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Abstract

We extend the well known bioassay formulation to allow two com-
peting risks at each dose level / stress level. The non-parametric
Bayesian analysis is based on two cumulative incidence functions. After
suggesting a suitable prior distribution we derive the exact posterior
means for any finite number of stress levels in case of competing risks
bioassay. Incidentally, exact posterior means in the usual bioassay
problem can also be given on the same lines without much difficulty.
Sampling based approaches to approximate marginal posterior distri-
butions and their interesting features are also illustrated. A useful
modification in the prior distribution which treats the case of ordered
cumulative incidence functions is presented. Illustrative examples are
provided.

1 Introduction

Suppose 0 = so < s\ < ... < s^ < Sjt+i = o° &re the k dose or stress levels in
a bioassay problem. The potency pi which is the probability of the desired
response (death/ failure etc.) of the stimulus when the i-th dose level βi
is administered to the subject is given by F(si), the value of the potency
curve F at st . Here F is assumed to be an appropriate distribution function
with F(0) = 0 and F(oo) = 1. In many situations, the subject shows one
of several possible responses or none at all. This situation may be observed
when the stimulus or stress leads to death due to a particular risk out of
several possible competing risks. In the usual analysis concerning accelerated
testing the emphasis is on discovering a relationship between the stress levels
and the probability of failure. If there are competing failure modes then there
would be interest in estimating and comparing the probabilities of failure at
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each stress level of the various modes of failure. The methodology proposed
in this paper would be useful in this situation.

We have a concrete example from automobile industry which is not di-
rectly from accelerated testing. Three models of cars are manufactured by a
company and sold. They are subject to a warranty for 18 months. When a
fault is discovered within this period, the cars come back to the dealers who
notify the manufacturer. We regard the time periods 3 months, 6 months,...,
18 months as the stress levels st , i = 1,2,..., 6. Then pi = F(si) is the proba-
bility that the fault is, in a particular component, discovered up to time S{.
This particular component has two possible modes of failure, pu = F^(si)
and p2i = F%(s{) with pi = pu -\-p2i, being the probabilities of failure due to
these modes of failure respectively up to time S{. See Shaked and Singpur-
walla (1990) for such modelling when the failure is due to only one risk. It is
clear that Ff and Fξ are two sub-distribution functions with Ff + F% yield-
ing a distribution function, F, which is the potency curve corresponding to
total failure. The restrictions on the parameters pj t , i = 1,..., k and j = 1,2
then give the parametric space,

Pik+i + P2k+i = 1} (1)

Here pjk+1 = Ff(oo) and Ff(oo) + F2*(oo) = F(oo) = 1. It means that
at dose level oo, a subject certainly fails due to either of the two risks.

At first glance this model may seem to be similar to the polychotomous
response model described by Gelfand and Kuo (1991). But there are major
differences. Their model is applicable when there are two responses say A
and B such that A c 5 , that is the occurrence of A implies the occurrence
of i?, whereas we consider two mutually exclusive responses. Their model
applies to the situations where A may represent acute manifestation of some
disease and B the mild manifestation of the same disease. Thus the subject
proceeds from the state B to the state A, hence they have certain different
conditions on the probabilities of the responses to the stimulus.

