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We consider triangular stopping boundaries for a Brownian motion with
drift, with specified error probabilities at two given values for the drift.
We consider the Kiefer-Weiss problem of finding boundaries which min-
imize the maximum expected stopping time asymptotically as the error
probabilities tend to zero. A construction is given which minimizes the
objective function through fourth order optimality. This extends earlier
work for the simpler symmetric (equal error probabilities) case, where fifth
order minimization was achieved.

1. Introduction. Consider testing the hypotheses Ho : θ = ΘQ versus H\ : θ —
θι for the drift θ of a Brownian motion Y. Kiefer and Weiss [12] suggest searching
for the test such that the maximum (over θ) of the average stopping time (AST) is
minimized under some prespeciίied error probabilities (α,/3) at ΘQ and θ\. Lorden
[14] combined two SPRTs, of #o versus θm and of θo versus θm for some intermediate
0m, to form a particular class of tests called 2-SPRTs. He showed, for any fixed 0*,
a 2-SPRT can be chosen such that its stopping time T* satisfies

inf Eθ.T + o(l)

as min(α,/?) ->• 0, where D(a,β) is the class of all tests with error probability
bounds (α, β). For Brownian motion, 2-SPRTs have triangular stopping boundaries.

In the symmetric case when β = α, it is known that sup# E$T = EemT for all
T e D(a,a), where θm = (θ0 + 0i)/2. Hence the 2-SPRT stopping time Tm with
respect to this θm satisfies

sup EθTm = inf sup EΘT + o(l).
θ TED(a,a) θ

Lai [13] also showed that, in the symmetric case, the asymptotic shape of the min-
imax (Kiefer-Weiss) stopping boundaries are triangular. In the asymmetric case,
Huffman [11] extended Lorden's results to show that by solving θ from some equa-
tion numerically, the stopping time f of 2-SPRT with respect to this θ satisfies

supEflf = inf sup EΘT + o(\ logα|1 / 2)

as α ->• 0,/? -»> 0 and 0 < C\ < log a/ logβ < C2 < +oo, where CΊ and C2 are
constants. Note that | logα]1/2 -> oo as α -> 0. Such results were extended further
by Dragalin and Novikov [3]. They showed that

sup Eθf = inf sup EΘT + 0(1)
0 TeD(α,β) θ
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for this same 2-SPRT. Asymptotic expansions of the two error probabilities and the
value of the maximum AST for 2-SPRT were given by Dragalin and Novikov [4].

Various formulas associated with general triangular tests were first given by An-
derson [1]. Equivalent formulas were given by Hall [8]. Whitehead [15], and his
PEST software [2], provide theory and method for symmetric 2-SPRTs. For asym-
metric cases (β φ α), they find θ[ for which the symmetric 2-SPRT of θo versus
θ[ with error probabilities {a,a) has error probability β at θ\. This choice is not
minimax. However, various results and software for symmetric designs can be easily
adapted for this asymmetric case. Hall [7] found, numerically, the minimax triangu-
lar tests (MTT) for several choices of (α,/3), and noted that the resulting average
stopping time (AST) functions are uniformly smaller than those of designs given by
PEST. Huang, Dragalin and Hall [10] and Huang [9] utilized Hall's [8] formulas to
study mathematically how the error probabilities affect the AST functions asymp-
totically among symmetric triangular designs and found asymptotic expansions for
the parameters of minimax triangular stopping boundaries. The asymptotic mini-
max triangular tests (AMTT) achieving fifth order optimality are found and simple
constructions are given. The AMTT stopping time Ta satisfies

supEθTa= inf s u p ^ Γ + O(|logα|~3 / 2),
θ TED(a) θ

where D(a) is the class of triangular tests with equal error probabilities approx-
imated to the order O(a/\ logα|2). Note that | logα|~ 3 / 2 -¥ 0 as a -¥ 0. (If the
error term is O(\\oga\1~d/2), we say the order of optimality is d.) Analytic and
numerical comparison showed that family of AMTT achieves uniform reduction in
AST function compared to the family of 2-SPRT.

In this paper, results in [10] are extended to asymmetric triangular tests (β >
a). The performance of the resulting AMTT are compared to designs from PEST
which adapt symmetric 2-SPRTs to asymmetric triangular designs. A family of tests
satisfying

supEθTa = inf 1

θ τeD
is found (achieving fourth order optimality) and a construction is given, where
is defined in Theorem 3.

By a suitable rescaling

4 λ θl+θot

the original hypotheses about θ become Ho : δ = — 1 versus Hi : δ = 1 for the drift
δ of X, where δ = 20/(0! -θ0) - (θλ +θo)/(θi -θ0). Hence, without loss of generality,
we will confine our attention to hypotheses Ho : δ = — 1 versus Hi : δ = 1 for the
drift δ of Brownian motion X.

