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Statistics in the broad sense is about extracting information from data.
The common view of statistics is much narrower, though. Often it is seen
only as a set of cookbook methods that are designed for small sets of data
that are obtained according to a known design or sampling plan. The
massive dynamic sets of data with tens or hundreds of gigabytes or even
terabytes of data that are increasingly common in business, manufacturing,
environmental sciences, astronomy, data networking and many other areas
are felt to be beyond the domain of statistics. Moreover, the most visible
challenges for massive data involve computing, which can lead to the
view that computer science is more appropriate for understanding massive
data than statistics is. This paper, however, argues that the discipline of
statistics and thoughtful practitioners and researchers are still essential
for extracting information from really big sets of data.

1. What is Statistics? Most people are first exposed to statistics in a re-
quired undergraduate course that is filled with a hundred or more other students
who are also required to be there. Partially in response to demands from other de-
partments, the introductory course focuses on traditional methods for the kinds of
small experiments, studies and surveys that are part of the curriculum for other de-
partments. Typically, nearly all, if not all, the datasets considered have fewer than
100 observations with only a few variables on each, and the objective is to apply
simple methods for finding means, variances, confidence intervals and p-values and
for fitting linear regression models. There is no discussion of computing, probably
both for lack of time and because sophisticated computing is not needed. There is
some discussion of mathematical properties of techniques, but usually not in ways
that are intuitive. Inference centers on confidence intervals and p-values, which are
simple to compute but subtle to explain. What most people take away from the
course is that statistics is neither particularly hard nor interesting (except for some
peculiar use of language), it is only useful for simple data and simple questions (if
at all), and any one can apply it (although it is best avoided), but hardly anyone
can understand it.

But statistics is much different, and not just broader or deeper, from what is
taught in undergraduate courses. Simply stated, statistics is about extracting infor-
mation from data that are noisy or uncertain. The unstated position is that all data
are noisy. Twenty measurements from a small experiment are noisy, and zillions of
transaction records in a data warehouse are noisy. The twenty observations from
an experiment are noisy because measurement errors are unavoidable. Transactions
have noise because the individuals generating them vary, and transactions for even
just one individual vary. In statisticians’ terms, transactions vary across individuals
and vary within any one individual over time and space. If the data arise by sam-
pling, so not all individuals are included, then errors and variability are introduced
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by the process that determines which individuals or population units are included
in the sample. Additionally, the data may have errors or be incomplete (even in
the U.S. Census). Statistics, then, is about overcoming the uncertainty, errors and
variability (noise) in the data to reveal the information hidden within.

How information is extracted from data depends on the goals. Sometimes, the
goal is only to summarize the data at hand and not to make inferences about
future experiments, future transactions, or the process that generated the data at
hand. Even summarization may be difficult and require specialized algorithms if the
data are massive. A more ambitious, and perhaps more common, goal is inference
about unknown parameters and relationships. For example, the goal may be to
understand how an underlying, unobservable quantity, such as power output, that
cannot be measured without error varies as a function of other quantities, such as
temperature and current. That is, the problem is to infer the form of the relationship
and its parameters from experimental data. Or, the goal may be to estimate the
fraction of current mortgages that will eventually default. Predicting future values,
rather than inferring underlying relationships and parameters, is another common
goal. For example, the goal may be to predict whether a particular applicant for a
mortgage will default if the mortgage is granted, so data on current mortgages are
only a noisy surrogate for the future data of interest. Both inference and prediction
require data analysis, not just data summarization.

Statisticians take on many roles to analyze data. Some design graphics that bring
out the structure of both the random and non-random components of data. Data
visualization from the perspective of a statistician is discussed in [23], [10] and
[11]. Interactive, dynamic data visualization for the purpose of statistical analysis
is discussed in [20], with the ideas available in the package GGobi, for example.
Statisticians have also designed flexible programming environments for exploring,
analyzing and visualizing data. Two popular languages for statistical computing
are S [5] and Lisp-Stat [22]. The 1999 ACM Software Systems Award was given to
S because it “has forever altered how we analyze, visualize and manipulate data.”
Previous winners of this prestigious award include Unix, Tex and the World-Wide
Web. The ideas of S programming have been developed in the commercial pack-
age S-Plus from Insightful, Inc. and in the open source package R. Recently, a
global collaboration has begun to build a statistical computing environment called
Omegahat that is based on distributed components ([6] and [21]; also see the In-
ternet site www.omegahat.org). The environment allows statisticians to access a
rich set of tools, including visualization packages like GGobi, statistical computing
languages like R, and database management systems like MySQL, from within one
environment, removing the need to escape to different applications and to import
and export data from one system to another to analyze data with task-optimized
tools.