To formalize the problem let us suppose that n2- subjects are given the i-
th dose level st . Let (Xn,X2i,ni — X\i — X2i) be the vector of observations at
the i-th level, representing the response of the first type, the second type and
no response respectively, having multinomial distribution with parameters
(ni,pn,p2i, 1 — pu — P2i) Thus the joint probability distribution of all the
k vectors (i = 1,2, ...,&) will be the product multinomial distribution. As
in bioassay, we assign a single Dirichlet prior distribution to the successive
differences of pu's and p2;'s subject to the prior constraints (1). The Gelfand
and Kuo (1991) prior, on the other hand, is based on the product of two
Dirichlet distributions. Our prior distribution and the corresponding pos-
terior distributions are naturally suitable to the sub- distribution functions
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describing the two potency curves. After describing the posterior distribu-
tion, we derive exact posterior means of Pji's. For convenience of reading,
the derivation of the exact posterior means is in an appendix. As an addi-
tional bonus we are able to provide the exact posterior means in the bioassay
formulation as the linear combination of means of beta distributions. Anto-
niak (1974) has expressed the posterior density as a mixture of the Dirichlet
distributions for the two stress levels leading to posterior means as linear
combinations of means of Dirichlet distributions. Though his result can eas-
ily be theoretically extended to any number of stress levels, Gelfend and Kuo
(1991) have commented that the means become extremely complicated even
for as small a number of levels as 4 or 5, giving reference of the unpublished
Ph.D. thesis of M. N. Wesley. Our treatment is amenable to any number
of levels and explicit computations are not too difficult. Other features of
the distribution, viz. the mode, the quantiles, etc. are elusive. We emulate
Shaked and Singpurwalla (1990), Gelfend and Kuo (1991) and Ramgopal,
Laud and Smith (1993) and suggest the use of the Markov chain Monte Carlo
technique (Gibbs sampling) to estimate these feature of the posterior distri-
bution. We consider the example introduced above which was encountered
by us during industrial interaction which is modelled through the competing
risks bioassay formulation of this paper.

In the end we also consider the problem where the prior information in-

cludes the constraints that pu < P2i-,i = 1,2,...,fc, that is to say, at each of

the k dose levels the response of type I is more likely to occur than the re-

sponse of type I I . It should be remarked that we still do not contemplate the

nested type of response (A C B) as considered by Gelfend and Kuo (1991).

To the best of our knowledge, competing risks in bioassay are introduced

formally for the first time here.

2 Formulation and Inference for the Competing
Risks Bioassay Model

The likelihood of response probabilities in the framework described in the

first section is given by

%*.*) = Π S J U ? ! ^ *

Define Zji = Pji - p j t _i, i = 1,2, ...,&+ 1 and j = 1,2. Note that

Σ2=i Σi=ϊ Zji = 1. We assign the Dirichlet distribution with parameters

(an, . . . , aijb+i, a 2i,..., a2fc+i), denoted as X>(α), to (Zn,. . . , Z2*). Transform-
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ing back to pj t 's, this gives the following prior density for p,

(3)

where a j i > 0,i = l,2,...,*,i = l,2,«i = Σ ί ^ ί « i i , « 2 = Σ * ί ί "2i and
OL = Oil + # 2 -

It can be easily seen that π(g) is not a conjugate prior with respect to (2).
Another way to obtain (2) is through specifying the conditional distributions
of the generalized beta type.

pu+i ~ 6eία(αi,α2;0,l),
i

and

where Ϊ7 ^ betα(α, b\ c, d) denotes that 17 = c + (d — c)V where V is the

betα(α, b) variate. Before giving more formal treatment we note the following

important points.

(1) For each i, the vector (pit ,P2ϊ) has Dirichlet distribution with param-

eters (αi t , α2ή ot — αu — α2t) Marginally for each multinomial trial also we

have the Dirichlet prior.

(2) Note that, £f=i Zu = pιk+i and Σf=i %2i = ^2^+1 = 1 -
leading to the beta (0:1,0:2) distribution for pik+ι

(3) The conditional distribution of (Zji,..., Zjk+i) given Pj^+i is
X> (αji, αj 2 , . . . , «jib+i; Oί3-j) where 0 < Zjt < pjk+ι and ^ H ^ 1 Zjt

1,2.

The role of α^'s in the prior specification in (3) is clear from the condi-
tional distributions described in (4).

