Saddlepoint Approximations of the Two-sample Wilcoxon Statistic
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Froda and van Eeden [1] obtain an approximation for the two-sample
Wilcoxon statistic based on the moment generating function due to van
Dantzig [8]. A direct saddlepoint approximation based on this moment
generating function is obtained and is shown to have uniform relative
error. These approximations are compared numerically to those based on
the conditional saddlepoint method and the method of [1].

1. Introduction Froda and van Eeden [1] obtain an approximation for the
two-sample Wilcoxon statistic, W, the sum of the ranks of the first sample, for
samples of size m and n with m + n = N, based on an exact moment generating
function of van Dantzig [8]. This gives relative errors of order N~3/2 for the ap-
proximation of the tail probabilities, P((W — EW)/vV/VarW > w), in the compact
region, when w is bounded, but it does not give relative errors for a region including
the large deviation region, when w = O(v/N).

We consider approximations for the distribution of the two-sample Wilcoxon
statistic by a number of different methods and obtain numerical comparisons of
them. The first method is based on the moment generating function used by Froda
and van Eeden [1]. We have used the usual saddlepoint method to obtain approx-
imations to probabilities and tail probabilities. We have obtained two distribution
approximations, the indirect Edgeworth approximation and the Barndorff-Nielsen
approximation, asymptotically equivalent to that of Lugananni-Rice with relative
error of order N~ 1.

The second method is based on a conditional representation of the distribution
of the Wilcoxon statistic which has been given in [5] and generalised in [6]. Also
the method of [7] may be applied to give a Lugananni-Rice version of the condi-
tional method. We give indirect Edgeworth and Barndorff-Nielsen approximations
based on the conditional technique. Froda and van Eeden [1] also suggest that their
method should greatly improve on the conditional method, but this is shown here
not to be so, particularly in the large deviation region.

Finally, we give numerical examples for n = m = 5 and m = 10, n = 6 compar-
ing approximations to probabilities and to tail probabilities from the saddlepoint
approximations using indirect Edgeworth and Barndorff-Nielsen forms, and based
on the conditional method and the approximation of [1]. These indicate that there
is effectively no difference between the new saddlepoint approximations and the
approximations based on the conditional method. The approximation of [1] is very
good in the center of the distribution but quite poor in the tails.

2. Direct Saddlepoint Approximation Let W be the two-sample Wilcoxon
rank sum statistic. Put U = W —m(m+1)/2 and N = m+n. Then, from Question
15 of page 126 of [2], we have
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LEMMA 1.
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j=1
Define the tilted variable U, by

(2) P(U =1)=NEW-lupy, =1), 1 =0,1,...,nm.
We will choose u as the solution of the saddlepoint equation
3) K'(u) =1/N.
We know
_nm 2 _ _mn(N+1)
EU_2, a—VarU——12 .

We only consider 0 < I —mn/2 < §N? from now on, where 0 < § < mn/(2N?) =
pq/2. There are analogous results for [ — mn/2 < 0. The endpoints where ! is near
0 or mn are considered in [4].

THEOREM 1. For eN2? <1 < mn — eN?, where 0 < € < pq, we have

eNK(u)—lu

2 NK'"(u)

@ P =1)= (1+ Py(w)y; +O(N—52)),

where K'(u) =1/N and

_ 3KWw)  15(KO)(u))?
Pl = Ay ~ 2P E W)

Proof: We prove this for 0 < [ —mn/2 < §N?, where 0 < § < mn/(2N?) = pq/2.
Consider the moment generating function of U’ = (U — mn/2)/N, given by

Ml(ul) — Ee“I(U—m"/Z)/N,
and let
n — i u' (U-mn/2)/Ny _ ! pq
rc(u)—Nlog(Ee )-K(u/N)—;u.
So, from (3), we have

(5) k' (v (z)) = (I —mn/2)/N? = 2.



SADDLEPOINT APPROXIMATIONS OF THE WILCOXON STATISTIC 151

We have
(6) P(U' = (I —mn/2)/N) = e VMA@ PU, = (1 — mn/2)/N),

where A(z) = —£'(v/(z)) + zu/(z), and U}, is the tilted variable defined by (6). We
know

1 TN .
PU,, = (I —mn/2)/N) = 2 / e~ WU=mn/2)/N oy (Nk(u' +iv) — Nk(u'))dv

T J—nN
=J1 + Jo,
where
J1= % /Z e~ W=mn/2)/N oyp(Nk(u' + iv) — Nk(u'))dv
and
J2 = L e~ W=mn/D/N exp(Nk(u' + iv) — Nk(u'))dv.