Section 2 studies the asymptotic behaviors of the operating characteristic func-
tion (OC) and AST using Hall's [8] formulas for OC and AST functions. The
neighborhood of δ where the maximum of AST occurs is found. Section 3 shows
how stopping boundary parameters are affected by its error probability functions
asymptotically. Based on such relation, we can choose the design parameters in
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order to achieve the desired error probabilities asymptotically. We then search for
asymptotic minimax triangular stopping boundaries. Families of first, second, third
and fourth order asymptotic minimax triangular tests (AMTT) are found, and sim-
ple constructions are given. Numerical comparisons show that design parameters
of AMTT come very close to those of the exact minimax triangular tests (MTT)
obtained numerically by Hall [7]. Section 4 compares the performances of AMTT
with Whitehead's designs given by PEST. Figure 4 shows that AMTT achieves
uniform reduction in AST function compared to that of PEST design. Throughout
the paper, Mathematica™ [16] is used for some of the calculations. Huang [9] pro-
vides more details. Methods for analyzing results from triangular tests — p-values,
median unbiased estimates and confidence intervals for the drift are given in [9].

Brownian motion provides a good approximation whenever a sequential stopping
rule is based on a cumulative sum of independent identically distributed terms —
with a moderately large number of terms. In statistical quality control, it can be
used to make decisions on acceptance or rejection of manufactured or purchased
product, to test if there are any assignable causes (special causes) in production
procedures. Lack of control is often indicated by points falling outside the control
limits (stopping boundaries). See Grant and Leavenworth [5].

2. Asymptotic behavior of OC and AST. We consider a Brownian motion
X = {X(t), t > 0} with drift δ and general triangular stopping boundaries

(1) x = a-bt, x = -a1 + b't, (a > 0, a1 > 0, b + b' > 0).

Let T be the boundary hitting time. The hypothesis Ho is rejected on the event
U = {X{T) = a - bT} and accepted on the event L = {X(T) = -a' + VT}. The
operating characteristic function and average stopping time function are defined by
OC(δ) = Pδ{L} and AST(δ) = EδT, respectively.

Let φ(x),Φ(x) and Φ(x) be the density, distribution and survival functions of
the Λ/XO,1) distribution. Let M(x) = Φ(x)/φ(x) be Mill's ratio, τL = -δ + &',
τv = δ + 6, tv = (a + α')/(δ + V), B = (a'^ - arL)2/[2(a + a')(b + b% c = a + α',
sj = Jc + α;l(j=et;en) + al(j=odd)i and rj = (2j + l)c - Sj. Formulas for OC(δ) and
AST(δ) are ([8]);

(3) AST(δ) = EδT = Eδ(T It/) + Eδ(T 1L),

where

and Es(T lL) is similar but with rj and τυ replaced by Sj and τL.
Recursive formulas for OC{δ) and AST(δ) are also derived by Hall [6].



32

PROPOSITION 1 HALL, (i) Let d = 2(6+6'). Then

OC(δ) = e-
2a'(δ-b'l - eMd-δ-b)-2a'(s-b')^ _ (

(ii) For δ φ -b, b'

A S T { δ ) = a(b' -δ) + [a'b - ab' + (a + a')δ]OC(δ) + (6 + b')OC'(δ) ^

AST(-b) = a2- ^-g + ( |±i£ _ α

2)OC(-6) + OC"(-b),

-τ^τ; + ("'2-P^)OC(b')-OC"(b>).

Based on Proposition 1 we only need to study OC(δ) and AST(δ) in any interval
of width 46 = 2(b + 6'). We hence consider the interval (w-ι,wι], where W-\ =
wo — 2ab/ά, w\ = wo + 2afb/a, wo = (ab'— α'6)/(α+α'), a = (α+α;)/2, b = (b+b')/2.

The asymptotic minimax problem in the class of triangular tests is to find stop-
ping boundaries (1) such that, when the resulting error probabilities

(4) a = P_i( reject Ho) -> 0, β = Pi( reject Hλ) -> 0,

the AST function EδT satisfies sup^ EδT -» infτ> sup^ EδT' for all T' defined on
triangular boundaries for which 1 — OC(—1) = a and 0(7(1) = /?. Throughout, we
assume that β = ap for some positive constant p.

The following lemma, obtained directly from (2), (3) and the expansion for Mill's
ratio M(x) = 1/x - l/# 3 + 3/xb + O(x~7) (x > 0), will be used to construct the
asymptotic minimax design. The interval (w-ι,wι] has width d. A proof is given
in Appendix A.

