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We consider triangular stopping boundaries for a Brownian motion with
drift, with specified error probabilities at two given values for the drift.
We consider the Kiefer-Weiss problem of finding boundaries which min-
imize the maximum expected stopping time asymptotically as the error
probabilities tend to zero. A construction is given which minimizes the
objective function through fourth order optimality. This extends earlier
work for the simpler symmetric (equal error probabilities) case, where fifth
order minimization was achieved.

1. Introduction. Consider testing the hypotheses Hy : § = 0y versus H; : 0 =
6, for the drift 6 of a Brownian motion Y. Kiefer and Weiss [12] suggest searching
for the test such that the maximum (over #) of the average stopping time (AST) is
minimized under some prespecified error probabilities (a, 8) at 6o and 6,. Lorden
[14] combined two SPRTs, of 6 versus 0,, and of 6y versus 6,, for some intermediate
0., to form a particular class of tests called 2-SPRTs. He showed, for any fixed 6*,
a 2-SPRT can be chosen such that its stopping time 7™ satisfies

E tT* = nf E wT 1
0 reinf  Bo +0(1)

as min(a,8) — 0, where D(a, ) is the class of all tests with error probability
bounds (a, 8). For Brownian motion, 2-SPRT's have triangular stopping boundaries.
In the symmetric case when 8 = a, it is known that supy E¢T = Ey T for all
T € D(a,a), where 6,, = (6p + 61)/2. Hence the 2-SPRT stopping time T}, with
respect to this 8,, satisfies
FE¢Ty, = inf EeT 1).
sup Fy re2f  sup EoT + o(1)
Lai [13] also showed that, in the symmetric case, the asymptotic shape of the min-
imax (Kiefer-Weiss) stopping boundaries are triangular. In the asymmetric case,
Huffman [11] extended Lorden’s results to show that by solving § from some equa-
tion numerically, the stopping time T of 2-SPRT with respect to this 8 satisfies
supEoT = inf sup EgT + o(|logal*/?
BT = 1 Bt S5p BT + olllogel ™)
asa — 0,8 > 0and 0 < C; < loga/logB < C2 < +00, where C; and C» are
constants. Note that |loga|'/2 — 0o as a — 0. Such results were extended further
by Dragalin and Novikov [3]. They showed that

sup EoT = mf sup EoT + O(1)
] TeD(a,8) ¢
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for this same 2-SPRT. Asymptotic expansions of the two error probabilities and the
value of the maximum AST for 2-SPRT were given by Dragalin and Novikov [4].

Various formulas associated with general triangular tests were first given by An-
derson [1]. Equivalent formulas were given by Hall [8]. Whitehead [15], and his
PEST software [2], provide theory and method for symmetric 2-SPRTs. For asym-
metric cases (8 # a), they find 6] for which the symmetric 2-SPRT of 6 versus
0} with error probabilities (@, &) has error probability 5 at ;. This choice is not
minimax. However, various results and software for symmetric designs can be easily
adapted for this asymmetric case. Hall [7] found, numerically, the minimax triangu-
lar tests (MTT) for several choices of (a, 3), and noted that the resulting average
stopping time (AST) functions are uniformly smaller than those of designs given by
PEST. Huang, Dragalin and Hall [10] and Huang [9] utilized Hall’s [8] formulas to
study mathematically how the error probabilities affect the AST functions asymp-
totically among symmetric triangular designs and found asymptotic expansions for
the parameters of minimax triangular stopping boundaries. The asymptotic mini-
max triangular tests (AMTT) achieving fifth order optimality are found and simple
constructions are given. The AMTT stopping time T, satisfies

sup EgT, = inf sup EqT + O(|lo a‘?’/z,
up Fy raaf, 5up Fo (|log | ™>'%)

where D(a) is the class of triangular tests with equal error probabilities approx-
imated to the order O(a/|loga|?). Note that |loga|=3/2 — 0 as a — 0. (If the
error term is O(|loga|'~%/2), we say the order of optimality is d.) Analytic and
numerical comparison showed that family of AMTT achieves uniform reduction in
AST function compared to the family of 2-SPRT.

