interesting historically to note that Khinchin considered it
necessary to construct his random variables as functions on the interval [0, 1]
with Lebesgue measure. It is of course no longer necessary to go through such
construction procedures.” [Doob (1961), p. 17.]

But when it came to two or more (nonindependent) random variables, I
ran into difficulties. These largely stemmed from the fact that multi-dimensional
distribution functions, unlike one-dimensional ones, are quite complicated ob-
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jects: just how complicated, I realized when I saw Mann (1952). Now Henry
Mann, who had proved the “a + # Theorem,” one of the “Three Pearls of
Number Theory” in Khinchin (1952) was one of my heroes; and it was a bit
dismaying to see how hard and intricately he had to work to deal with stochas-
tic processes in terms of joint distribution functions. Of course, as R. Fortet
says in Mathematical Reviews (v. 14,1953, p. 663) in the end Mann “réussit la
gageure d’enclore en 44 pages un exposé d’ensemble sur les processus stochas-
tiques, correct et dense ---.”

In the meantime, Bert and I had been making progress in our work on
statistical metric spaces, to the extent that Menger suggested it would be
worthwhile for us to communicate our results to Fréchet. We did: Fréchet was
interested, and asked us to write an announcement for the Comptes Rendus
[Schweizer and Sklar (1958)]. This be an an exchange of letters with Fréchet,
in the course of which he sent me several packets of reprints, mainly dealing
with the work he and his colleagues were doing on distributions with given
marginals. These reprints, among the later arrivals of which I particularly
single out that of Dall’Aglio (1959) were important for much of our subsequent
work. At the time, though, the most significant reprint for me was that of
Féron (1956).

Féron, in studying three-dimensional distributions had introduced aux-
iliary functions, defined on the unit cube, that connected such distributions
with their one-dimensional margins. I saw that similar functions could be
defined on the unit n-cube for all » > 2 and would similarly serve to link
n-dimensional distributions to their one-dimensional margins. Having worked
out the basic properties of these functions, I wrote about them to Fréchet, in
English. He asked me to write a note about them in French. While writing
this, I decided I needed a name for these functions. Knowing the word “cop-
ula” as a grammatical term for a word or expression that links a subject and
predicate, I felt that this would make an appropriate name for a function that
links a multidimensional distribution to its one-dimensional margins, and used
it as such. Fréchet received my note, corrected one mathematical statement,
made some minor corrections to my French, and had the note published by
the Statistical Institute of the University of Paris as Sklar (1959). Subsequent
developments are summarized in Schweizer (1991).

Two footnotes to the preceding: The first is that, though neither Sklar
(1959) nor the longer Sklar (1973) contain proofs, proofs of a combinatorial
nature exist for all the basic statements about copulas, and are presented,
with one important exception, in Chapter 5 of Schweizer and Sklar (1983).
The missing proof is that for the extension theorem that is stated as Lemma
5 in Sklar (1973) and Theorem 6.2.6 in Schweizer and Sklar (1983). Note



6 RANDOM VARIABLES

though that the two-dimensional case of the extension theorem is stated and
proved as Lemma 5 in Schweizer and Sklar (1974), and that the general case is
proved by probabilistic arguments, somewhat indirectly in Moore and Spruill
(1975), and directly, along with other important results in Deheuvels (1978).
Since people have expressed interest in a combinatorial proof of the general
extension theorem, an outline of such a proof is given in Appendix 1.

The second footnote is that at the Fourth Berkeley Symposium on Math-
ematical Statistics and Probability in 1960 I was privileged to meet and talk at
length with Alfréd Rényi. At one point Rényi, who was of course completely
familiar with the literature, remarked that in defining statistical metric spaces,
Menger should have started with random variables instead of distribution func-
tions, since then dependence properties would come in automatically. I don’t
remember what, if anything, I said to this. Much later, I could have said that,
as is shown for example by the results in Schweizer and Sklar (1974), Frank
(1975), and the paper by R. Nelsen et al. in this volume, it was very fortunate
that Menger proceeded as he did.