LEMMA 1. Suppose boundaries (1) are used. Let b and b' be fixed, (a + a') -*
+oo. Define a = (a + α')/2,_ft = (b + b')/2, B = ά(δ - wo)

2/(2b), w0 = (aV -
a'b) I (a + a'), ιy_χ = w0 - 2ab/a, wλ = w0 + 2a'b/a, q = a/(2a), ξ = (δ + δ)/(26).
(i) Fortϋ-i < δ < ιt;0,

OC(5) = 1 -

(ii) For δ =

AST(ί) = ϊ -
δ V2τr α'g δ 3/ 2

- 96αα/fr>/2 [5 + cos(2^π)] csc2(<77r)
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(in) For w0 < δ < wi, OC(δ) is given by I- OC(δ) in (i) with " - t a n " replacing
"cot"; the AST(δ) is similar but with leading term a/(b + δ).
(iv) For δ = wι,

Note that these reduce correctly in the symmetric case to formulas given in
Lemma 1 in [10]. In the symmetric case (when p = 1), it is known that the maximum
of AST(δ) occurs at δm = 0. However, for a general triangular test, the δm where
the supremum of AST(δ) occurs does not have a closed form. It is not difficult to
see that δm falls in some finite interval for tests satisfying (4). The following lemma,
whose proof is given in [9], states that δm is not far from WQ.

LEMMA 2. Let b and bf be fixed in (1), a jo! + a' /a = 0(1), and WQ = (abf -
arb)l(a + a1). Then for any given c> 0, 0 < r < 1/2, 6 and b' (b + b' > 0), we can
choose a, depending only on c, r, 6, and b1, large enough such that

sup AST(δ) < AST(w0).
\δ-wo\>c/ar

3. Asymptotic minimax designs. In the remainder of the paper, we will
assume that a/af+ar/a = 0(1). Since 0 < r < 1/2 implies 0 < r+(l/2-r)/2 < 1/2,
an immediate consequence of Lemma 2 and Lemma l(w) is

(5) supAST(δ) = AST(WO +

for any e > 0. This enables determination of the first order term in the asymptotic
expansion of the minimax AST and the design parameters which assure it. The
minimax AST is of order O(m) with m = — logα. We refer to this result as the
"first order asymptotic minimax construction".

THEOREM 1. Suppose X is a Brownian motion with drift δ. Let D\ be the class
of all triangular tests with stopping boundaries of the form (1) and 1 — OC(—1) ~ α,
OC(1) - β = otp as a -+ 0. Let m = - logα -> oo, R = 1/(1 + y/p). Let D[ C Dλ

be those tests for which

m , (l — R)m . tΛ _x ., _

(6) α ~ 2 Ϊ T α 2i?2 ^ * - ( ! - * ) , b~R-

(i) Then inf^D! sup^ EδT ~ m/(2R2). (ii) For any V £ D[, supδ EδT
r ~

m/(2R2). (Hi) For any T" G Dλ - D[, sup^ EδT" - sup^ EδT -> +oo.

This theorem states that asymptotic minimax designs in class D\ can be found
from its subset D[.
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PROOF. Consider tests in Di. Let Y(s) = c[X(s/c2)-ds/c2] with c = b+b1, d =
{b' - b)/2. Then Y is a Brownian motion with drift θ = (δ-d,)/c. The corresponding
stopping boundaries for Y are y = A — s/2 and y = —A' + s/2, where A = α(δ + 6'),
A' = α'(6 + 6'). The hypotheses are Ho : θ = -{1 + d)/c = 0_i versus Hλ : (9 =
(1 — d)/c = 0i Let T and 5 be the stopping times for X and Y respectively,
and 0o = {A - A')/{2(A + A')). Then OCγ(0_i) = Pβ^YiS) = -A1 + S/2)
= P_i(X(T) = -a' + b'T) = OCχ(-l), OCy(0i) = Pθl(Y(S) = -A1 + 5/2)
= Pi(X(T) = -a1 + b'T) - OCX{1). Applying (5),

sup£*T = ](θ1 - 0_O2 supEeS ~ i(0i - 0_i)2(A + A1),

inf sup£VΓ= inf supE^Γ- inf -(0i - 0-i)2(^l + A').

Let 0i.x and 0̂  be the leading terms of 0_i and 0i respectively. Then we must have
0r_i < 0o < 0i based on Lemma 1 (since α -> 0). Define λ = A!/A, tι_i = -1/2 -

and the reflection mapping r\: (A, A1', 0, m, p) ι—>> (A', A, —0, pm, 1/p). There are in
total 9 cases for the pair (07_l5θ[) : θ'_x <, =, > u_u 0J <, =, > ux. The following
discussions are all using methods similar to the derivation of Lemma 1, and the fact
that 1 - OCy(0_i) ~ a and OCγ(θι) ~ β - ap. Hence they will not be stated in
full detail.