In this paper, results in [10] are extended to asymmetric triangular tests (8 >
@). The performance of the resulting AMTT are compared to designs from PEST
which adapt symmetric 2-SPRTs to asymmetric triangular designs. A family of tests
satisfying

EgT, = inf E¢T + O(|1 -1
sgp 9 Tlélesgp 9T + O(|loga| ™)

is found (achieving fourth order optimality) and a construction is given, where Dj
is defined in Theorem 3.
By a suitable rescaling

01 —00 4 0]_ +00
X(t) = —
®) 2 Y(@—%VQ B — 8 "

the original hypotheses about 8 become Hy : § = —1 versus H; : § = 1 for the drift
0 of X, where 6 = 26/(6,—6o) — (81 +60) /(61 —6o). Hence, without loss of generality,
we will confine our attention to hypotheses Hy : § = —1 versus H; : § = 1 for the
drift § of Brownian motion X.

Section 2 studies the asymptotic behaviors of the operating characteristic func-
tion (OC) and AST using Hall’s [8] formulas for OC and AST functions. The
neighborhood of § where the maximum of AST occurs is found. Section 3 shows
how stopping boundary parameters are affected by its error probability functions
asymptotically. Based on such relation, we can choose the design parameters in
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order to achieve the desired error probabilities asymptotically. We then search for
asymptotic minimax triangular stopping boundaries. Families of first, second, third
and fourth order asymptotic minimax triangular tests (AMTT) are found, and sim-
ple constructions are given. Numerical comparisons show that design parameters
of AMTT come very close to those of the exact minimax triangular tests (MTT)
obtained numerically by Hall [7]. Section 4 compares the performances of AMTT
with Whitehead’s designs given by PEST. Figure 4 shows that AMTT achieves
uniform reduction in AST function compared to that of PEST design. Throughout
the paper, Mathematica™ [16] is used for some of the calculations. Huang [9] pro-
vides more details. Methods for analyzing results from triangular tests — p-values,
median unbiased estimates and confidence intervals for the drift are given in [9].

Brownian motion provides a good approximation whenever a sequential stopping
rule is based on a cumulative sum of independent identically distributed terms —
with a moderately large number of terms. In statistical quality control, it can be
used to make decisions on acceptance or rejection of manufactured or purchased
product, to test if there are any assignable causes (special causes) in production
procedures. Lack of control is often indicated by points falling outside the control
limits (stopping boundaries). See Grant and Leavenworth [5].

2. Asymptotic behavior of OC and AST. We consider a Brownian motion
X = {X(t),t > 0} with drift 6 and general triangular stopping boundaries

(1) r=a-bt, t=—a +bt, (a>0,a >0,b+b>0).

Let T be the boundary hitting time. The hypothesis Hj is rejected on the event
U = {X(T) = a — bT} and accepted on the event L = {X(T) = —a’ + ¥'T}. The
operating characteristic function and average stopping time function are defined by
OC(8) = Ps{L} and AST(8) = EsT, respectively.

Let ¢(z), ®(z) and ®(z) be the density, distribution and survival functions of
the N(0,1) distribution. Let M(z) = ®(z)/¢(z) be Mill’s ratio, 7, = —6 + ¥/,
Ty =8 +b,t, = (a+a')/(b+V), B= (a1, —ar,)?/[2(a+a')(b+ V)], c=a+ad,
85 = jc+ a'l(j=cven) + @1l (j=odd), and 7j = (2j + 1)c — s;. Formulas for OC(J) and
AST(6) are ([8]);

_B *o 4Tty
o e g (i)
—B -~ Ti —Tyly i T Tyly
= \/—Z [ (—\/_t:t_)—f_M(%)]
@) AST(8) = EsT = Es(T 1v) + Es(T 11),

where
Ey(T 1) = —°— +§( 1)’ m[ (—%)‘M(Q%:tﬁ)]

and Es(T 1) is similar but w1th r; and 7, replaced by s; and 7.
Recursive formulas for OC(§) and AST(8) are also derived by Hall [6].
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PROPOSITION 1 HALL. (i) Let d = 2(b+ b'). Then
00(5) — e—2a’(6—b') _ e2a(d—6—b)—2a’(6—b’)(1 _ 00(5 —d)).
(43) For § # —b, V'
a(b! — &) + [a'b— ab' + (a + a')d]OC(J) + (b+ b')OC'(8)

AST(9) = & +3)(b - o) ’
N _ 2 @ ata 3 "

AST(-b) =a b+b'+(b+b' a’)0C(-b) + OC"(-b),
" o_ 2 a+a ’ e

AST(b)—b + (a b+b')OC(b) oc" ).