The posterior density of p is then proportional to the product of (2) and

(3).

t = l
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where
nil Γα

and xsi = n t — xu — X2i The immediate problem is that of estimation of
Pji's. The posterior means, E\pj% | £,n] are Bayes estimates with respect to
the squared error loss function and are thus reasonable estimators. Next,

we obtain these posterior means. First we sketch the proof of the following

theorem.
Theorem : The marginal posterior density of pu is a linear combination of

beta densities and is given by,

I *^1 \~L) JL? i ϋ / 5 "2 vrL? i_51™./ ?*-'}-*-/ V /

where,

T )
^=1 \ 2 i / £=1 m=l

t-1 / \ ^

( T )
( r )

^ = 1 \ ^ / 771 = 1

k k k+1 /

Π /3(^Σ(^m-r 2 m + rlm) + ̂ + £ α lm) ^
t=i+l m=i m=^+l V U

and

( ) ^ βk

The posterior mean of pu is,

u U,n) =

Proof. See appendix.
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Remarks
1. Note that there are no observations at the stress level infinity. π(p)

can be written as,

kiP2l,P22, ~,P2k) π(Plk+l I Pll, ••">

The conditional density of pik+i given remaining pu's is

g(pik+l I Oiik+l,Oί2k+l',PlkA ~P2k)

This gives

E\pιk+ι\x] = E\plk + (l-p2k-plk) ^ \x]
ttlfcl + <^2k+l

E(Plk I x)

E(p2k I x) (8)

2. Incidentally, similar calculations based on the posterior density of
p = (pi,...,pfc) with Dirichlet prior in the usual bioassay problem leads to
the exact expression for the posterior means, E(pi | #),i = 1,2, ...,fc which
can be evaluated easily using a computer.

The joint density of p and x_ is the product of the likelihood function and
the prior density and is given by,

A + l

PO = 0 < pi < p2 < .- < PA; < 1 =
where α = X ] ^ 1 Q:̂

Then integrating out p'jS,j ^ i, gives

i, x.) = c(n,», α) 2 ^ di (x9 r, α ) ^ 1

(1 - Λ ) »fen^)-i,0 < Pi < l , i = 1,2,...,*

where,

Π\—X\ 712—272 flj_i—2?, _ i Xi+l Xk

^2 denotes the multiple sums ]P Σ "
r ri=O r2=0

Π (nj ~ X j ) β<Σ(
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le+1

J ~ xi

Hence

i \x) = T W2^L^ m(x,L,a)
z w2(x,., α) τ/i(x, r, α) + %(&21, α)

where,

(x, r, α) = )8(ί/i(2, r, a), ??2fe r, a))<ίi(£, I, a),

and
t - l

Note that there is no restriction on fc, the number of stress levels. One

needs to evaluate (k - 1) summations to get the exact values for E(pi | z),

unlike k(k - 1) as required by Antoniak (1974).

For any s*e[si,st +i], the estimate of F(s*) may be taken as,

E[F(8*) I x] = (ai+ι~a*)E(Pi I x) + —E(Pi+1 I x)

which can also be evaluated using (9), where α* is an additional parameter

in the revised prior defined to include the parameter jP(θ*).

3. The posterior mode plays important role in Bayesian inference. Here,

posterior mode, if it exists, is a (2k + l) dimensional point p = (pn, ...,]3iA;+i,

P21? •••? P2k) which maximizes (5). Due to the constraints in the support, it

is a difficult task to actually evaluate it even in case of the bioassay problem.

We adopt the sampling based approach to approximate posterior marginal

modes. (See Gelfand and Kuo (1991)).
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3 Study of Posterior Density through Gibbs Sam-
pler

First, we describe the Gibbs sampling approach for simulation from (5), the
joint posterior density of p. For this, we need to specify the conditional
densities for pji given x_y n and remaining pj/s up to the constant of propor-
tionality, (Ramgopal et al. (1993)) which are

π(Pji I x,Pji,l φ ij = 1,2) α p£{l - P l i - P2if3t I(Pji_UPjt+1)(pji)

i i

Π 9(Pjt\ Σαjm,αi/+i;O,pi/+i), (10)
t=i-l 771 = 1

i = l , 2 , . . . , * , i = l , 2 .
The conditional density of pik+i given x_ and remaining pj t 's is

ΰ(Pik+i I αifc+i,α2Aί+i;piJb,l-P2Jk) (11)

as described in Remark 1. Given an arbitrary starting value, along sequence
of iterations of successive random variable generations from (10) and (11) re-
sults in realizations (pn, ...,pifc+i,P2i, —>P2fc) which are close to being drawn
from (5). Replication of this process then provides a sample from the joint
posterior, which can be used as a basis for drawing inferences. What remains
is the generation of pji,i = l,2,...,fc + l , j = 1 , 2 from (10) and (11). We
adopt the Sampling/Importance Resampling (SIR) technique (Smith and
Gelfand (1992)), which is a convenient method for the densities of the type
(10) and (11). We describe SIR briefly below.