1° If 0;_! = u_i and θ[ = uu then \ ~ y/p, A ~ m/(2R). Hence
(0i -θ-i)2(A + A1) IA ~ m/(2R2). Similar to Lemma l(ii), it can be shown that the
second order term in (1/4)(0i — 0_i)2 supθ E^S is of order 0(y/m) with negative
coefficient for y/m.

2° If θ'_ι = u-ι and θ[ > uu then a > 1, λ ~ y/ρ/cu A ~ (1 + λ)ra/2. Hence

(0i - 0-i)2(Λ + ̂ ;)/4 ~ [2 + y/p(l/y/δ[+ y/^)]2m/S. Note that [2 +

VcΓ)]2m/8 > m/(2i?2), with equality iff cx = 1.

3° If 0'_! < u-! and 0i = uu then c0 < - 1 , (0i - 0-i) 2 (^ + A')/A

( 1 / - / ^ + y/^^m/S by applying r? to case 2°. Note that ([2-̂ /p H-

v/3c^)]2m/8 > m/(2R2), with equality iff c0 = - 1 .
4° If u_i < 07_! (< 0O) and 0i > uu then |co | < 1, ci > 1, λ ~ (1 -

^ ~ Pi1 + λ)m/(2C lλ
2). Hence (0i - 0_i)2(A + A7)/4 - p(2/>/p +

/8- N°te that y9(2/v

/p + v/cΓ+l/v/cΓ)2m/8 > m/(2R2), with equal-
ity iff ci = 1.

5° If θr_1 < u-ι and (0o <) θ[ < m, then similar results can be obtained by
applying η to 4°.

6° If θ'_ι < u-ι and 0̂  > wi, then c0 < —1, ci > 1, λ ~ y/—cop/cι, A ~
(1 + λ)m/(-2c0). Hence (0X - 0_i)2(A + A')/4 - [VP(V^Γ + Vv^D + ( v / = ^ +
l/y^^m/S. Note that [v

/p(λ/cΓ+ l/x/cD + C λ / ^ ^ + l / v / ^ ) ] 2 ^ / ^ > m/(2R2),
with equality iff c\ = — Co = 1.

7° If u_i < 0/_1(< 0O) and (0O <) θ[ < uu then |co | < 1, |ci| < 1, λ ~ p{\ -
co)/(l + ci), A - 2/>(l + λ)m/(λ 2(l+ci) 2). Hence (0i-0_ 1 ) 2 μ+^l / )/4 - m/(2R2).
But the second order term in (1/4)(0i - 0_i)2 sup# EΘS is of order 0(y/m) with
coefficient larger than that in case 1°.
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8° If U-ι < θ'_λ(< θo) and θ[ = uι, then results similar to those in 7° follow,
except |co | < 1, d = 1, λ - y/p(l - co)/2, A ~ p(l + λ)m/(2λ2).

9° If θ'_x = u-ι and (θo <) θ[ < tii, then similar results can be obtained by
applying η to 8°.

Summarizing all of the above cases, we see that case 1° results in the smallest
sup^^T value when a -¥ 0. Since conditions in 1° are equivalent to (6), (i), (ii)
and (iii) follow.

Based on Theorem 1 and Lemma 2, we will confine attention to tests with

m -̂-\ aι f (1 — R)m

(7) *~l ,

Using Mathematica™\ the corresponding 0(7(1) and 1 — OC(—1), based on (2)
and Mill's ratio expansion, have expansions of the form

1 - OC(-l) = e-n + O i / Λ - ^ - ^ ^ f d o + - % + — + O(m

OC(1) = ^ ^

Expressions for Cij (i = 1, 2, j = 0,1,2) are given in Appendix B.
First we set cioexp[(&i/Λ — 2α_iJR)λ/ra ] = 1 and C2oexp[— (1 — R)(2a'_1 —

b'1/B?)ΛS/m ] = 1 so that the error probabilities are correct to relative order
C^ra"1/2). We then solve for the slope coefficients in terms of the intercept
coefficients, obtaining

δi = 2α_iΛ2, b2 = 2a0R
2 - 4α2_1iϊ

3 -

( 9 ) V-2a' IP b>- ^ ^ ^
b, - 2a_λR , b2 -

By substituting them into the AST function, we are able to locate where the max-
imum AST occurs within order (^(m"1). And this is sufficient to find the second
term in the minimax AST through 0(1). This leads to a second and third order
asymptotic minimax construction.

