
Analysis of Censored Data
IMS Lecture Notes - Monograph Series (1995) Volume 27

Maximum Likelihood Estimation for Proportional

Odds Regression Model with Current Status Data

Jian Huang ι

Dept. of Statistics & Actuarial Sci., Univ. of Iowa, Iowa City, IA 52242

Abstract The maximum likelihood estimator (MLE) for the
semiparametric proportional odds regression model with current status
data is studied. It is shown that the MLE for the regression parameter
is asymptotically normal and asymptotically efficient, even though the
MLE for the baseline log-odds function only converges at n 1/ 3 rate.

1. Int roduct ion. The proportional odds regression model is an
interesting alternative to the widely used Cox's (1972) proportional hazards
regression model. This model has been used by several authors in analyzing
survival data, see for example, Bennett (1983), Dίnse and Lagakos (1983),
Pettitt (1984) and Parzen (1993). It specifies that

logitίXtl*) = logitίbίO + β'z, (1.1)

where β 6 Rd is the regression parameter, F(t\z) is the probability that the
failure time is less than or equal to t given that the value of the covariate
Z is z, i.e, F(t\z) = P(T < t\Z = z), and F0(t) = F(t\0) is the baseline
distribution function. The logit function is defined by logit(x) = log(x/(l -
x)) for 0 < x < 1. For simplicity, denote a(t) = logitFo(ί). ot(t) can be
interpreted as the baseline log-odds function, and is a monotone increasing
function since Fo(t) is increasing. In comparison, the Cox model can be
written as

log(- log(l - F(t\z))) = log(- log(l - F0(t))) + β'z.

In model (1.1), the logit function is used as the link function, while in the

Cox model, log(—log) is the link. The proportional odds regression model
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resembles the logistic regression for binary data. For a survey of connection
between binary response models and survival models, see Doksum and Gasko
(1990).

In this paper, we study maximum likelihood estimation of the
semiparametric proportional odds regression model with current status data.
With current status data, it is only known whether the failure event has
occurred before or after a censoring time Y. Thus the observable variable is

where δ = ί{τ<γ} indicating whether T has occurred or not. Current status
data is also called "case 1" interval censored data by Groeneboom and
Wellner (1992). They studied properties of the nonparametric maximum
likelihood estimators of a distribution function with current status data and
more general "case 2" interval censored data.

• Current status data arises naturally in many applications. For example,
it arises in animal tumorigenicity experiments, see, e.g., Hoel and Walburg
(1972), Dinse and Lagakos (1983), Finkelstein and Wolfe (1985), and
Finkelstein (1986). It also arises in HIV and AIDS studies, see, for example,
Shiboski and Jewell (1992) and Jewell, Malani and Vittinghoff (1994). For
applications in demographic studies, see Diamond, McDonald and Shah
(1986) and Diamond and McDonald (1991).

There has been much interest in studying regression models with current
status data. Recent works include Robinowitz, Tsiatis and Aragon (1995)
and Huang (1994) among others. For a survey of regression models with
interval censored data, see Huang and Wellner (1993). The enormous
amount of work on binary choice model in the econometrics literature is
closely related to the regression models with current status data, see Klein
and Spady (1993) and the references therein.

Rossini (1994), and Rossini and Tsiatis (1994) first studied estimation of
the semiparametric proportional odds regression model with current status
data. Their approach is to use a step function as an approximation to
the baseline log-odds function α and carry out an maximum "approximate"
likelihood estimation procedure. They showed that their estimator for the
regression parameter β is asymptotically normal and asymptotically efficient.
However, the resulting estimator for α in general is not an increasing function
as α is. Their approach can be regarded as a sieve estimation procedure,
where the "sieve" consists of all the step functions over a finite interval of
examination time, with the number of jump points depending on the sample
size n and increasing to infinity with an appropriate rate. It is conceivable
that other types of sieves can also be used. With this approach, one needs
to specify the sieve a priori.

Here we apply the approach of Huang (1994) in studying maximum
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likelihood estimation of the Cox model with current status data. We show
that the MLE for β is also asymptotically normal and efficient. Moreover,
the MLE of α can be taken as an increasing function and converges with
rc"1/3 rate. It is shown in Gill and Levit (1993) that this rate is optimal
for estimating a distribution function with current status data with minimal
smoothness assumptions.