Most statisticians, though, spend most of their time working with data, breaking
it down into deterministic and random noise components. Usually the first step
is informal. The data are plotted in many different ways — with different filters,
transformations, and views selected each time — to discover patterns and structure
informally. Then those patterns are set aside, often by subtraction, and the residuals
of the data from the pattern are examined visually in many different ways to reveal
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any remaining structure or patterns in the data. Then that structure is subtracted,
and the fit and subtract steps are repeated on the new residuals, on and on (with
some backstepping, perhaps, to correct missteps in modeling) until no structure can
be found. In this way, a statistical model is built empirically.

The basic statistical model is simply

data = mean + noise,

but both the mean, which is a deterministic representation of the data, and the
noise, which represents the variability and noise around the deterministic model, can
be complicated. The mean might be parametric, in which case it could be a linear,
nonlinear, additive, or multiplicative function with only a small set of parameters
(coefficients, for example.) Or, the mean can be nonparametric; e.g., a step function
(as in a tree), an assignment function (as in classification or clustering) or smooth as
a function of a set of explanatory variables. The noise describes the variation in the
data, which affects prediction and the reliability of estimates. The noise might be
independently normal, correlated, long-tailed, weighted to account for non-random
sampling, length-biased, spatial, censored or hierarchically structured, for example.
If the noise does not affect the data additively, a more appropriate model is

data ~ Fp mean(data) = ¢(0),

where Fy is a distribution that describes the random variability of the data around
the deterministic model g(8) for the data. Fg can be a well-known distribution, like
the Bernoulli in the case of logistic regression. It can include correlation among ob-
servations, mixing to accommodate outliers, weighting to account for non-random
(but probabilistic) sampling and length biasing, for example. The mean parameter
0 may depend on a set of explanatory variables or predictors, as well as on param-
eters such as unknown coefficients in linear or nonlinear models, and it can be as
complicated for an arbitrary distribution Fp as it is for normal noise. Many kinds
of models are possible, each representing both the structure and variation in the
data (see [19], for example). The more complicated the process that generated the
data, the more complicated the statistical model may need to be.

A basic premise that drives much of statistics is that modeling the noise compo-
nent well is as important as modeling the mean structure well. The noise component
is needed for prediction, to understand what is likely and what is not. It is also
needed to understand how reliable the estimated mean or prediction is. The noisier
the data, the less reliable the estimate. A basic tenet of statistics is that using an
estimate or prediction without some sense of its reliability is downright dangerous.
Although the range and nature of statistical models may seem bewildering to non-
statisticians, a wealth of models is felt to be crucial for representing data when the
goal is reliable inference or prediction.

Most statisticians have not dealt with massive data, though. Most do not have
the necessary computing or database management skills; their skills lie elsewhere.
But, it is possible to apply statistics to massive data. Section 2 describes what a
statistician sees when looking at massive data and how that differs from what a
computer scientist who works with massive data, often called a data miner, sees.
Section 3 then takes a closer look at applying statistics to fraud detection, which
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is a problem that has been tackled by many data miners from computer science.
Section 4 offers final thoughts on the role of statistics.

2. Massive Data

2.1. A Database View Statisticians find probabilistic models a natural way to
think about data, but not everyone looks at data that way. Another view, which
is common in computer science, holds that the data in a database are not random
or uncertain but an accounting of everything that has happened. Thus, the need
from a data mining perspective is typically not to make inferences about an under-
lying process that is observed imprecisely, or to estimate deterministic and random
models for the data, or to account for noise and uncertainty in the data to make
inferences and predictions. Instead, from the data mining perspective, the need is
to tabulate and process the data.

Statistics might then be used to approximate answers to queries that in principle
can be known exactly, given enough computing power and time, but in practice
are t0o costly to obtain (e.g., [17]). How much was spent last month? How many
people bought those two products in Florida last weekend? If all the data cannot
be processed to answer the questions of interest, then the data can be sampled (not
necessarily randomly) and knowledge of the estimating procedure and sampling
scheme can be used to provide probabilistic bounds on the difference between the
approximate answer and the answer that would have been obtained if all the data
had been processed.