THEOREM 2. Let D2 be the class of tests of form (7) satisfying 1 - OC(-l) =
α(l + Otm"1/2)), OC(1) = β(l + Oίm"1/2)), m = - logα -> oo. Let To € D2 and

Σi>o /

)) ()
= Σi>o si/™>i/2 be defined by

inf s u p ^ T - supE^To ~ EδmT0.
τeD2 s δ

Then
(i) δo = 2R- 1, ίx =
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(ii) inϊτeD2

 SUP<5 EδT = E\m + E2φn + £% + C^ra"1/2) wftere

5x = l/(2R2),

£2 = - 1 / [2V5F(1 - 2

F _ 90+91+ 92
3 2(1 - R)2R?'

50 = a?(l - R) - δi(2R - l)

51 =infGi(a;) ( > - o o ) ,

g2 =MG2(x)(>-oo),

Gi(a?) = 4(1 - Λ ) 2 ^ 2 + 2(1 -
+(l-β) 2 β 2 logΦ(2 3 / 2 Λa;),

G2(β) = 4(1 - R)R5x2 + J Ϊ 3 [ - 2ίχ(l - R) + 2R
+(1 - R)R3\ogΦ(23/2R x).

(in) If a test Tx of the form (7) satisfies (9), then ϊ i 6 D2 and

supEδT! = εxm + ίisfm + 0(1).
δ

That is, Tι achieves second order minimax in class Ώ2.

(iυ) If a testT2 of the form (7) satisfies (9), and ifΌ_i and α'_i solve equations

e-(ί!/(2R))2

 R -(2o_!H)2

(11)
R e - (

5

tx Λere i x = v ^ Λ Φ " 1 ^ ) , ίften T2 G D

sup EδT2 = Exm +

w, T2 achieves third order minimax in class

PROOF. Suppose T is any test in D2. Then it must satisfy (9). Expanding its
AST function at δ = £ ) i > 0 δi/m*/2, we find EδT = exm + e2λ/m + e3 + !2

where

_ \-R 1 1

When I Jo I > 1, values of ei can be obtained by Proposition 1. It is seen that e\
reaches its maximum £χ when 50 = 2i2 — 1. Substituting it into e2, we have

[2(1 -
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Since liπiί^ioo e2 = -oo and d2e2/dδl = -e-<*/<2Λ»V[4y5F(l - R)R4} < 0, e2

reaches its maximum £2 when δι satisfies de2/dδi — 0, yielding (i).

Continuing to substitute (i) into e$, we have ez = [50+G1 (α_ 1)+G2 (α'_ 1)] / [2 (1 —
R)2R3]. Note that functions Gχ(x) and G2{x) have finite lower bounds. By setting
GΊ(α_i) = 0 and G2(α'_i) = 0, we obtain (11). Hence (ii), (in) and (iυ) follow.

Now set en = c2i = 0 in (8) so that the error probabilities are correct to relative
order O(m~1). Solving, we find

63 = U2 + (b2 + b'2)R + 2a0R
2 - 2(o0 + a'0)R3 - πR2 c

a1R
2 - 4α0α_ii?3,

63 = ((b2 + 2b'2)R - (63 + b'2)R2 + 2(oo + a'^R4 + i? 3 (-2o 0

+2R2[a'1 - a^M + 2α^2)/(l - R)].

If we substitute (12) into AST(Σi>0 Si/rni/2) for any test T of form (7) satisfying
(9) and (11), where δ0 and δι are given by Theorem 2(i), then AST(δm) = C\m +
ε2λ/m + £3 + e4m-1/2 + Ofa-1). Here

+ e 4 2

β4i = [2 + 45 l v ^e ί 2 /( 4 R 2 > + Iogl(23/2α_1i?) + i?{

logΦ(23/2o_1β)) + Λ[logΦ(23/2o_iΛ) - logΦ(23/2α'_1iϊ)

-4(o'_ 1β - α_i(l - R))(a'_ιR

+(α_χ + v^e ί 2/< 4 f l 2))(l - i?))]}]/(4v^i?3ed2/(4R2)(l - R)2),

and β42 is a constant. Thus e± reaches its maximum £4 when

δ2 = A ^ [ ( ^ ] ^
(13) + [(1 " R? logΦ(23/2α_iΛ) - R2 logΦ(23/2α/_1i?) + 2 - 4R

+4αi 1 Λ 2 ( l - Λ)2 - 4α/_1

2Λ4] Λ/(l - Λ).