In the following, we first define the MLE (/?n,αn) for (/?,α). The results
are stated in section 3. Proofs are put together in section 5. Section 4
contains a brief discussion on diagnostics of the proportional odds models.
In proving our main Theorem 3.3, we apply theorem 6.1 of Huang (1994) for
MLE's for a class of semiparametric models. This theorem asserts that under
certain regularity conditions, the MLE of the finite dimensional parameter
has y/n-convergence rate and is asymptotically normal, and moreover it
achieves the asymptotic efficiency bound even though the MLE for the
infinite dimensional parameter has a convergence rate slower than y/ΰ.
Several technical lemmas that are used in section 5 are included in the
appendix.

2. Maximum likelihood estimators of β and α. The goal of
this section is to define and characterize the maximum likelihood estimator
(/?n, αn) of (/Jo, O>Q) for a finite sample size n, where βo and αo are the "true"
regression parameter and baseline logit function. We will also denote the
"true" baseline distribution function as FQ. The characterization is in terms
of the score function for /?, and makes use of the monotonicity constraints,
since the baseline logit function α(s) is an increasing function.

Throughout the rest of the discussion, we assume that T and Y are
independent given Z. For a single observation X = (Y,tf, Z), under model

(i i),

M 7 _ 7\ _ exp(α(ΐ/) + β'z)
yZz) (22)

so the probability density function is

_ exp(J(q(y)+ /?*)) .
P Λ β ( β ) - 1 + exp(α(ιθ + / ^ ) ( y* ; '

Λ(y, z) is the joint density of (Y, Z) and we assume that it does not involve
(/J,α). The log-likelihood function is, up to a constant,

/(/?, α; x) = δ(α(y) + β'z) - log(l + exp(α(y) + β'z)). (2.3)

Let (Yi, <$i, Zi), , (Yn, ίn, Zn) be an i.i.d. sample distributed according to
Pβ0}O(0. Then the log-likelihood for the sample is, up to an additive constant,

Zn(/J, α) = Σ { W ^ ) + β'Zi) - log(l + exp(α(lί) + β'Zi))} . (2.4)
t = l
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Let Y^), ' >Y(n) be the order statistics of Yi, , ϊ^ ; that is, Y^ <
Y(2) < '•• < ^(n) Let ί( t ),Z(t ) correspond to Yμj, i.e., if Y^ = ϊ j , then
ί( t ) = l{Tj<yj} a n ( i ^(t) — ^v Let α^ ) = α(Y(z )). Since only the values of α
at Y(z ) 's matter in the log-likelihood function, to avoid ambiguity, we will take
the maximum likelihood estimator αn of αo as the right continuous increasing
step function with jump points at Y^ and values δn(Y( ί )), i — 1, . . . , n.

Since the baseline odds function is a nondecreasing function, it is natural

to require its estimator to be nondecreasing. Hence we require α^j < δ/2) <

• < δ( n ) . Let Θ C Rd be the finite dimensional parameter space of β. We

assume that Θ is a bounded (convex) subset of Rd.

Suppose the support of the unobservable failure time T is [0,rpo], where
TF0 = mf{t : Fo(t) = 1}. For the censoring variable Y, we suppose its
support [lyiUy] is strictly contained in the support of Γ, i.e., 0 < ly <
uy < τp0. Since 0 < Fo(ly) < Fo(v>y) < 1? the baseline odds function
αo(Z) = logitFo^) = log[Fo(^)/(l - F0(t))] is finite on [ly,uy). We assume
that -MQ < αo(t) < Mo on [/<,,%] for some known large positive number
M o . It makes sense to require the estimator of α 0 be bounded between - M o

and Mo. So the maximum likelihood estimator of βo and αo is the βn and
αn corresponding to (S^), ,δ(n)) that maximizes

φ(β,x) = J J [Sφi + β'Z(i)) - log(l + exp(z; + β'Z(i)))\ (2.5)

subject to β £ Θ and the monotonicity constraints

Since - log( l + exp(z)) is a concave function, it follows by Theorem 5.7

of Rockafellar (1970), page 38, or it can be verified directly that φ(β, x) is a

concave function jointly in (/?, x). So for any sample size n, this maximization

problem is well defined and has a unique solution.