The notion that the data are not noisy, or at least noise does not have to be
explicitly incorporated into models, is strange and naive to statisticians but not
to computer scientists. Many if not most of the data mining tools that computer
scientists use were not designed with noise in mind. Instead, a common goal of
computer scientists in data mining is to find interesting patterns, associations and
rules from massive sets of data without considering the process that generated the
data at hand. For example, an interesting rule might be “People who buy beer
between 7 p.m. and 9 p.m. buy diapers at the same time,” or X A Y = Z.
The value of a rule is measured by its support and confidence, where support is the
fraction of database elements that satisfy conditions X,Y, and Z and confidence is
support(X,Y, Z) /support(X,Y). This has the flavor of probability, in the sense that
support = P(X AY A Z) and confidence = P(Z|X AY) if each database record or
item is given equal probability. The resemblance is only superficial, however, because
there is no sense of randomness or uncertainty and the goal is to reason only about
the data in the database, not about a larger population, judging performance solely
by the fraction of a database that satisfies the rule exactly. Finding a good rule
then reduces to finding frequent itemsets (which is a hard computational problem).

In contrast, a statistical approach would consider the data in a database as a
sample (not necessarily random) from a larger population, such as all people who
buy at convenience stores, or a random process, such as disease infection. A statis-
tician would then define “interesting” in terms of a probability model, interpreting
“interesting” as either the mean under the probability model or as current or fu-
ture observations that are rare under the model, for example. This leads to two
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important differences with a computer science based approach. First, what is in-
teresting can be either rare (outliers) or common (the mean). Second, and perhaps
more importantly, the statistical model can be used to evaluate rules that have
not been observed in the data. That is, a statistician uses a model to estimate
P(Z|X = z,Y = y), even at unobserved values of (z,y, z), while the computer
scientist relies on partitioning a database and counting records with X A Y and
XANYAZ.

The view that the data have no noise and extracting information from data
amounts to finding frequent itemsets is appropriate in some contexts, but not all.
It is not enough when the unit of analysis is small and the answer cannot be
computed from the data with certainty, even if all the data are analyzed. Will this
customer switch to another wireless service provider? How much will be spent on
those two products in that convenience store in Florida next weekend? Noise is also
important in dynamic modeling when older data are less relevant than newer data.
In that case, a statistical approach allows gradations of uncertainty rather than just
binary relevant/irrelevant decisions. Finally, relying solely on counting instances in
a database violates the principle of “borrowing strength” or combining many small,
different but related problems to make larger inferences. Questions that require
going beyond counting instances are the ones that most interest statisticians.

But, processing and counting massive data is so difficult that it can overshadow
data analysis. The forward to Advances in Knowledge Discovery and Data Mining
states that

Finding new phenomena or enhancing our knowledge about them has
a greater long-range value than optimizing production processes or in-
ventories and is second only to tasks that preserve our world and our
environment. It is not surprising that it is also one of the most difficult
computing challenges to do well. [24]

This quote often takes statisticians by surprise because, from their perspective, the
challenges in knowledge discovery go far beyond processing, scaling up algorithms
or using the right database management system. Traditional issues of data visual-
ization and analysis are as challenging as computing is because the data can have
complex structure and sources of errors and variability.

2.2. A Hard Example: Web Analysis Suppose the goal is to analyze the usability
of a website and the data consist of the clickstreams of all visitors to the website
over a period of time. The simplest approach is to tally the data, counting page hits
broken down by time period or geography or referral engine, for example. Counting
does not reflect how people use the website, though. Usability requires monitoring
how a user traverses pages at the site and how the user changes when the website
is revisited. Does a new visitor keep returning to the home page, perhaps because
starting over seems the only way to get to the relevant location? Do people look
at one page briefly and then leave the site? Do people who are referred from one
search engine browse differently from people who are referred by a different search
engine? Do people who visit a site frequently differ from those who visit once? How
much revenue is generated during a visit to an online store? These questions require
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thinking of the visitor as the unit of measurement, not the entry in a log file. This
leads to thorny questions, such as what is a visit? Understanding the bias in the
data is also important. Which visitors are of interest? If uninteresting visitors, like
robots that grab all web pages, dominate the data then treating all visitors equally
introduces bias. The fact that most people look at the home page and then leave
may be important, but keeping these shallow visitors in all stages of the analysis
may only obscure how the website is used by those who use it at all. Identifying the
interesting visitors is difficult not just because there are many visitors to consider
but also because “interesting” is a hidden label that changes as websites evolve and
has to be deduced by considering many visitors. Finally, ignoring the tree structure
of pages and paths, which are part of the context of the problem, can easily produce
misleading results.