Now we have obtained the following fourth order asymptotic minimax construction:

THEOREM 3. Let D$ be the class of tests of form (7) satisfying 1 — OC(—1) =

α(l + CKra"1)), OC(1) = /3(1 + Oίm" 1 )), m = - l o g α -> 00. Let To € D3 and
sm = Σz>o δi/™i/2 be defined by

inf supi^T - supEδT0 - EδmTQ.
TGD δ δ

Then

(i) δo and δ\ are given by Theorem 2 {%), δ2 is given by (13).
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{%%) infτ<ED3 sup5 EδT = Sim + £2y/m + £3 + ̂ m " 1 / 2 + C^m" 1 ) w/iere £1, £ 2 , £3
are given in (10), £4 is some constant.

{in) If a testTx of the form (7) satisfies (9), (11) and (12), thenTx e D3, and

sup EδTλ = £γm + £2y/m + £3 + ε^m~1/2 + C^m" 1 ) .

That is, T\ achieves fourth order minimax in class D3.

In summary, by properly choosing the leading terms of a,af,b and &', we can
minimize the leading term of sup^ϋ^T in class Dι. Then the second term of
infτeL>i sup^ E$T is free of the design parameters if the tests are restricted to those
in class D2. Hence there is no need for minimization for the design parameters: all of
the di's and a"s are arbitrary, but tests in D2 require (61, &Ί, 62, b'2) to be functions
of (α_i, α;_i, αo, a'o). If we choose the second terms of a and a! properly, we can min-
imize the third term of supδ EδT in class D2. The fourth term of infτeD2

 SUP<5 EδT
is free of the design parameters if the tests axe restricted to those in class D$.
Hence no need for minimization for the remaining design parameters, but tests in
D$ require (63,63) to be functions of (αi,α^). This rule continues to be followed for
higher order terms, as was seen in the symmetric case [10].

Theorem 3 {in) gives a class of tests — with {α ,̂ a\ \ i > 0} and {6j, b' \ i > 4}
arbitrary — achieving fourth order optimality in D$. We could continue to obtain
higher order minimax construction, but formulas for (6 ,̂6^) {i > 4) become much
longer. For symmetric case, however, (6̂ -, 6̂  ) {j — 4, 5) are given by [10]. In order
to be consistent with the symmetric case, we propose to use regression to fit all free
parameters {di^a'^ and {bj^b1-) {i = 0, 1, 2, 3, j = 4,5) to the MTT parameters
using 20 different combinations of (α, β) for which Hall [7] determined the MTT
designs numerically. This yields the following asymptotic minimax triangular test
(AMTT) construction, achieving properties of 7\ in Theorem 3.

For given a and β — ap, choose the parameters in (7), where m =
-logα, R = 1/(1 + ̂ ) , Λi = R- 1/2, δx = V^Rφ-^R), α_i anda'^
satisfy

e-(δ1/(2R))2

 R e-(2α_1R)2

^ + + 4 ^ 2 Q

R e-(61/(2K))2

 R e-(2β'.1K)a

a 0 = -1.569116 - 3.561621iϊi,

aό = -1.569116- 10.80427.Ri,

ai = 0.85205 + 4.319348^1 - 21.95502Λ2,

a[ = 0.85205 -4- 26.18879Λi - 2.98425i^,

a2 = 0.95506 - 7.44207#i, a 2 = 0.95506 - 16.8811ORi,
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α3 = 4 = -1.06270,.

h = 2α_iΛ2, b2 = 2a0R
2 - 4α2_1Λ

3 - iΠogΦ(2\/2α_iiZ),

- 2a_1

ί 62 + (fc + &2)# + 2α0l?
2 ~ 2(α0 + αό)#3 - πR2 cot(Rπ) J

2

i i ϊ ) ] _ 2 α _ 1 & 2 β + 2 α i i ϊ 2 - 4α 0α_iΛ 3,

2bf

2)R - (b2 + b'2)R2 + 2(α0 + αJJΛ4 + Λ3(-2α0

+2R2[a[ - aU

64 - -0.04241 - 30.6437Λ2, 6^ = -0.04241 - 165.3697Λ2,

65 = 0.30625, 65 = 0.30625 + 4.93333ϋi.

Design parameters for A M T T for commonly used combinations of (α,/?) are
given in Table 1. Numerical comparisons show t h a t , when a < 20% and β < 20%,
the relative differences between A M T T and Hall's M T T in design parameters are
within 0.2% for a and α', within 6% for b and 6', and the δ values where the
m a x i m u m of AST occur for b o t h designs are within 10% of each other. T h e OC
functions of the two designs are within 4.6% of each other with m a x i m u m difference
occurring when b o t h OC values are above 0.65. T h e AST functions of A M T T are
within 2.5% of those of M T T when - 2 < δ < 2.