All of the preceding indicates to me that our view of what constitutes a
proper theory of probability has to be broadened. This thought is by no means
original: others have not only had this thought but have acted on it. I need
only mention here Fréchet’s treatment of “Zufallselemente” in separable metric
spaces in Fréchet (1956), Rényi’s well known “conditional probability spaces,”
and the generalized probability spaces, motivated by physics, foreshadowed in
Suppes (1969) and defined in Gudder (1969), (1984).

Looking ahead, I think we are just now beginning to be able to deal
with the following type of situation, which will increasingly be seen to be
ubiquitous: For a given set S and a given integer n > 2, it is possible to
associate a classical probability space with each n-element subset of 5, but no
such classical probability space exists for any subset of 5 with more than n
elements. (Thus, if S has n + 1 elements, there is a classical probability space
for every proper subset of S, but no such space for S itself.) The existence of
such situations in the case n = 2 has been implicitly, if not explicitly, known for
a long time, and the possibility of such existence in the case n > 2 is at least
implicit in some (apparently unpublished) work by R. M. Dudley, referred
to in Schweizer and Sklar (1983), p. 161. The existence of such situations
for all » > 2 is shown, by an explicit example, in Appendix 2. I feel that the
investigation of these and related situations offers great promise for the future.
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Appendix 1
Outline of a Combinatorial Proof of the Extension Theorem for Copulas

To make this appendix reasonably self-contained, I begin by recalling
some basic definitions.

For a positive integer n, an n-box B is the Cartesian product of n closed
real intervals. If the intervals are [ak,bx], k = 1,2,---,n, then B is n-small
if ap = by for at least one k. Otherwise, B is n-big and the vertices of B
are the 2" n-tuples (¢1,¢2,: -, ¢,) Where each ¢ is either ay or by. The sign,
sgn v, of the vertex v = (¢1,¢2,-+,¢y) is (—1)"(”), where o(v) is the number
of k’s for which ¢ = ay. Thus sgn(by,bs,---,b,) = 1, sgn(ay,be,---,b,) = —1,
sgn(ay,ag,---,a,) = (—1)", etc. We need not define the sgn function for the
fewer than 2" vertices of an n-small n-box.

If F is a real-valued function whose domain is a Cartesian product of n
real sets, then the F-volume, Vg(B) of an n-box B whose vertices are in the
domain of F is 0 if B is n-small; otherwise, summing over the vertices of B,

Vr(B) = (sgn v)F(v).

v

Such a function F is n-increasing if Vg(B) > 0 for all n-boxes B whose vertices
are in the domain of F.

An n-subcopula is a real-valued function C’ such that:

i. The domain of C’ is a Cartesian product of n subsets of the closed unit
interval I = [0, 1], each subset containing at least the points 0 and 1.

ii. C’is n-increasing,.
iii. If (1,22, -,%y,) is in the domain of C’ and at least one of the z’s is 0,

then
Cl(mla T2, ',.Tn) =0.

If all the z’s, with the possible exception of z, are 1, then C'(zy,---,z,) =
Tk.

An n-copula is an n-subcopula whose domain is the entire n-cube I™.

It is proved in Chapter 6 of Schweizer and Sklar (1983) that if C’ is an
n-subcopula and (z1,---,2,), (y1, -, Yn) are in the domain of C’, then

|Cl($17'°'7xn) - C,(yla' ) ’yn)l < Z'wz - yil- .

=1

It follows that any m-subcopula is uniformly continuous on its domain. The
extension theorem for copulas now states that:
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Every n-subcopula can be extended to an n-copula, i.e., given any n-
subcopula C’ there is an n-copula C such that

0(1:1,1122, ot '7‘7:11,) = C,((El,wz, o 'vzn)

for all (z1,22,: -+, 2,) in the domain of C’.