27 J(—nN,xN)—(—eye)

Let us look at J; first. We can write

) = [ og{y(1 - e9¥)} ~log{(g-+1)(1 = e )HaFw(s) - B’

— [ ogtu(1 - @+ )} ~ log{(a +)(1 - )y - Bu' + 001/,

where
g j-1 J
F = = P < = =
N(y) N’ N <y=s N’ j=L...,m,
and the order term is uniform in |u’| < C. Further the derivatives of x(u') can be
written in a similar way and ¥ ('), k = 0,1,...,5 are bounded for |u'| < C and
k"(u') > 0 for |u'| < C. So expanding J; in the usual way we can get for || < 1,
_1 /[ 1owene, NEO@) 5 Ne®@)
Ji = o exp{ NKJ (u)v® + 3 (w)° + 1 (iv)
(5)
Nm (u' + Giv) ( 5Ly
51
I s VIR SO s
" 20/ Nei(w) J . Nn”(u’ 31(k" ()32 vN
("9(3)(14 ))? . \6 5(4)(1") 4y 1 5 1y? —3/2
__Www)) LAY - 1’ O(N3/2)]d
+ (2!(3!)2(,%"(1‘,))3 iw)® + 4l(ﬂ,,(ul))2 (iw) )N + |lw|’e ( )]dw

1+ By + ON ),

V2r N/ ()



152 R. JIN AND J. ROBINSON

where w = \/Nk"(u')v and

PZ(U) _ 3/{,(4)(»“’) 15(n(3)(u'))2

(k" (w))? 21302 (k" ()3

Froda and van Eeden [1] have proved |Jz| = O(N~%/2) using a method based on
[9]. By the relation between U and U’, (4) follows.

In a similar way we can obtain the indirect Edgeworth approximations for the
tail probabilities given in the next theorem. These are obtained in the same manner
as the result of section 3.2 of [6]. Here we have used a continuity correction since the
approximation is the same as one based on continuous distributions yet the true
distr}bution of the standardised statistic is lattice with maximum jump of order
N—3/2,

THEOREM 2. The indirect Edgeworth approzimation of the tail probabilities of
U is

P> 1) = VK12 (1 - B(uy/NK"(W)))
- NeZs $(uy/NK"(u))

(7) (1-+ P/ NR7(0) -+ Pou o/ NETw) g7+ O(N=9/2),

where

K®(u)  (v*-1)¢(v)

(8) Pryu(v) = 6(K"(u))3/2° 1—®(v) v
and
O (KY) (P +0)p(v)
Pau(v) = 24(K" (u))? ( 1-®(v) T )
(E®(u))? [ (=v° +v° — 3v)¢(v)
(9) +72(K"(U))3 ( 1- Q(’U) * UG) ’

and u is the solution of K'(u) =1—1/2.

Summing the result in Theorem 1 we can obtain the following Barndorff-Nielsen
form of the tail probability. The method approximating the sum by an integral is
given in Lemma 3.2.4 and Section 3.3 of [3]. We note that this approximation does
not use continuity corrections.

THEOREM 3. The tail probability approrimation of U is
(10) P(U > &) = (1~ &(VNw"))(1 + O(1/N)),
wherew* = w—%ﬂl, w?(y) = —2(K (u(y))—yu(y)/N), signw =sign £, w = w(z)
and

Y(w) =

W
(1 - emu@®)/K"(u(#))
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Remark: The Lugananni-Rice formula can also be obtained by summing in The-
orem (1) as

(11) PU>8)=|1-3(/Nuw)+ Wfﬁ) (zb(jﬁ) 1

T = E)] 1+ O(1/N)).

In Section 5.2 of [3] it is shown that the ratio of the Lugananni-Rice approxima-
tion, (11), and the Barndorff-Nielsen approximation, (10), is 1 + O(N~!) in a large
deviation region, that is, a region where 1 is of order one, and is 1 + O(N~3/2) in
a normal region when % is O(N~1/2).

3. Conditional Saddlepoint Approximation Put S; = Zf;l iIi, S2 =
Z;‘V=1 I; where
m m n
;= === PI: =—==1-p= .=1...N.
P(I] 1) n+m N b, (J 0) N p q, J I I
Then, for the two-sample Wilcoxon rank sum statistic W, we have
P(W=il7) =P(S]_ =a:|8'2=m).

Let U = W — m(m + 1)/2. We have P(U = z) = P(5, = w + 2|8y = m).
Define
1 1 &
—_ 8S1+tS2 _ js+t .
K(s,t) = N log Ee N ]E:l log(q + pe?®™*)

Then, as in [6], we have the following theorems.