Step - 1. Generate p] t , p ^ , ..., pf{ respectively from the betα(xji + l,Πi-
£i» —£2t + l) distribution truncated to (pj»-i,Pjt+i) for suitable N. (Devroye
(1986)).

Step - 2. Evaluate

pfι 1 Σ i ι QjΓ αj/+i; oPj/+i) m = 1 2 N

Step - 3. Sample one of pf^s, m = 1,2, ...,7V using {gi, ...,ςΆr} distribu-

tion.

Finally, the sampled pj 's can be treated as from the conditional distri-

bution (10) and (11) for large enough N.

4 Ordered Incidence Function

We now consider the prior specification for p, when it is known a priori

that the first cumulative incidence function lies below the other, that is,

Fί(s) < FZίs) for all s with strict inequality for some s.
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These prior constraints on p give the parametric space,

(**+i) = {p\0<Pjl<pj2<...<pjk<Pjk+1<lJ = l,2,

Pii<P2i> i= l,2,...,fc+l,

propriate for p e S{ '

Modifying the conditional densities given by (4) we obtain the prior ap-

Pik+i ~ beta(aι, a2] 0,1),

^ , p i < + i ) , ( 1 2 )

and

(j?2t
£=1

Then the joint prior density of p is obtained by multiplying all the above
densities.

t = l 1 1

ίf(ftib+i|αi,α2;0,l), £65{2*+1) (13)

The posterior density of p given .̂ is then proportional to the product of
(2) and (13). Here it is not as straight forward to obtain posterior means,
as in Section 2. Hence we adopt the sampling based approach to study
interesting features of the marginal posterior densities described in Section
3. Noting the changes in conditional densities (10) and (11) we see that the
posterior density for peS\ is,

<t i a)«π ί 7.)

1

g(pik+i I αi,α 2;0,l). (14)
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Examination of (14) reveals that,

τ(Λ. I x,Pji,ί Φ i,j = 1,2,) oc Pxr(^ ~ Pii ~ P2iΓ-χu-χ2'I(Plt_umit)(Pii)

i t i
H 9\Pli I ̂ ^ α l r 5 α l r + l 5 0,Pi^_|_i)5f(p2ι | / J ^2^? ^2^+1? PlήP2s'+l)>

^ z = ί - l r=l 1

(15)

11 5(^2^ I 2 ^ α2r ?^2^+l 5Pl^5P2^+l) (16)

A;

1

,α 2;0,
1

where mn = min(pnjt\,p2i), m<ii — mo,x(pii<>P2i-i) and Λ̂Λ +i = τnin(l/2,1 —

5 An Example

Here we discuss the example mentioned in Section 1. It is from the automo-
bile reliability to which the above model is appropriate. Several cars were
put on test. Each car was observed for the predetermined time period of 3
months, 6 months, ..., or 18 months with respect to two modes of failure.
Hence 3, 6, ..., 18 are identified as the stress levels s t , i = l , 2, ..., 6. The
number of responses to each mode of failure is recorded if a car fails within
its specified time. It is expected that F*(5Z), i = 1, 2, ..., 7, j = l , 2, with
s0 = 0 and 57 = oo will be two incidence functions adding up to a cumulative
distribution function. Table 1 gives the numbers of cars put on test and the
observed numbers of failures due to each of the two causes at each θt , 1, 2,
...,6.