To characterize the solutions to the maximization problem (2.5), first

consider the following closely related problem. Let (αn(Y(!)), ,αn(Y(n)))

be the solution to maximizing

t = l

subject to
X\ ^ 3?2 _ " * * _ Xji'

Without the restriction that x^s are bounded by -Mo and Mo, the
solution can be unbounded. For example, if for some 1 < k < n,
Sttf = = δ(k) = 0, then to maximize (2.6) without violating the
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constraints, αn(Y^) = = αn{Y^) = -oo. On the other hand, if for
some 1 < k < n, δ^ — = δ^ = 1, then to maximize (2.6) without
violating the constraints, αn(Y^) = ••• = δn(Y(n)) = oo. This will make
the solution to (2.6) inconsistent at the points lγ and uy. Technically,
without compactness of the parameter space, it seems difficult to prove
consistency in any appropriate sense. However, for the solution to (2.5), even
though it is not consistent at lγ and uγ, we will be able to show that an is
consistent in LΪ^QY), where Qy is the marginal probability measure of Y.
Let r ( 1 ) < < r ( m ) be the jump points of Sn(y), and r ( 0 ) = /y, r ( m + 1 ) = uY.
Then Sn(rj) is the solution to the equation

This can be proved exactly the same way as in the proof of Proposition 1.2
of Groeneboom and Wellner (1992).

Let tι be the first jump point of an such that δ n ( ί i ) > -Mo Let tm be
the first jump point of an such that an(tm) > M o . Then by concavity of the
function φ defined in (2.5), we have

-Mo if y < h

otn{y) iίh <y <tm .
Mo if y > tm

3. Main results. In this section, we state our main results. The proofs

are put together in section 4.

3.1. Information calculation The following result on the

information bound for estimation of β is given in Rossini and Tsiatis (1994).

For a detailed treatment of information calculation in a semiparametric

model, see chapter 3 of Bickel, Klaassen, Ritov and Wellner (1993).

THEOREM 3.1. Suppose that:
(i) The covariate Z has bounded support; i.e, there exists z0 such that

\Z\ < ZQ with probability one.
(ii) The support of the distribution of the censoring variable Y is strictly

contained in the support of the distribution ofT.
Then:

(a) The efficient score function for β is
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(b) The information for β is

I(β) (3.8)

= E[tβ(Xψ2

E{ZVai{δ\Y,Z)\Y)\®2λ

E(Vaτ{δ\Y,Z)\Y) J J '

where α®2 = aaf for any column vector a G Rd.

3.2. Consistency and rate of convergence As we have shown, for

each fixed sample size rz, (/?n?δn) is well defined. The following theorem

asserts the consistency of βn and consistency of an on the support of Y.

THEOREM 3.2. (Consistency) Suppose that:
(i) The finite dimensional parameter space Θ is a bounded subset of Rd.

(ii) Fo(0) = 0. Let τFo = inf{ί : F0(t) = 1}. The support of Y is an
interval S[Y] = [/y,uγ\, and 0 <lγ <uγ <τpQ.

(Hi) There exists z0 such that \Z\ < Zo with probability one. Moreover,
for any β φ β0, the probability P{β'Z φ β'0Z} > 0.
Then

βn - α . s . /?0,

and

-ao(y)\2dQY(y)^a.s.0,
ls[Y]

where QY is the marginal probability measure of the censoring variable Y.

Define the distance d on R x Φ as follows:

</((αi,/?i), (c*2,/?2)) — \βl ~~ $21 + H^l "" CK2112?

where \β - βo\ is the Euclidean distance in Rd, and | |αi - α 2 | | 2 = [/(«i(y) -

Applying Lemma 6.1, Theorem 3.2.1 and Lemma 3.2.2 of Van der Vaart
and Wellner (1995), we can prove the following result.

THEOREM 3.3. (Rate of convergence) Suppose that conditions (i)-(iii) of
theorem 3.2 are satisfied. Furthermore, S[Y] is strictly contained in the
support of FQ, i.e., 0 < lγ < uy <τp0.
Then:

The overall rate of convergence is dominated by an, which agrees with

the convergence rate of the NPMLE of a distribution function studied by

Groeneboom and Wellner (1992). In the following, we will show that the

convergence rate of βn can be refined to achieve
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3.3. Asymptotic normality and efficiency We now state the main
theorem, which asserts that, under appropriate regularity conditions, the
maximum likelihood estimator βn satisfies a central limit theorem and is
asymptotically efficient.

THEOREM 3.4. (Asymptotic normality) Suppose that conditions of
theorem 3.3 are satisfied. Furthermore, suppose that:

(i) βo is an interior point of Θ.
(ii) The cumulative hazard function αo has strictly positive derivative on

s[γ] ...
(Hi) The function

E[ZVar(δ\Y,Z)\Y=y]
{V) E[Var{δ\Y,Z)\Y=y]

has bounded derivative on S[Y]. (This d-dimensional function comes from
the information calculation.)