Based on Proposition 1 we only need to study OC(8) and AST(§) in any interval
of width 4b = 2(b + b'). We hence consider the interval (w_1,w;], where w_; =
wo —2ab/a, w1 = wo+2a'b/a, wo = (ab’' —a'b)/(a+a’),a = (a+a')/2,b = (b+b')/2.

The asymptotic minimax problem in the class of triangular tests is to find stop-
ping boundaries (1) such that, when the resulting error probabilities

4) a = P_;( reject Hy) — 0, B = P;( reject Hy) — 0,

the AST function E;T satisfies sup; EsT — infr supgs EsT" for all T defined on
triangular boundaries for which 1 — OC(—1) = a and OC(1) = . Throughout, we
assume that 3 = o for some positive constant p.

The following lemma, obtained directly from (2), (3) and the expansion for Mill’s
ratio M(z) = 1/z — 1/2® + 3/2® + O(z™") (z > 0), will be used to construct the
asymptotic minimax design. The interval (w_;,w;] has width d. A proof is given
in Appendix A.

LEMMA 1.  Suppose boundaries (1) are used. Let b and b’ be fized, (a + a') —
+00. Definea = (a+a')/2, b = (b+1')/2, B = a(d — wo)? /(2b) wo = (ab' —
a'd)/(a+a'), w_; = wo — 2ab/a, w1 = wo + 2a'b/a, ¢ = a/(2a), £ = (6 + b)/(2b).

() For w_y < 4§ < wo,

0C(s) =1~ ‘f/; [cot ((q *'f”’) + cot ((q—'f—)’—r> + o(%)]

AST(6) = 57— + O(Wae®
(43) For 6 = wo,
1 1
006 =5+0(z)
a a3/?
AST(§) =5 — —————
ST() b /2w a'qb3/2

V2r3/2 53/2

1
+ 56 g 15+ cos(2am)] ex(qm) + 0 5575)-
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(74¢) For wo < 8 < wy, OC(d) is given by 1 — OC(4) in (i) with “—tan” replacing
“cot”; the AST(4) is similar but with leading term a/(b + §).
(tw) For § = wy,

2 7
0c(5) = (-12- + 0(%)) exp [’2;’ b],
aa -

Note that these reduce correctly in the symmetric case to formulas given in
Lemma 1 in [10]. In the symmetric case (when p = 1), it is known that the maximum
of AST(6) occurs at d,, = 0. However, for a general triangular test, the §,, where
the supremum of AST () occurs does not have a closed form. It is not difficult to
see that d,, falls in some finite interval for tests satisfying (4). The following lemma,
whose proof is given in [9], states that d,, is not far from wy.

LEMMA 2. Let b and b' be fized in (1), a/a’ + a'/a = O(1), and wo = (ab' —
a'b)/(a+ a'). Then for any givenc > 0,0 <1 <1/2,b and ¥’ (b+ b > 0), we can
choose a, depending only on c, r, b, and V', large enough such that

sup AST(6) < AST (wp).-

|6—wo|>c/a™

3. Asymptotic minimax designs. In the remainder of the paper, we will
assume that a/a’+a'/a = O(1). Since 0 < 7 < 1/2 implies0 < r+(1/2—-7)/2 < 1/2,
an immediate consequence of Lemma 2 and Lemma 1(4) is

1 a+a
a1/2+€)) bty

(5) Sl;p AST(6) = AST (wo + o

for any € > 0. This enables determination of the first order term in the asymptotic
expansion of the minimax AST and the design parameters which assure it. The
minimax AST is of order O(m) with m = —loga. We refer to this result as the
“first order asymptotic minimax construction”.

THEOREM 1. Suppose X is a Brownian motion with drift 6. Let D, be the class
of all triangular tests with stopping boundaries of the form (1) and1—0OC(-1) ~ a,
0C(l) ~B=a” asa— 0. Let m = —loga — o0, R =1/(1+ ,/p). Let D} C D,
be those tests for which
m a (1 - R)m
2R’ 2R?
(i) Then infrep, sups EsT ~ m/(2R?). (ii) For any T' € D}, sups EsT' ~
m/(2R?). (iii) For any T" € D, — DY, sups EsT" — sups EsT" — +00.

(6) an~ , b~(1-R), ¥ ~R.