The sampling techniques described in Section 3 and Section 4 are applied
to these car failure data. The proportions of different kinds of failures in
the past data were used as the best guesses for pj^s and hence the prior
parameters. The prior parameters are (0.073, 0.119, 0.115, 0.115, 0.090,
0.066, 0.022, 1.167, 0.011, 0.007, 0.004, 0.004, 0.004, 0.002, 0.518). Gibbs
sampling was carried out with 50 iterations for the SRS and 1500 replications.
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1. Table 2(a) and 2(b) give the non-parametric Bayes estimates of prob-
abilities of failure due to mode 1 and 2 respectively at each stress level along
with their standard errors (S.E.) and 95 % equal tailed credible intervals
(C.L). These were obtained using the empirical distribution of the pji from
the 1500 replications. It is apparent from the tables that the probabilities of
failures due to mode 2 is extremely small. It was observed that in 18 months,
almost 25 % of the cars failed due to mode 1 while only 0.66 % failed due to
mode 2. Note that the probability of failure due to mode 2 is less than that
due to mode 1 for each st , which is in agreement with the past experience.

2. The sample data is analyzed to illustrate the technique designed in
Section 4 assuming a priori that F^s) < F^(s) for all s > 0. The results
are listed in Table 3(a) and Table 3(b). The additional restriction of ordered
incidence functions has resulted in a slight increase in the probabilities of
the failures. In 18 months, 30 % of the cars are estimated to fail due to
mode 1 while 0.71 % due to mode 2.

Table 1 : Automobile reliability data

Si

(months)

Πi

x\i
X2i

3

188

8

1

6

222

28

5

9

199

22

2

12

262

67

3

15

99

51

2

18

383

60

5

Table 2 : Analysis of automobile reliability data

(unordered incidence functions)

(a) Posterior means, S.E., 95 % C.L for pn

Si

3

6

9

12

15

18

00

Mean

0.00007

0.00114

0.00743

0.05104

0.16700

0.25998

0.71603

S.E.
0.00009

0.00051

0.00248

0.01364

0.03346

0.04601

0.20674

C.I.
(0.00003,0.00017)

(0.00067,0.00229)

(0.00457,0.01272)

(0.03179,0.08054)

(0.10886,0.23985)

(0.16988,0.34421)

(0.30542,0.98348)
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(b) Posterior means, S.E., 95 % C.I. for p2j

Si
3
6
9
12
15
18
oo

Mean
0.2xl0~9

O.116xlO-7

0.315xl0~6

O.14O25xlO-4

0.53657xl0-3

0.66208xl0-2

0.28397

S.E.
0.8xl0-9

0.1225xl0-7

0.3688xl0~6

0.14387xl0"4

0.59124xl0~3

0.49326xl0-2

0.20675

C.I.
(0.15861xl0-lo,0.1xl0-8)
(0.11xl0-8,0.416xl0-7)
(0.27xl0-7,0.1132xl0-5)
(0.13674xl0-5,0.46652xl0-4)
(0.53693xl0~4,0.16049xl0"2)
(0.66252xl0~3,0.17076X10-1)
(0.16148X10-1,0.69455)

Table 3 : Analysis of automobile reliability data

(ordered incidence functions)

(a) Posterior means, S.E., 95 % C.I. for pij

Si

3
6
9
12
15
18
oo

Mean
0.00011
0.00191
0.01103
0.06314
0.19476
0.29942
0.81187

S.E.
0.00013
0.00205
0.00771
0.01881
0.032966
0.04304
0.13546

C.I.
(0.00005,0.00047)
(0.00093,0.00699)
(0.00646,0.03088)
(0.04475,0.11019)
(0.14666,0.28163)
(0.23009,0.39175)
(0.52624,0.99106)

(b) Posterior means, S.E., 95 % C.I. for

Mean S.E.
O.474xlO~6

C.I.
3
6
9
12
15
18
oo

0.47xl0-«
O.35xlO~6

0.352xl0-5

0.68309x10
0.12827x10
0.71435x10
0.18813

- 4

- 2

- 2

(0.2845 lxlO-10,0.229xl0-7)
(0.24xl0~8,0.20722xl0~5)
(O.551xlO-7,0.27493xl0"4)
(0.20202xl0~5,0.41341xlO-3)

0.32262xl0~2 0.66742xl0~3,0.71809xl0~2)
(0.58643xl0"3,0.27659X10"1)
(0.88838xlQ-2, 0.47309)

0.32545xl0-5

0.14626xl0-4

0.28752xl0-3

0.14838X10-1

0.13546
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Appendix

A Proof of Theorem.