Then

V^(βn - βθ) = Iiβor'V^PnW + Op(l) -+d ΛΓ(O,/(A))"1),

where /^0(#) is the efficient score defined in Theorem 3.1, and I(βo) is the
information.

Since βn is asymptotically linear with efficient influence function, and
the likelihood function is Hellinger differentiable with respect to (/?,α),
it is asymptotically efficient in the sense that any regular estimator has
asymptotic variance matrix no less than that of βn. We do not go into the
details here, but refer the reader to Van der Vaart (1991), and Bickel et al.
(1993), chapter 3.

4. Model diagnostics. Although this paper is mainly concerned
with estimation based on a specified proportional odds regression model,
a referee has suggested that some discussions on motivations to specify the
proportional odds model rather than the more common proportional hazards
model or diagnostics would be helpful. For the former, we refer the reader
to Bennet (1983) for discussions and examples. Basically, the proportional
odds model allows for covariate effects that are not necessarily multiplicative
on the baseline hazard.

Model diagnostics can be most easily done in an informal fashion. First
consider the simplest case of Z being a one dimensional covariate only
taking value 0 or 1. We can first compute the nonparametric maximum
likelihood estimates (NPMLE) Fn{t\ΐ) and Fn(t\0) of the distributions for
the two groups separately. Computation and properties of NPMLE with
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current status data are discussed in Groeneboom and Wellner (1992). If
the proportional odds model is reasonable, then the plot of logitFn(ί|l) -
logit.Fn(/|0) against t should be roughly a horizontal straight line. Any
serious departure from this would indicate that the proportional odds model
is probably not adequate. This informal approach can be generalized to
the case when Z is a vector of categorical covariates. For any fixed z\
and z2, the NPMLE's Fn(t\zι) and Fn(t\z2) can be computed from the
observations corresponding to z\ and 22? respectively; and then the difference
Fn(t\zi) - Fn(t\z2) can be plotted against t. For continuous covariates, some
form of grouping or discretization is needed.

Formal diagnostics can be done based on embedding the proportional
odds model into a more general model, for example, the 7-logit model
described in Doksum and Gasko (1990). This model contains an extra
parameter 7 and and includes both the proportional odds (when 7 = 1)
and the proportional hazards model (when 7 = 0) as special cases. The
goodness of fit of the proportional odds model can be checked by testing
7 = 1. Discussion of details is beyond the scope of the present paper.

5. Proofs. In this section, we prove Theorems 3.2, 3.3, and 3.4.

PROOF OF THEOREM 3.2. Let x = (δ,y,z) and

fn(x) = δ(αn(y) + βn'z) - log(l + exp(αn(y) + βjz)).

Similarly define / 0 , but replace βn and αn by β0 and α 0 , respectively.

Recall that (/3n,2n) maximizes ln(β,ά) subject to the constraint that αn is

increasing and |δ n (y) | < Mo for all n and y G S[Y]. Let X{ = (<$;, Y{, Z t ), i =

1,. . . , n. Since \αo(y)\ < Mo for all y G S[Y],

Let Pn denote the empirical measure of (<$i, Yi, Z\),..., (δn, Yn, Zn). We can

write this inequality as

Pnfn(x) > Pnfθ(x) (5-9)

Let the sample space Ω be the space of all infinite sequences

(<$i, Fi, Zι), (δ2, Y2, Z2), . , endowed with the usual σ-algebra generated by

the product topology on Πi°({°>!} x R2) a n d t h e P r o d u c t measure P. By

Lemma 6.1 in the appendix and the bracketing Glivenko-Cantelli theorem,

there exists a set A G Ω with P(A) = 1 such that for every ω G A,

J
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where P is the joint probability measure of (#i, Yi, Z\).

Now fix an arbitrary ω £ A. For this u;, write βn = βn(ω) and
δ n ( ) = α n ( ,α;). Since Θ is bounded, for any subsequence of βn we can find
a further subsequence converging to /?* £ Θ, the closure of Θ. Moreover,
by Helly's selection theorem, for any subsequence of δ n , we can find a
further subsequence converging to some increasing function α*. Choose the
convergent subsequence of βn and the convergent subsequence of αn so that
they have the same indices, and assume that βn converges to /?* and that
αn converges to α*( ).