To prove this, we first use the uniform continuity of C’ to extend C’ to a
subcopula C” whose domain is the closure of that of C’ (hence the domain of
C" is the Cartesian product of n closed subsets of I). If the domain of C” is
all of I", we are finished. If not, then we extend C"” to a function C defined
on all of I™ as follows: Given any point  in I™ not in the domain of C"”, then
z lies in a unique n-box B whose vertices are in the domain of C” and that
contains no smaller such n-box. Then = has a unique (vector) representation

in the form
T = Zﬁ('v)'v,
v

where the sumation is over the vertices of B, each fB(v) is a non-negative
number, and the sum of all the 8(v)’s is 1. Now we define C(z) by:

Cla) = Y B(o)C"(v).

We then complete the definition of C' by setting C(z) = C"(z) for all  in
the domain of C”. It is not hard to show that the function C so defined is
continuous.

To show that C' is a copula, it suffices to show that C' is n-increasing since
the other copula properties follow almost immediately from the definition of
C. Now consider an n-box B in I™. Then B is the Cartesian product of n
closed subintervals [vk,yx] (K = 1,2,---,n) of I. Call [vk,yx] the kth edge of
B. Since the domain of C” is a Cartesian product of n closed subsets c; of
I, the edges of B can be divided into two classes as follows: [vk, yx] is a good
edge if both v; and yi are in c; otherwise, [vk, yk] is a bad edge. We proceed
to do an induction on the number b of bad edges of B.

If b = 0, then every vertex of B is in the domain of C", whence
Ve(B) = Ven(B) > 0.

Now suppose that it has been shown for some integer m between 0 and n — 1
that Vg(B) > 0 for all boxes B with b < m. It will now be shown that
Vo(B) > 0if b = m + 1. Consider a box B with m + 1 bad edges. Without
loss of generality, we may assume that the edge [v,y1] is bad. There are two
cases to consider: either there is no point of ¢; strictly between v; and ¥, or
there is at least one such point.
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In the first case, let u; be the largest number in ¢; that is < v, and 2
the smallest number in ¢; that is > y; (such numbers exist, since ¢; is closed).
Then B is entirely contained in the box

BO = [ulvzl] X [v2’y2] XX [vn7 yn]7

and By has only m bad edges. It follows that Vo (Bg) > 0, and from this it
is straightforward, though a bit tedious, to show that V(B) > 0. (In fact, if
v1 = y1, then Vg(B) = 0 automatically, while if v; < y;, then u; < z; and

Vo(B) = (A2 — M)Ve(Bo),

where )\1 = (’01 - ’U.l)/(Zl et ul) and /\2 = (y1 - ul)/(zl — ’LL]))

In the second case, define u; and z; as in the first case, and in addition
define wy to be the smallest number in ¢; that is > v;, and z; to be the largest
number in ¢; that is < y;. It follows that

m<n<w<rn<yan
with some of the inequalities being strict. Now split B into the three boxes

B/l = [vlawl] X [”2,92] XX [v’n,yn]a
B2 = [’wl,(l?l] X ['U?a y2] XX [v'n.7yn],
BIIS = [171,?/1] X ['02,?!2] X+ X [vna yn]

Since Bj is entirely contained in the box
By = [ug, w1] X [v2,y2] X -+ + X [0n, Yn]
and Bj in the box
Bz = [z1,21] X [v2,92] X« -+ X [vn, Yu];
and since B;, By, Bs each has only m bad edges, it follows as before that

Vo(B1) > Ve(By) >0,
Vo(Bz2) 2 0,
and Vg (Bs) > Vc(Bé) > 0.