This theorem states that asymptotic minimax designs in class D; can be found
from its subset Dj.
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PRrOOF. Consider testsin D;. Let Y (s) = c[X (s/c?)—ds/c?] withc = b+b',d =
(b'—b)/2. Then Y is a Brownian motion with drift § = (6 —d)/c. The corresponding
stopping boundaries for Y are y = A—s/2 and y = — A’ + s/2, where A = a(b+1'),
A" = d/(b+ V). The hypotheses are Hy : § = —(1 4+ d)/c = §_1 versus Hy : 0 =
(1 —d)/c = 6,. Let T and S be the stopping times for X and Y respectively,
and 6p = (A — A")/(2(4 + A’)). Then OCy(0-1) = Ps_,(Y(S) = —-A" + 5/2)
= P_y(X(T) = —d' + b'T) = 0Cx(-1), OCy(6,) = Pgl(Y( ) = —A' + 5/2)
= P(X(T) = —a' + b'T) = OCx(1). Applying (5),

1
supEgT = %(01 - 9_1)2 sup EpS ~ 1(01 — 0_1)2(A + Al),
[ 6

Tiéllgl snggT = ;r}f’ sup EsT ~ aak 0_1’01 —(01 6_1)*(A+ A").

Let 6'_; and 8] be the leading terms of #_; and 6, respectively. Then we must have
6", < 6y < 0] based on Lemma 1 (since & — 0). Define A = A'/A, u_y = -1/2 -
1/(1+A),u1 =3/2—-1/(1+X),c1 = (201 —1)(1+ X)/(2X), co = (26", +1)(1+N)/2,
and the reflection mapping 5 : (4, A',8,m, p) — (4', A, -0, pm,1/p). There are in
total 9 cases for the pair (6 ;,607): 6", <,=,>u_1; 6] <,=,> uy. The following
discussions are all using methods similar to the derivation of Lemma 1, and the fact
that 1 — OCy(6_1) ~ o and OCy(0;) ~ 8 = a”. Hence they will not be stated in
full detail.

1°If6’ ; =u_; and 6] = u;, then A ~,/p, A ~ m/(2R). Hence
(61—60-1)2(A+A')/4 ~ m/(2R?). Similar to Lemma 1(4i), it can be shown that the
second order term in (1/4)(6; — 0_1)? supy EsS is of order O(y/m) with negative
coefficient for /m.

2°0If0' , =u_q and 0] > uy, thenc; > 1, A~ +/p/c1, A~ (1+ A)m/2. Hence

(61— 0_1)2(A+ A') /4 ~ [2+ /B(1/ /a1 + /e1)] 'm/8. Note that [2 + \/5(1//e1 +
\/ET)]zm/S > m/(2R?), with equality iff ¢; = 1.

3° IfO’ < U_1 and 0' = uy, then ¢ < —1, (01 1)2(A+Al /4 ~ ([2\/_4‘
(1/\/_ + \/_)] m/8 by applying 1 to case 2°. Note that ([2,/p + (1/v/=co +
\/:&E)] m/8 > m/(2R?), with equality iff co = —1.

4° If u_y < 0", (< 6y) and 0] > wuy, then |Col <l,ag>1,A~(1-

\/-/(2\/_), A ~ p(1+ A\)ym/(2¢c1A?). Hence (6; — 1)2(A+ A /4~ p(2/\/p+
\/'_+1/\/_) m /8. Note that p(2/,/p++/c1+1/,/c1)?*m /8 > m/(2R?), with equal-
ity iff ¢; = 1.

5°If 0" ; < u_; and (6p <) 67 < uy, then similar results can be obtained by
applying 71 to 4°.

6°If 0 ; <wu_yand @] >uy, thenecy < —1,¢1 > 1, A ~ y/—cop/c1, A ~
(1 + X\)m/(—2co). Hence (6; — 6_1)%(A + A")/4 ~ [/p( \/_+ 1/\/_) (v—co +
1/y/=co)]>m/8. Note that [\/p(y/c1+1//c1) +(v/—co+1/v/—co)|>m /8 > m/(2R?),

with equality iff ¢; = —¢p = 1.

THug < 9'__1(< 6o) and (6p <) 0} < uz, then |C()| <1, |C1| <1, A~ p(l-
co)/(1+c1), A~ 2p(1+X)m/(A2(14c1)?). Hence (61 —0_1)2(A+A")/4 ~ m/(2R?).
But the second order term in (1/4)(6; — 6_1)? supy EgS is of order O(y/m) with
coefficient larger than that in case 1°.
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8 Ifu_y < 6 ,(< 6p) and 6] = uy, then results similar to those in 7° follow,
except |co| < 1,¢1 =1, A~ /p(1 — c0)/2, A~ p(1+ A\)m/(2)?).