By the bounded convergence theorem, we have

J fn(x)dP - J U{x)dP

where /* is similarly defined as /o

By (5.9), and using the strong law of large numbers for the right hand

side of (5.9),

J f*(x)dP > j fo(x)dP

By the Kullback-Leibler inequality, the left hand side is less than or equal

to the right hand side, with equality holds if and only if

«*(») + β'*z = αo(y) + β'o* PG - a.s.,

where PQ is the probability measure induced by the joint distribution

function G of (Y, Z). Condition (iii) then implies

β* = βo (5.10)

and

α*(y) = ot0(y) QY - a.s. .

Since both αn(y) and α*(y) are bounded for every y, by the bounded

convergence theorem, it follows that

Qγ(y)^0 (5.n)

Since (5.10) and (5.11) hold for any ω G A with P(A) = 1, the proof is

completed. •

PROOF OF THEOREM 3.3. Using a Taylor expansion, it can be verified

that

El(β, α, X) - El(βo, α0, X) < -Cd2((α0, βo), (α, β))
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for some constant C > 0. Thus

sup (El(β, α, X) - El(β0, α 0, X)) < - C T / 2 / 4 .
η/2<d{(αo,βoUα,β))<η

By Lemma 6.1, Remark 6.1, and Lemma 3.2.2 of Van der Vaart and Wellner
(1995),

E* sup Iv^(Pn - P)(Kβ, α, x) - l(β0, <*o, x))\
d((αo,βoUα,β))<η

Let

Then φn(η)/η is a decreasing function, and it is easy to verify that

for n large. Furthermore, by Theorem 3.2, βn is consistent and αn is
consistent in L2(Qγ). Hence the conditions of Theorem 3.2.1 of Van der
Vaart and Wellner (1995) are satisfied. This implies

D

PROOF OF THEOREM 3.4. We prove the main theorem by verifying the
conditions of Theorem 6.1 of Huang (1994).

For the proportional odds regression model under interval censoring,

/(/?, α; x) = δ(α(Y) + β'Z) - log(l + exp(α(Y) + β'Z)).

The partial derivative of /(/?, α; x) with respect to β is

/i(/?,α;x) = δz-zA(y,z),

where

Since (/5n,αn) is the MLE,

Smφn,αn) = Pn/i()9n,an;a;) = 0.

For h* defined in condition (v), define
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We now show that

S2n(βn,άnW] = Pnh(β, <*] x)[h*\ = O^tt" 1/ 2).

Since α 0 is a strictly increasing continuous function, its inverse α^1 is well
defined. Let £o = h* o o^"1, i.e., the composition of h* on the inverse of
α 0 . Then £0 is well defined on the range of α 0 . Since £(δn(y)) is a right
continuous step function and has exactly the same jump points as a n (y), by
the characterization of α n ,

where

Recall that t\ and tm are defined in the last paragraph of section 2. For
W < V < h , OLn{y) = —Mo. In addition, βn is bounded, and Z has bounded
support. It follows that

n

7llγ<Yi<t1

for some constant C not dependent on n. Now write

_1

n

The first term is o p ( n " 1 / 2 ) . This follows from Lemma 4.1 of Pollard (1989),

because the class of indicator functions of intervals is a VC-subgraph class

and that -Plpy<y<t1] —•? 0. The second term is equal to

SΛ / i \ f\ / 1 \ /Λ / —2/3\ / F 1 θ\

Here we also use Qy to denote the distribution function of Y. This is

because, by Theorem 3.3,

ί\an(y) - ao(y))2dQγ(y) = Op(n"2/3).
Jlγ
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However, on the interval [/y,ίi), δ n (y) = —Mo, and αo(y) > —Mo, thus

\M0+α0(y))2dGγ(y) = Op(n

So equation (5.12) holds. It follows that

- Σ {h*(α0 1(^n(^)))(^' ~ ^ n ( ^ ? Zi))j = °p(n~

Similarly,

So we have proved that

Write this in terms of empirical process notation, we have

Pn {h*(αo-
χ(an(y)))(ί - An(y, z))} = o^-1'2). (5.13)

Furthermore, since h* is difFerentiable and αo has strictly positive derivative,

£o has bounded derivative. So noticing h* = h* o α^1 o αo = £o ° <̂ o? we have

Pn{h*(y)(δ-An(y,z))}

= Pn {[ξo o αo(y) - & o αn(y)](δ - An(y, z))} + o^n

= (Pn - P) {[ξo o αo(y) - ξo ° δ»(»)](« - An(y, z))}

+ P {[ξo o αo(ir) - & o an(y)](δ - An(y, z))} + o^

To show that the first term is of the order op(n~1^2)^ let

φ(x; β, α) = (ξ0 o αo(y) -ξ0o α(y))(δ - A(y, z)).