The first step in any statistical analysis is to look at the data in innumerable
ways. Visualizing the behavior of visitors at a website in a way that respects the
structure of the data is difficult, but some progress has been made. For example,
Mark Hansen and Wim Sweldens of Bell Labs have introduced synchronized brows-
ing, which allows an analyst to browse web pages and simultaneously see the results
of analyses in the browser, tying the structure of the analysis to the structure of
the website. As the content provider clicks through the website, results of an anal-
ysis of visitors to the page, such as where they came from, what they did on the
page, how long they stayed, and where they went next, are displayed. This gives the
content provider a sense of the structure of the data that can hint at more formal
models of the “average” user, the “typical” way the website is used, and the range
of likely departures from the typical and average. Thus, the visualization captures
the context, the mean, and the noise of the data.

Although there is a massive amount of data in a web log file, we may still be
data-poor when the dynamic tree structure of the data is taken into account. There
may be many more ways to traverse a website than there are visitors, and the
possible paths change continually as pages are added, deleted and edited. Still,
if a statistical model can be used to describe a visit, then it is possible to make
inferences about paths that have never been observed. Even if a complete path has
never been observed, visitors may have used parts of the path. With a statistical
model, the data can be used to estimate probabilities of the partial paths which
can then be combined to estimate the probability of a complete, unobserved path.

Traditional data mining problems, like clustering pages or users, that computer
scientists have focused on are also important, but these can be much richer than
often assumed. For example, the goal may be not just to segment users into ho-
mogeneous groups but to understand how user segments are changing and how the
changes relate to changes in the website. A static measure of performance, such as
an overall misclassification rate, that gives one summary of performance can then be
seriously wrong about current performance. Generally, good performance measures
cannot be developed without close collaboration with subject matter experts.

The fact that it is dangerous to analyze data without knowledge of the context
has been underscored by many people involved in analysis of data. But it is worth
repeating because ignoring it leads to silliness which can discredit all of statistics
and data mining. An April 1998 article in Forbes entitled “Diaper-Beer Syndrome”
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gives a long list of failed attempts to build data warehouses for data mining and
an equally long list of unrealistic claims, including some that grew out of the often-
cited case that found a correlation between buying beer and diapers in one small
convenience store in early evening hours. Several of the papers in [13] also emphasize
that a set of general tools applied in a vacuum without taking the context into
account is likely to lead to useless results (for example, [1] and [7]).

In principle, then, statistics does have a role to play with massive data. But, has
statistics had any success in analyzing massive data? The rest of this paper considers
that question in the context of fraud detection, a topic that has previously been
discussed in the data mining and knowledge discovery literature (e.g., [3] and [12]).
More information on fraud detection is given in [4].

3. Statistical Fraud Detection There are many kinds of telecommunica-
tions fraud. In calling card fraud, a stolen credit card is used to place a call. In
wireless fraud, a cellular phone may be cloned. In wireline fraud, a hacker may
break into a university’s telecommunications network and route calls over the net-
work until the fraud is detected. In subscription fraud, a customer initiates service
without intending to pay. Our goal is to find such fraud as quickly as possible by
scoring each call for fraud while it is active or as soon as it has ended and then
updating a fraud score for the account by the new call score.

If we could predict the next legitimate call on an account precisely, we could
score calls for fraud by comparing the observed call with the predicted call. The
new call would be scored zero if it matched the predicted call exactly, and scored
one if not, and the cumulative call score would measure the severity of the fraud. Of
course, calls cannot be predicted without uncertainty, so the natural alternative is
to score calls against a probabilistic or predictive model instead of against an exact
prediction. The predictive model has to accommodate the variability in the calling
pattern, so calls within the usual range of variability do not falsely trigger a fraud
alarm. Consequently, fraud detection is as much about describing customer-specific
noise as it is about describing a customer-specific average.