THEOREM 4.  The approzimation of P(U =1) is

VPgexp(NK(s,t) — (I + m(m +1)/2)s — tn) y
Vv 27TNK0203t

(12) (1 + Po(VNsow) 3 + O(N %)),

P(U=1)=

where s, t is the solution of

NKIO(s,t) =a:+m(m+1)/2, NKOl(s7t) =n,

and
kz 3k4 ke 3K04 15K§3 1- prq
= - -1 H4(0) — Hg(0) + ——,
Pon(0) = 52 + 5451 ~ Oi,8 * a2, 140 ~ g, HeO) + 15
where
N K
2 - | K _ ,
Tst N—1( 27 Ko
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1 K% K1, 3 K11 )2
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k2 T 5Ky (K04 %2, Ko, 113 + 22) 1K, ( o 12
1 Ko3 K1 Ky 2
Koy —2 —
+2K32 ( n Koz ) Tet
Ky Kfl K
ks = K9 — 3——K21 + 321 K2 — =21 Ko,
ST K3, K3,
K1 K11 Kf K4
k4 = (K40 - 4——-—K + 6 K22 - K13 + Kg4
Ko ' Kb ng K&
3 KK  KoK%
—2 Ky -2
Ky, ( 2 Koo * K%,
2 Ky K1 Kl K
Koz (KoaK_2 - K12> (Kso —3K—K21 + 3K§: Ky - K3, —L Kos
Kn K2 K3\
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K3, K3,
0K (s, 1)
where Ki]‘ = K,'j(s, t) = W

THEOREM 5. The indirect Edgeworth approzimation of the tail probabilities of
U is

\/p—quK(s,t)—(l-—l/2+m(m+1)/2)s—tn (1 _ @(\/Nsast))

re=h= V2 Koz ¢(VNsost)
(13) 1+ Plst(\/J_VSUSt)\/LN + P%t(\/ﬁsast)% +O(N-3/2)),

where s, t is the solution of

NKio(s,t) =1—-1/2+m(m+1)/2, NKopi(s,t)=n,
_ ki ¢() ks ((v* —1)(v)
Pt} =20 (1 =10 ”) "6 ( 1= 2(v) ‘”3> !
and

02 !
= B (49 ) g (7501

+ ke [ (=v®+v3 —3v)¢(v) +of) 4 3Kos 15K3; 1-pg
7208, 1—®(v) 24KZ, 72K, 12pq’

where kj, j =1,2,3,4,6, are the same as in Theorem 4.
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Robinson [5] gives the coefficient of the relative order n~/2 for the indirect Edge-
worth approximation as expression (7). And [6] has the general formula for the
coefficient of the relative orders N~1/2 and N~1.

Again we can obtain the Barndorff-Nielsen approximation, and so, as in (11),
the Lugananni-Rice version, as follows:

THEOREM 6. The tail probability approximation of U is
(14) P(U > #) = (1 — ®(VNw*))(1 + O(1/N)),
where w* = b — EUD) 2 (y) = —2(K (s(y), t(y)) — yuly)/N — pt), sign w =sign
£, W =w(Z) and
. VP4 w
w) = —,
¢( ) O_;t /_K02(5, t) 1-— e—s(z)

where o ; = \/Kao — K7, /Ko2.

4. The Method of Froda and van Eeden The following definition and the-
orem are simply restatements of Lemma 4.5 and Theorem 3.2 of [1]. Let F(z)
be the distribution of the standardized Wilcoxon-Mann-Whitney statistic, T =
(U — EU)/Var(U), let a(u) and b(u) respectively be the mean and variance of the
distribution function

V(t:u) = /m e"dF(t)/Qr(u), — oo <z < 00,

—00

where Qr(u) = Ee*T and let a(u) = .
Definition: The saddlepoint approximation 1 — Fs(z) of 1 — F(z), up to and
including terms of O(1/N) is, for z > 0, given by

3 C20 u

(15) QF(u)e—ua(u)+w2/2{1 —d(w)H{1+ N b(u)3/2 Ws(w)},

where w = ub(u)'/?, Ws(v) is given by

(v* = 1)¢(v) — 3

Ws(V) = T3 ’

and u is such that a(u) = z.
THEOREM 7. (Saddlepoint expansion) There exist n > 0 and My > 1 such that,
for My < u < N2, and N = oo,
1— F(z) = {1 - Fs(z)}{1 + O(x®/N%/?)}.
In particular, if u = o(N'/?), and thus  is o( N'/2),
1-F(z) ={1 - Fs(z) {1+ o(1)},
if u = O(N'®), and thus z is o(N/9),
1-F(z) = {1 - Fs(x){1+ O(1/N)},
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while, if u (and thus z) stay bounded,
1—F(z) = {1 - Fs(z)}{1 + O(1/N%/?)}.

Remark: This result does not have the relative error properties of the saddlepoint
method and cannot be expected to give good approximations in the large deviation
region. The result is related to (7) but uses only the term of order N~1/? and a
first order Taylor approximation of the coefficient in Py, (v) defined in (8).