Therefore Vo(B) = Ve(B)) + Ve(Bz) + Ve(BS) > 0, and the induction is
complete. Hence Vi(B) > 0 for all n-boxes B in I™, so C is n-increasing on
its domain and therefore is a copula.
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Appendix 2
Common Probability Spaces for Arbitrary n-Element
Subsets of a Set, but None for Larger Subsets

Let n be an integer > 2. Define a function C,,, on the unit n-cube by
Con(Z1,+,20) = (max(a:}/(n_l) 4.4 x}l/(“'l) —n+1, 0))"_l

It is not hard to show that C,, is an n-copula (not absolutely continuous, but
that plays no role in what follows). For m < n, each m-dimensional margin
of Cpyp, i.e., each function obtained by fixing n — m of the n arguments of C,,
to be 1, is the same m-copula C,,,, given by

1/(n-1)

Cmn(xla : «Tm) = (max(z 4+ 4 w}n/(n—l) —m+1, 0))11—1.

For n = 2, Ca2(21,22) = max(z, + z2 — 1,0). For n > 2, Cpy, is the (n — 1)st
serial iterate of Csy, i.e.,

Crn(z1,22,23, -, &5) = Con(- - - Con(Con(1,22)x3) - - -, T0).

For n increasing without bound, the sequence C3, has the limit II, the two-
copula given by IlI(z,y) = zy.

THEOREM. For any n > 2, there is no (n + 1)-copula each of whose
n-dimensional margins is the n-copula C,,.

PROOF. Assume otherwise, i.e., assume that there is an (n + 1)-copula C,
each of whose n-margins is C,. Set zo = ((n — 1)/n)""!. Then

Crn(zo, -+, 20) = 0,
while for m < n, Cpun(o,* -, 20) = (n — m)"~1/n"~1. Since C is a copula,
0 < C(zo,z0,"+*,%0) < C(1,20, -+, 20) = Crn(zo,*++,20) =0,
so C(zo,z0,"*+,%0) = 0.

Now consider the (n + 1)-cube [zg, 1]**1. Its C-volume Vg[zo, 1]*H! is

1-(n+ 1zo+ (n N 1) Con(zo,20) + -+ (-1)" (n : 1) Cn(Z0, -+ Z0)
(—1)”+1C(a:0,z0,--- o)

= nn+1 Z( 1) (n+1)( -m)"
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Now, ("31) = Lo (n2m), s0

n—1 m
Veleo, 17 = —5 3 Yo (-0 (170 ) (o -y

m=0 £=0
= 7 ;,;( 1)"‘( - )(n oyt
= e ;( 1)[2( 1)’"‘[(" )(n e

- nnl_l Z(_N(n —O1S(n—1,n— ),
£=0

where §(n — 1,n — £) is a Stirling number of the second kind. But the sum in
the last expression can be written in the form

n—1
= (1) I==D (g — IS (n — 1,n — £)
=0

which is equal to —1 by a standard identity for Stirling numbers (see, e.g. p.
825 in Abramowitz and Stegun (1964). So Vo[zo, 1]"*t! = —n~ "+ < 0, which
is impossible for a copula. Therefore the (n + 1)-copula C does not exist, and
this proves the theorem.

It is worth noting that the theorem applies to many copulas in addition to
the Cpy,’s. For example, for each a in the open interval (1,log3/log2), there
is no three-copula each of whose two-dimensional margins is the two-copula
Cy given by

Ca(®,y) = (max(z'/* + y*/* - 1,0))*.
Moreover, unlike the two-copula Cs2, each such C, (so in particular C3/, and
C, /2) is absolutely continuous.

Now let E be a set with more than n elements, and suppose that each
element of E can be regarded as a (continuous) random variable in the loose
“statistical” sense mentioned in the text, i.e., as something which has a contin-
uous distribution function. To each n-element subset of E assign the n-copula
Cpn. Then for each n-element subset of F a standard construction yields a
classical probability space with respect to which the elements of the subset are
random variables in the strict sense (and for large n, any two elements of the
subset are close to being independent). But for any subset of E with more
than n elements no such classical probability space exists.
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