Probabilistic call scoring is not easy. First, there are many, many calls, and
scoring must be fast enough to keep up with the data flow. So any score must be
simple to compute and any prediction model must be simple to maintain. Second,
there can be millions of callers, with wildly diverse calling patterns. Some customers
make a few calls a week; others make a few thousand calls a day. Some customers
never make calls out of business hours; some never make calls in business hours.
Some never call China; some make many calls to China. Scoring must be appropriate
for any caller, so a prediction model must be maintained for each customer. Third,
the customer base is often volatile, with new customers making calls each day, so the
prediction model must be easy to initialize meaningfully for a caller with no previous
history. In statistical terms, we are forced to “borrow strength” from our knowledge
of previous customers to initialize the distribution for a new customer quickly.
Finally, the prediction model has to adapt as more is learned about the customer,
without intervention or off-line processing, but the model should adapt only to
legitimate behavior, not fraud. Thus, finding a good algorithm for fraud detection
involves much more than training a classifier on legitimate and fraudulent calls or
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legitimate and fraudulent account summaries; it involves modeling legitimate and
fraudulent calls probabilistically and scoring calls against both models.

From a statistical perspective, a call can be represented by a random vector
X = (Xy,...,X%), where X; might be call duration, X, call timing (day-of-week
or hour-of-day), X3 call rate, X4 geography of the called number (hierarchically
organized by country, region, city, exchange, for example), and so on until all the
information that can be gleaned from a calling record is included. A legitimate caller
i at the time of its call n has a multivariate distribution C; , on X; . A fraudster
has a, hopefully different, multivariate distribution F'. The distributions C; , and
F are high-dimensional, with possibly complex interactions among the variables.
For example, call duration may depend on the time-of-day, so considering only the
one-dimensional, marginal distribution of call duration, ignoring the differences in
peak and off-peak hours, would be misleading. In any case, the statistical problem
is to score a call according to whether it is more likely to be fraud (have come from
F) or to be legitimate (have come from C; ), so the first step is to estimate C; ,, for
each caller ¢ and the fraud distribution F' as well as possible, given the constraints
on space and processing time.

An ideal estimator of C; ,, or F would be

e nonparametric, to capture the full set of behaviors over the customer base,
e short, to meet constraints on storage space,

o sufficient, so the C; s and F represent all the data relevant to detecting
fraud,

e multivariate, to capture important dependencies among calling variables,

¢ dynamic, to enable updating C; ,, with every unsuspicious call that the cus-
tomer makes,

o easily initialized, so a reasonable starting estimate can be assigned to a new
customer, and

e “optimal”, to predict most customers well and a significant fraction very
well.

Histograms (an array of bins and corresponding relative frequencies) are sim-
ple nonparametric estimates that have the required properties (see [9] for details).
Either standard fixed-width histograms with fixed bin endpoints and variable bin
heights or fixed-height histograms with variable endpoints and fixed heights (i.e.,
a set of quantiles) can be used. Choosing the set of histograms to monitor amounts
to choosing the set of marginal and conditional distributions to be monitored. For
example, should durations of peak and nonpeak calls be monitored separately or
together? A complication is that the same set of distributions has to be monitored
for all customers to simplify processing.

A statistical approach to designing C;, is described in [18]. It assumes that
there is a set of “legitimate” historical calls for tens or hundreds of thousands
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of customers over several months, where legitimate means that the customers ex-
perienced no fraud during the period or so little fraud that it was not detected.
The set of conditional distributions to track is then chosen by applying x? tests
of independence to each customer separately, and combining the resulting p-values
across accounts to find the conditioning variables that are needed to model most
customers well. Because the procedure is based on statistical testing, it explicitly
accommodates uncertainty and limits the structure of the model to that which can
be supported by the data. It is also feasible for large databases of customers because
each x? test is quick to compute. The resulting structure or set of histograms is
called a signature. Each customer 7 at the time of its call n has its own signature
Cin.

The next task is to define a way to re-estimate or incrementally update a sig-
nature with every new unsuspicious call that the customer makes. Call-by-call up-
dating restricts processing to the subset of accounts that have new calls and avoids
the need to retrieve past calls from a database, which is inevitably slow. It also en-
ables call-by-call fraud detection. In the statistics literature, incremental updating
is called sequential estimation, and it has a long history. Perhaps the most common
sequential estimation method, one that is equally familiar to engineers, is exponen-
tially weighted moving averaging (EWMA). If a standard, fixed-width histogram
has estimated bin probabilities p; ,, after call n, and call n + 1 is represented by a
vector Z; 41 that is zero in every bin except the one that contains the observed
value for call n + 1, then the EWMA updated bin probabilities are

Diny1 = (1- w)Pi,n +wZ;ny1,

where 0 < w < 1. The weight w controls how fast old calls are aged out of the
signature because the current call has weight w and the k** earlier call has weight
w(1 — w)*. With larger w, the estimate adapts more quickly to changes in a cus-
tomer’s calling pattern, but it is also more variable because the effective sample size
or number of calls that have non-negligible weight is smaller. Variants of exponen-
tially weighted moving averages can be used to update fixed depth histograms [8]
and top-seller kinds of histograms that try to retain only the bins with the highest
frequencies [17].