9°If 0", = u_q and (6p <) 0] < w1, then similar results can be obtained by
applying 71 to 8°.

Summarizing all of the above cases, we see that case 1° results in the smallest
sups EsT value when o — 0. Since conditions in 1° are equivalent to (6), (i), (i7)
and (ii7) follow.

Based on Theorem 1 and Lemma, 2, we will confine attention to tests with

_m a; , _ (1-Rym a;
TR D A TP D
(7) i>—1 i>—1
bi b,
b=1-R+> —rm, V=R+) —5.
i>1 i>1

Using Mathematica™, the corresponding OC(1) and 1 — OC(~1), based on (2)
and Mill’s ratio expansion, have expansions of the form

_ _1) = ¢—m+(b:1/R—2a_1R)ym u | G2 -3/2
1-0C(-1)=e (010+m1/2+ o +0(m )),

C21 C22 -3/2
2+ 0(m )).

(8)

oc(1) = e—Pm—(l—R)(2a'_1—b’1/R2)\/ﬁ(CZO +

Expressions for ¢;; (1 =1, 2, j =0,1,2) are given in Appendix B.

First we set cipexp[(bi/R — 2a_1R)y/m ] = 1 and ¢y exp[—(1 — R)(2a’_; —
b, /R?)y/m ] = 1 so that the error probabilities are correct to relative order
O(m~'/2). We then solve for the slope coefficients in terms of the intercept
coefficients, obtaining

by =2a_1R?, by =2a9R? —4a? , R® — Rlog ®(2v/2a_1R),

) 4 *R*  R? log®(2v/2d!
I _o 0 D2 B _o I p2 _ o1 _ g (2\/50—1}2)
b, =2a’ {R%, b, =2a¢R 1-R) T—R .

By substituting them into the AST function, we are able to locate where the max-
imum AST occurs within order O(m™!). And this is sufficient to find the second
term in the minimax AST through O(1). This leads to a second and third order
asymptotic minimax construction.

THEOREM 2. Let D, be the class of tests of form (7) satisfying 1 — OC(—1) =
a(1+0(m=1/2)), 0C(1) = B(1 + O(m~/2)), m = —loga — cc. Let Ty € D and
0m = Yiso 8;/mi/? be defined by

inf sup E5T ~ sup E5Tp ~ Es,, Tp.
TeD: ¢ 8

Then
(i) 6 =2R -1, 6; = V2RO I(R).
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(i1) infrep, sups EsT = E1m + E20/m + €3 + O(m~1/2) where

&  =1/(2R?),
&  =-1/[2/@(1 - R)R%&/CR)*],
£ _9+tg+tg
3 2(1 — R)2R%’
go =02(1—R)—6(2R—1)e"(:1/CR)* ) /7.
=inf G1(z) (> —o0),
(10) 9 in 1(2) ( )
g2 = 1r$1fG2(:c) (> —m),

Gi(z) = 4(1 - R)*R*2? + 2(1 — R)2R(8; + e~ (/@R /\/m)g
+(1 - R)?R*1og 3(2*/?R 1),

Ga(z) = 4(1 — R)R%2® + R*[ — 26:(1 — R) + 2R e~ ®/CR)* ) /x]
+(1 - R)R%log &(2°/2R z).

(32) If a test Ty of the form (7) satisfies (9), then Ty € D2 and
sup BTy =& m + 82\/—75 +O0(1).
s

That is, Ty achieves second order minimazx in class D.

(tv) If a test Ty of the form (7) satisfies (9), and if a—1 and a’_; solve equations

5 e—(61/(2R))? to R R e—(20-1R)? 0
L t4a,RP- =),
T At T /T8 (23/%a_1R)
11
1) R e—(61/(2R)? R e—(2aL1R)®
1_———__40"_1R2+T =0,
vr(l1-R) V7®(23/2a_|R)

where §; = \/§R<I>_1(R), then T> € Dy and
sup E;To = &Em + 82\/’!; +&+ O(m—l/z).
5

That is, To achieves third order minimaz in class Ds.