5. Numerical Comparison Table 1 gives numerical comparison of the ap-
proximations of probabilities from the method based on the moment generating
function and conditional methods for n = m = 5. Row (4) is obtained by equa-
tion (4) (new method) including the O(1/N) terms and row (4)* is the saddlepoint
approximation from (4) excluding the O(1/N) terms. So Row (4) has the relative
error N~3/2 and row (4)* has the relative error N~1. In the same way row (12)
and (12)* are based on equation (12) (conditional method). We can see the new
method is a little better, although not at all values, than the conditional method
under the same order of relative error. Table 2 gives numerical comparisons of the

Table 1: Approzimations of P(U =) for the two-sample Wilcozon forn =m =5

] 1 2 3 4 5
exact | .00397 | .00794 | .01190 | .01984 | .02778
(4) | .00463 | .00807 | .01293 | .01925 | .02696
(12) | .00556 | .00894 | .01389 | .02033 | .02817
(4)* | .00583 | .00928 | .01433 | .02092 | .02894
(12)* | .00689 | .01011 | .01510 | .02165 | .02961
] 6 7 8 9 10
exact | .03571 | .04365 | .05556 | .06349 | .07143
(4) | .03577 | .04523 | .05472 | .06353 | .07095
(12) | .03710 | .04667 | .05626 | .06516 | .07263
(4)* | .03810 | .04791 | .05774 | .06686 | .07453
(12)* | .03868 | .04838 | .05809 | .06710 | .07465

approximations of tail probabilities based on the new and conditional methods for
n =m = 5. Row (7) is obtained by equation (7) (indirect Edgeworth) including the
O(1/N) terms and row (7)* includes neither the O(N~'/2) nor the O(1/N) terms.
So Row (7) has the relative error of O(N~3/2) and row (7)* has the relative error
of O(N—1/2). Row (10) is obtained by equation (10) (Barndorff-Nielsen approxima-
tion based on the new method) which has the relative error of O(N~!). Row (13)
and (13)* are based on equation (13) (conditional method). Row (14) is obtained
by equation (14) (Barndorff-Nielsen approximation based on conditional method)
which also has the relative error of O(N~1). Row (15) is obtained by equation (15)
(Froda and van Eeden). In general, we see the new method is a little better than
the conditional method under the same order of relative error, but again not at all
points. The method of [1] is very good in the center of the distribution but quite



SADDLEPOINT APPROXIMATIONS OF THE WILCOXON STATISTIC 157

poor in the tails. Table 3 and Table 4 are for m = 10, n = 6. The results are similar

Table 2: Approzimations of P(U < l) for the two-sample Wilcozon forn =m =5

] 1 2 3 4 5
exact | .00794 | .01587 | .02778 | .04762 | .07540
(7) [ .00803 | .01610 | .02905 | .04833 | .07528
(13) | .00828 | .01632 | .02920 | .04834 | .07511
(10) | .00845 | .01639 | .02933 | .04865 | .07570
(14) | .00912 | .01702 | .03004 | .04948 | .07667
(7)* | 00667 | .01401 | .02597 | .04402 | .06962
(13)* | .00644 | .01330 | .02446 | .04136 | .06542
(15) | -02690 | .02701 | .03713 | .05469 | .08023
I 6 7 8 9 10
exact | 1111 | .1548 | .2103 | .2738 | .3452
(7) | 1110 | .1561 | .2107 | .2741 | .3449
(13) | .1106 | .1555 | .2099 | .2732 | .3441
(10) | .1116 | .1569 | 2117 | .2754 | .3464
(14) | 1127 | .1582 | .2133 | .2771 | .3483
(7)* | .1040 | .1481 | .2023 | 2661 | .3384
(13)* | .0980 | .1401 | .1925 | .2554 | .3283
(15) | .1146 | .1586 | .2121 | .2746 | .3449

to those with n = m = 5.

Table 3: Approzimations of P(U = 1) for the two-sample Wilcozon for n =6,
m =10

l 1 2 3 4 5
exact | .000125 | .000250 | .000375 | .000624 | .000874
(4) .000145 | .000246 | .000398 | .000614 | .000911
(12) | .000140 | .000244 | .000396 | .000612 | .000911
(4)* | .000180 | .000284 | .000444 | .000673 | .000986
(12)* | .000228 | .000331 | .000500 | .000743 | .001080

l 6 7 8 9 10
exact | .00137 .00175 .00250 .00325 .00437
4) .00131 .00183 | .00248 | .00330 | .00429
(12) .00131 .00183 | .00249 | .00332 | .00432
(4)* .00140 .00195 .00263 | .00348 .00452
(12)* | .00152 | .00208 | .00280 | .00369 | .00477
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