Triangular designs are constructed for test ing against one-sided alternatives —
in our notat ion, δ = — 1 versus δ > 1. However, they may be adapted for two-sided
alternatives by rejecting in favor of δ < —1 if the early par t , say T < t0 of the lower
boundary is reached, and choosing ί 0 so t h a t P-i(T < to,X(T) = —a' + b'T) = a.
T h e test then has significance level 2α, with negligible effect on t h e t rue β.

4. Numerical comparisons with PEST designs. The only available com-
mercial software to provide triangular designs for tests concerning the drift of a
continuous time Brownian motion is PEST [2], which uses only symmetric 2-SPRTs
to provide the designs. The hypotheses considered in PEST are Ho : θ = 0 versus
Hi : θ = ΘR. TO obtain stopping boundaries with error probabilities a and β at 0
and ΘR respectively, PEST finds a Θ'R(> ΘR) for which a symmetric 2-SPRT of 0
versus Θ'R with both error probabilities α has error probability β at ΘR. The Brow-
nian motion, the drift and the boundaries may then be transformed to yield a test
with drift δ and error probabilities a and β at δ = =F1 This adaption of a sym-
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Table 1
a

0.005

0.005

0.005

0.005

0.005

0.005

0.010

0.010

0.010

0.010

0.010

0.025

0.025

0.025

0.025

0.050

0.050

0.050

0.100

0.100

: AMTT
β

0.005

0.010

0.025

0.050

0.100

0.200

0.010

0.025

0.050

0.100

0.200

0.025

0.050

0.100

0.200

0.050

0.100

0.200

0.100

0.200

with stopping boundaries x — a —
a

4.19249

4.01179

3.74717

3.51873

3.25186

2.91899

3.53296

3.29308

3.08561

2.84213

2.53554

2.67230

2.49670

2.28888

2.02230

2.03275

1.85709

1.62667

1.40561

1.21934

o!

4.19249

3.68946

2.99777

2.44691

1.86139

1.22212

3.53296
2.86912

2.34198

1.78330

1.17537

2.67230

2.18120

1.66358

1.10397

2.03275

1.55133

1.03467

1.40561

0.93767

b

0.41497

0.38927

0.34737

0.30678

0.25383

0.17899

0.40272

0.36111

0.32039

0.26665

0.18965

0.38025

0.34046

0.28666

0.20726

0.35564

0.30410

0.22464

0.32034

0.24725

bt and x —

v
0.41497
0.42844

0.44118

0.44403

0.43670

0.41360

0.40272

0.42086

0.42559

0.41589

0.38062

0.38025

0.39605

0.39034

0.34119

0.35564

0.36970

0.32175

0.32034

0.31818

-a' + b't.

&m

0.00000

0.06000

0.15996

0.25957

0.39410

0.59405

0.00000

0.10042

0.20102

0.33764

0.54205

0.00000

0.10149

0.24058

0.45107

0.00000

0.14039

0.35527

0.00000

0.21828

metric 2-SPRT provides an approach to deal with asymmetric hypothesis testing
problems, but no optimality criterion is used.

Figure 4 shows that the OC functions for the AMTT and PEST designs are
almost identical, but the AST of AMTT is uniformly smaller than that of the
PEST design for different combinations of (α,/3). The PEST designs have smaller
maximum stopping times and, in asymmetric case, steeper slopes for the lower
boundaries. It is quite possible that AMTT has a stopping time distribution with
a larger median or 90th percentile. Hence, it will be more interesting to study
the stopping boundaries such that the q-th percentile of the stopping time Q(5, g),
solving Ps{T < Q(δ,q)} = q, is small under certain criteria. For example, we can
consider finding the design which has minimax in Q(δ,q), or the one which has
minimum of some weighted average of Q(δ, q). The value of q can be chosen as 50%,
90% or 95%, for example.

5. Acknowledgments. The author wants to express her sincere thanks to
her thesis advisor W. J. Hall for guidance in the preparation of this work, to
Vladimir Dragalin for helpful suggestions, and to John E. Kolassa for help in using
Mathematica™.

Appendix A: Proof of Lemma 1. Define λ = a1/a.
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Figure 1: OC functions (first row), AST functions (second row) and stopping
boundaries (third row) for AMTT and PEST designs
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(i) For w-ι < δ < w0 : Applying (2) and (3) and Mill's ratio expansion,

,-B

1 - OC(δ) = ^
j=0

V -δ

completing (i).