PROOF. Suppose T is any test in D,. Then it must satisfy (9). Expanding its
AST function at § = ¥, 8;/m¥/2, we find EsT = eym + e2y/m + e3 + O(m~1/2)
where -

1-R 1

1
e = AR =G R2 1(—1<60<2R—1)+'2—}¥ 1(60=2R—1)+m l2r-1<8o<1)-

When |dg| > 1, values of e; can be obtained by Proposition 1. It is seen that e;
reaches its maximum £; when §; = 2R — 1. Substituting it into e», we have

ey = — [R e Gi/CRY  r s Ry 5@(7‘2}.)] /201 - R)R®] .
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Since limg, 10, €2 = —00 and 8%e3/86% = —e~(01/CR)* /[4,/m(1 — R)RY] < 0, es
reaches its maximum & when 4, satisfies de2/08; = 0, yielding (3).

Continuing to substitute () into e3, we have e3 = [go+G1(a—1)+Ga(a'";)]/[2(1-
R)2R3]. Note that functions G1(z) and G2(z) have finite lower bounds. By setting
Gi(a_1) = 0 and G5(a’_ ;) = 0, we obtain (11). Hence (i), (i41) and (iv) follow.

Now set ¢1; = co1 = 0 in (8) so that the error probabilities are correct to relative
order O(m™1). Solving, we find
by = (b2 + (b2 + bh)R + 2agR? — 2(ap + af)R® — TR? cot(R7r))-
e—(2a_1R)2/[2\/7?6(23/20,_112)] —2a_1boR + 20,1R2 - 4aga_1R3,

(12) 4 ((b2 + 2BL)R — (by + by R? + 2(ao + a) R* + R*(~2aq

+7 cot(R'/r)]) e~ (201 R) /2 /r(1 — R)&(23/2a'_, R))
+2R?[a} — a’_, (b, + 2a4R?)/(1 — R)).

If we substitute (12) into AST(Y ;5 8i/m?/?) for any test T of form (7) satisfying
(9) and (11), where &y and 4, are given by Theorem 2(z), then AST(0,,) = E1m +
Eav/m + E3 + egm~ /2 + O(m™!). Here

es = —e(®/CR)? J18. /r(1 — R)RY62 + €416z + a2,
ear = [2+ 461 v/me? TR 4 10g(23/2a_1 R) + R{—2(2 + 26, /me® /4R) 1
log ®(2%/%a_1 R)) + R[log ®(2*/2a_1 R) — log ®(2*/2a’ | R)
—4(a' ;R—a_1(1 - R))(@" R
+(am1 + Ve /W) (1 — RN/ (4VER /4 (1 - RY?),
and eys is a constant. Thus e4 reaches its maximum &; when

6y =4ymR[61 +a_1R* — (a_1 + a';)R?] 3(51/(21‘2))2
(13) +[(1— R)®log ®(23/%a_; R) — R?log &(2%/%a’ ;R) + 2 — 4R
+4a?  R2(1 - R)? — 4d’}° 34] R/(1-R).

Now we have obtained the following fourth order asymptotic minimax construction:

THEOREM 3. Let D3 be the class of tests of form (7) satisfying1 — OC(-1) =
a(l + O(m™1)), 0C(1) = B(1 + O(m™1)), m = —loga — oo. Let Ty € D3 and
Om = 20 8;/m*/? be defined by

inf E;T ~ sup EsTy ~ Es_Tp.
Tléle Sl;p 5 5P 510 5m10

Then
(4) 8o and &1 are given by Theorem 2 (i), 2 is given by (13).
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(i1) infrep, sups EsT = E1m + Ea/m + E3 + E4m ™2 + O(m™?) where &1, &2, &3
are given in (10), &4 is some constant.

(i44) If a test Ty of the form (7) satisfies (9), (11) and (12), then Ty € D3, and
sup EsTy = Eym + Eav/m + E3 + Egm™ /2 + O(m™1).
s

That is, Ty achieves fourth order minimaz in class Ds.

In summary, by properly choosing the leading terms of a,a’,b and ', we can
minimize the leading term of sups EsT in class D;. Then the second term of
infrep, sups E;sT is free of the design parameters if the tests are restricted to those
in class D». Hence there is no need for minimization for the design parameters: all of
the a;’s and a}’s are arbitrary, but tests in D, require (b, b}, b2, b5) to be functions
of (a_1,a’ ;, a0,ag). If we choose the second terms of a and a' properly, we can min-
imize the third term of sup; EsT in class Ds. The fourth term of infr¢p, sups EsT
is free of the design parameters if the tests are restricted to those in class Ds.
Hence no need for minimization for the remaining design parameters, but tests in
Dj require (b3, b}) to be functions of (a;, a}). This rule continues to be followed for
higher order terms, as was seen in the symmetric case [10].