First, we obtain h{pji',x_,n), the joint density of pji and x_ and then integrat-
ing out pji gives ra(#), the marginal density of x. Then the posterior density
ofp^ is,

^ ^ ~ } ; 0 < Pji < l,i = 1,2, . .„*, j = 1,2. (18)

The joint density of p and x_ for peS^ + ' is the product of (2) and (3),

k

h{P >%) — c{%.i Ίki QL) WPlY P2i% iX ~ Pli ~~ P2i)X3t {Pli ~ Pli-l)aU~
2 = 1

where
k _ i -nΛ.

c(^.,n,α) =
i = 1 X\τ.X2ι.xzι. [[i=1 l α i z l α 2 2

We obtain the marginal posterior density of pu given x by integrating
pa's, i = 1,2,..., k in (A.2),

/*!— Plfc+1 /*P2fe /*P22 ^ .

7o Jo Jo t = 1

Consider J£ ^21 v-*- ~ Pu ~P2iJ P21 VP22 ~~ P21) dP2i'
Expanding (1 — pu — P2i)Xzi using Binomial expansion, we obtain

*31

g (-1)^ ( XZ1

where /3(r,θ) = ψφ^Λ- Continuing, we get,

= Σ Σ Σ ( -
r 2 i=0r 2 2=0 r2 f c=0 i—\ \ **" / m=l
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Write βk = Σί=i(x2t + <*2l + r2i) + a2k+i-
The joint density of p^ = ( p n , ...,piA:+i) and x_ is then given by

zvx, a) = c(n, & α) £ Σ - Σ dfe ̂  s) Π

(Pit - Pu-i)au^(i -

0 < p n < Pi2 < ... < Pa < pit+i < ... < Pik+ι < 1,

where,

f^ f [ f ^ ) f [ β( Σ (^m + α 2 m + r2
=̂1 \ 2ί I i=\ m=l

Consider,

/ TT XU x -r a -1

J ^f^ u

(1 - pu+i^-'ίPiHi " PiJbΓ^+^^Piib+i,

where / indicates multiple integration over the range f*u / p l i + 1 .. J^1^

We write p ^ = (1 — (1 — Pi^))^1' and use Binomial expansion to get,

k ( \ k fc+i

Π ? M 0(*i* Σ (^m - r2m + r lm) + Λ +
V ^ /

where

Σ denotes the multiple sum

Note that I2 does not involve (pn, ...,Pii-i). Consider,

= /Plt... Γ 2 π
«/0 «/0 Λ -j
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Here, expanding (1 — pu)Xu r<2ί and then integrating, we get

X2>l~~r21 %2>i — \~~'Γ2i — l I — 1 / \

rn=O rii_i=O i—\ \ 1 ^ /

i-1 ί

^=1 m = l

Combining these results yields,

h(pu £, n) = c(n, x, α) ̂  w(£, r, α)p l f ^
r

where

Σ = Σ-ΣΣΣ-ΣΣ Σ
I 7*21 f2k τιι ri2 rn-i rn+ι rik

-Oί\m

=1 \ ' ^ / m=\

* λr+1

+ ̂ + £ α lm)

Lastly integrating pi« gives m(x).
Hence, (A.I) implies that,

Γ'~'~~g(pu I ^ifei,«),^2fez:,«);0,i) (20)

where,

and

Z- f̂e L > ®) = &3i - 2̂i + Σ (X3^ - ^ + ^1^ + Otu) + ^
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The posterior mean of pu is,

~ ~ / jCm^^ n t% . ( rγ» s\t Λ f * . I /v» /»» •Λ/ 1 1 t #_ / yv» /¥» ^\# \ ^ *

Interchanging the first subscript 1 and 2 gives similar expression for the

conditional density of p<n and hence for E(p2i | £,ft).
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