Sequential estimators require initial values to start, so signatures require initial
values; statistics can be used to find them. Our method assigns each new customer
to several customer segments, one for each component of the signature, on the basis
of information about its first few calls. Each customer segment has an average his-
togram that is used to initialize the signature component of any customer assigned
to that segment. These customer segments partition the space of all possible cus-
tomers, but there are two major differences between standard database partitioning
and our approach. First, we initialize each component of the signature separately,
because the signature is a product of its components by design. This gives a huge
number of possible customer segments or products of signature components, some
of which were not even observed in the training set. The second difference is that
each customer can diverge from its initial assignment and move to its own “seg-
ment of one” over time because the initial signatures evolve through exponential
updating. Details are given in [9)].
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The statistical problems in fraud detection do not end with algorithm design.
Evaluating a fraud detection algorithm is as challenging as designing one. For ex-
ample, fraud management centers track the fraction of investigated accounts that
are mislabeled as fraud, while researchers track the fraction of all accounts that are
mislabeled as fraud. Thus, the researcher has a larger denominator, a much smaller
false alarm probability, and a more optimistic view of performance. Yet changing
to the fraud analyst view is hard because that requires modeling the process for
deciding which suspicious accounts to investigate first. Moreover, because fraud de-
tection is ongoing, performance has to be tracked over time, not just summarized
at the end of a test period. There are also many facets to performance, such as the
time to detect fraud, the number of false alarms, and the losses from fraud. Simu-
lating a fraud management center by running the proposed algorithms for scoring
calls and accounts and prioritizing high scoring accounts on a huge set of calls may
be the only way to obtain valid estimates of the dynamic performance of a fraud
detection system. But then statistics can again be applied to design the simulation
and its evaluation.

4. Final Thoughts Computing is critical to the analysis of massive data, and
statisticians have much to learn from computer scientists about computing with
massive data. At the same time, statistics puts new demands on computer science.
For example, there is a need for database management systems that allow more than
rudimentary ways to explore data. Many statisticians manage data by extracting
what they need from a database, applying tools like awk and perl to the selected
data to reduce or aggregate the data further, and then analyzing the reduced or
partially analyzed data in a statistical environment like S. This works, but it is
not convenient and probably far from the state of the art. Scalable algorithms are
needed, too, but the ability to explore data and fitted models conveniently is more
fundamental.

There are also aspects of data mining in computer science that statisticians
should adopt. A statistical model is a principled way to reason about data, but it
may not be the best way to start exploring data. Partitioning the data, especially
when there is a lot of data, may be better, and it has led to some new powerful
techniques of model building, such as boosting ([14] and [15]). Even with procedures
like boosting, though, a model helps to understand why the procedure works, and
thus where it works best and where it fails. (See, for example, [16] and [2].)

Massive data raise many questions beyond analysis that could be much better
addressed by statisticians and computer scientists together than by either group
working along. For example, there is growing concern about protecting the confi-
dentiality of the massive data collected in log files on the internet. Confidentiality
has been discussed in the statistics literature for decades, but most of the proposals
that statisticians have made are not feasible for large sets of data. Data cleaning is
another area of common interest.

Statistics has traditionally had strong ties to mathematics, both for designing
new methodology and evaluating the performance of methods. Mathematics con-
tinues to be important to the analysis of massive sets of data. Probability is fun-
damental to every step in statistical modeling. Take away probability, and there is
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not much left to the approach to fraud detection described in Section 3. Probability
also plays a role in computing. It is basic to the design and performance of MCMC
(Markov Chain Monte Carlo), for example, which is the workhorse of Bayesian
model fitting. Other branches of mathematics that are important to understanding
massive data include optimization, Bayesian networks, coding, compression, approx-
imation theory, functional analysis, and algebra. So, just as extracting information
is not just computing, it is not just computing together with statistics. Mathematics
continues to provide the principles and foundations of much of statistics.

In short, there is much to learn from many disciplines before analysis of massive
data will be no harder than analysis of more modest, traditional sets of data. And,
it is perfectly clear that the discipline of statistics and statistical thinkers who will
have the high standards and wisdom of Jack Hall will be essential for extracting
information from massive data.
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