{%%) For δ = WQ : From (2) we have

•j- \

v^e-B \_Ja'(b + δ)+a(2b + b'

To obtain E^T, we first calculate it when b = bf. Applying (3),

Eδ(T lu) = ^ += ^o_ \ίΰ Γ_

v TuV2π [ r0 + τvtv n - τvtv



,3/2 +OO r

( ^ ) 3

19265/:*? . [(β + 6λ - 3τrcot (-^-r)) esc2

Similarly,

1926V2
6λ-3πλcot f-^-)) esc2

Hence

" 6 V2π,
(14)
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where H equals

V £[ L( i ) ( t ) ( ^Jfo t)~ ^ty) (r 2 n + TV^Jfon

+ 1 + 1 1 I ,
( r + t ) 2 ( t)2 ( + ^ ) 2+ +

- rvtv)
2 (r 2 n + τυtυ)

2 (r2 n+i - rvtv)
2 (r2 n+i + ^ ^

έί (r 2 n + 1 - r,,^) 3 (r 2 n + 1 + Tu

Summing the series, we obtain

The formula for EδT when b φ V can be obtained by replacing b in (14) by b =

(Hi) For ^o < δ < w± : Applying (2) and (3),

B λoc(δ) = ^
r0 - τvtv rγ+τυtv rx - rvtv

ψ ί_Jί 1 __J. 1 λ
^ λ \^2n + T~ijtv r2n+l+Tutv *̂2n ~ Tvtv ^2n+l ~ Tυtv )
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+0
(*)]•

Summing the series yields the formula in (Hi). The formula for E§T can be obtained
as in (i).

(iv) For δ = wι : The formulas can be obtained as in (ii).

Appendix B: Constants c^ in (8)

4α 2 _ 1 Λ 2 ] ,

en = ^ e 6 2 / β " 2 α o β \4= h(αo + α{,) Λ3 + nR2 cot[πR] - b2 - (b2 + b'2)R

-2α0Λ2) + 2e4°2-^2(63 + 2Λ(-(oiΛ) + α_i(62 + 2αofl
2)))Φ(2\/2α_iiϊ)],

+ 2R(-(αiR) + α_!(62 + 2α0R
2)))(-b2

-b2R - b'2R - 2αoR2 + 2α0R? + 2α'0R
3 + πR2Cot[πR]))/(^R2)

+6eM*α-iR2)((h/R - ^R + 2α_i(62 + 2o 0β 2)) 2 + 2(2αo&2 +

-2α2R + 2α_!(&3 + 2α1R
2))jΦ{2V2α,-1R) + (2(-3(63(l + R)

-o_i(6a(l + R) + R(b2 - 2R(αo(R - 1) + α'0R)))2

+R(b'3 + 2R(αi - αii? - R(α[ + (o_i + o'_1)(62 + b2- 2(α0

+πiϊ 2 csc(7ri?)2(τriϊ2(6o'_iϋ + o_i(-l + 6Λ)) + o_iπϋ 2 cos(2πiϊ)

-3(α'_!iϊ2 + α_i(6a(l + R)

-2α'0R)))) sin(2τri

c20 = exp(2α'0(R - 1) + (62 - 62iϊ + 4α'_1

2R4)/R2)Φ(2V2~α'_1R),

C2! = ((βφ(((Λ - l)(-ί>2 + 2αί,i?2))/i?2)(62(-2 + R) + b2(R - 1)

-2R2(-α0 + αoR + α'0R)))/(V^R) - exp(((R - l)(-6 2

(πiϊ) - (exp(2oί,(iϊ - 1) + (62 - 62iϊ

63 - b'3R + 2R2{α'1(R - 1)

+a'_1(Ut + 2a'0R
2)))(2Φ(2V2a'_1R)))/R2)/2,

c2 2 = ((3exp(((β - l)(-6 2 + 2αί,i?2))/ϋ2)(62(-2 + R) + b2(R -

-2R2{-ao + a0R + a'0R))(b'3 - b'3R + 2R2(a[(R - 1)

+a'_1(b'2 + 2a'0R
2))))/(V^R3) - (3exp(((Λ - l)(-6 2

-6 3 (-2 + β) - 6 3β - o'_i(6a - b'2{-2 + R) - b2R + 2R2(-a0

+a0R + a'0R))2 + 2R2(-{a'_1b2) - a'^ +aί(R-l) + a[R + a'_rb2R

+o'_162iϊ + 2a0a'_1R
2 + Ίa'φ'^R2 - 2aoa'_1R

3 - 2a'oa'_1R
3
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+α_χ(Λ - l)(b2 + b'2- 2(α0 + a'0)R2))))/(^R) + 6exp(2a'0(R -

+(b'2 - b'2R + 4α/_1

2Λ4)/Λ2)(αί)6ί} + α ' . ^ + a'2{R - 1)

2 + 2α'_1α'1Λ
2 + (α'.

- l)(bf

3 + 2R2(-a'1

cot(πϋ) - R4(2at_1π

-3(a_i + a;_i) csc(πi?)2(-2π(Λ - 1) + sin(2πΛ)))))/Λ)/6.
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