For any η > 0, define the class of functions

Φ(τ?) = {φ(x]β,ά): \β - βo\ + \\α - αo\\ < η, and α G Φ}, (5.14)

where

Φ = {α : α is increasing, and - Mo < α(y) < Mo < oo for all y G
(5.15)

and Mo is a positive constant. It is verified in Lemma 6.2, that for any
probability measure Q, the L2(Q) ε-entropy number for the class $(77) is
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in the order of 1/ε, and hence Φ(7/) is a Donsker class. In addition, since
suPψeΦ(τ?) pΨ(x:>βiα)2 -> 0 as η -> 0, by Lemma 4.1 of Pollard (1989), it
follows that

sup (Pn

This implies the first term is of order o p(n~ 1/ 2). For the second term, by
equation (2.2), the Cauchy-Schwarz inequality and Theorem 3.3, we have for
some finite constant C > 0,

\P {[& o αo(y) - £0 o αn(y))(δ - An(y, z))}\

O αo(y) - ξ0 o αn

1 + exp(αn(y) + βn z)

< C{P[ξ0oα0(y)-ξooαn(y)]ψ2

x {P[exp(αo(y) + β'oz) - exp(αn(y) + βnz)

Thus the first assumption of Theorem 6.1 of Huang (1994) is verified.

Now we verify Conditions 1 — 5 listed there. By Theorem 3.3, Condition
1 is satisfied with 7 = 1/3. The information calculation asserts that
Condition 2 holds. To verify Condition 3, consider the following two classes
of functions,

< η}9

where η is near 0. It can be proved as in Lemma 6.2 below that the entropy
numbers for the above two classes are of order I/77. This implies that
these two classes are Donsker, and hence Condition 3 is satisfied. As in
Huang (1994), it can be verified using a straightforward Taylor expansion
that Condition 4 is satisfied with

5π(A>, α o) = -Eh(β0, α o ; x)

and λ = 2. So λ7 = 2 x 1/3 > 1/2. Condition 5 is satisfied because the

information I(βo) is finite and positive. Thus the result follows from the

cited theorem. •
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6. Appendix. Define the class of log-likelihood functions /(/?,α)
defined by (2.3):

H = {/(/?, α):βe B(βo, η), α G Φ } , (6.16)

where Φ is defined by equation (5.15), B(βOjη) is an 77-ball around /?0, and

η > 0 is any fixed positive number.

For any probability measure Q, define L2(Q) — {/ : / f2dQ < 00}.

Let II • | | 2 be the usual L2 norm, i.e., | | / | | 2 = (/ pdQfl2. For any

subclass T of L2{Q)^ define the bracketing number N^(ε, J7, L2(Q)) =

min{m : there exist /f, /f,..., /£, /£ such that for each f ^T,jf < f <
fY for some i, and ||/f - ft\\2 < ε}. Let

= Γ
Jo

dε, (6.17)

be the bracketing integral of the class of functions T.

LEMMA 6.1. Let H be defined by (6.16), and suppose that Z has bounded

support. Then there exists a constant C > 0 such that

s u p J V D ( ε , Ή , £ 2 ( Q ) ) < C ( l / ε V / ε > for alley 0,

where d is the dimension of β. Hence for ε small enough, we have

Here Q runs through the class of all probability measures.

P R O O F . The proof is similar to the proof of Lemma 3.1 of Huang (1994),

and is omitted. •

REMARK 6.1. ^From this lemma, the bracketing integral for the class H

is

= 0(1) Γ
Jo

for η close to zero.
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LEMMA 6.2. For any η > 0, define the class of functions

Φ(τ/) = {ψ(x;β,a) : \β - βo\ + \\a - α o | | 2 < η, and a <E Φ} ,

where φ is defined in (5.14), and Φ is defined in (5.15). Then the Z 2 covering
number N(ε,Φ,£ 2 (Q)) o/Φ

sup 7V(ε, Φ, Z 2«?)) < constant - (l/εd) exp(l/ε).
Q

Hence for ε close to zero, the entropy number

suplog7V(ε,Φ,Z2(Q)) < constant- - .
Q ε

Here Q runs through all probability measures. This implies that ^(η) is a
Donsker class.

P R O O F . The proof is similar to the proof of Lemma 7.1 of Huang (1994),
and hence is omitted. •
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