Theorem 3 (i41) gives a class of tests — with {a;,a} | ¢ > 0} and {b;,d] | i > 4}
arbitrary — achieving fourth order optimality in D3;. We could continue to obtain
higher order minimax construction, but formulas for (b;,b}) (i > 4) become much
longer. For symmetric case, however, (b;,b}) (j = 4, 5) are given by [10]. In order
to be consistent with the symmetric case, we propose to use regression to fit all free
parameters (a;,a;) and (b;,b}) (i =0, 1, 2, 3, j = 4,5) to the MTT parameters
using 20 different combinations of (a,3) for which Hall [7] determined the MTT
designs numerically. This yields the following asymptotic minimaz triangular test
(AMTT) construction, achieving properties of T; in Theorem 3.

For given a and B = a”, choose the parameters in (7), where m =
—loga, R=1/(1+./p), Ri = R—1/2,6; = V2R®*(R), a_, anda’,
satisfy

—(81/(2R))? —(2a_1R)?
01+ c - +4a_1R? - Re

—_— = 0,
\/7? ﬁ®(23/2a_1R)

R e—(2a.’_1R)2
4 Ry T
/75(22a . R)

5 R e—(61/(2R))?
V(1 - R)
ap = —1.569116 — 3.561621R;,
ay = —1.569116 — 10.80427R;,
a1 = 0.85205 + 4.319348R; — 21.95502R2,
ay = 0.85205 + 26.18879R; — 2.98425R2,
az = 0.95506 — 7.44207R;, a), = 0.95506 — 16.88119R;,
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a3 = ay = —1.06270,
by =2a_1R?, by =2aoR? — 4%, R® — Rlog®(2v/2a_1R),

4a’ ’R* _ R? log ®(2v2a’, R)

by =2a’ | R?, b} =2a(R? - 1-R R ,

bs = (bz + (b2 + b5) R + 2a9R? — 2(ag + ay) R® — 7R? cot(Rw)) .

e—(Za_lR)z/[2\/7‘,@(23/20‘_1}%)] —2a_1b2R + 2(11R2 - 4a0a_1R3,
by = ((bz + 2b4)R — (b + by)R* + 2(ap + ap)R* + R3(—2a0

+7 cot(Rw)]) e~ (2L R? /[0, /(1 — R)3(23/2a’ | R))]

+2R%[ay — a (b, + 200R?)/(1 - R)],
by = —0.04241 — 30.6437R3, b, = —0.04241 — 165.3697RZ,
bs = 0.30625, b} = 0.30625 + 4.93333R;.

Design parameters for AMTT for commonly used combinations of (a,3) are
given in Table 1. Numerical comparisons show that, when a < 20% and 8 < 20%,
the relative differences between AMTT and Hall’s MTT in design parameters are
within 0.2% for a and o', within 6% for b and b’, and the § values where the
maximum of AST occur for both designs are within 10% of each other. The OC
functions of the two designs are within 4.6% of each other with maximum difference
occurring when both OC values are above 0.65. The AST functions of AMTT are
within 2.5% of those of MTT when —2 < § < 2.

Triangular designs are constructed for testing against one-sided alternatives —
in our notation, § = —1 versus § > 1. However, they may be adapted for two-sided
alternatives by rejecting in favor of § < —1 if the early part, say T < to of the lower
boundary is reached, and choosing ¢y so that P_(T < to, X(T) = —a' + 'T) = a.
The test then has significance level 2a, with negligible effect on the true 8.

4. Numerical comparisons with PEST designs. The only available com-
mercial software to provide triangular designs for tests concerning the drift of a
continuous time Brownian motion is PEST [2], which uses only symmetric 2-SPRTs
to provide the designs. The hypotheses considered in PEST are Hy : § = 0 versus
H; : § = 0g. To obtain stopping boundaries with error probabilities a and 3 at 0
and 6 respectively, PEST finds a 8%(> 6g) for which a symmetric 2-SPRT of 0
versus 0% with both error probabilities a has error probability 3 at 8z. The Brow-
nian motion, the drift and the boundaries may then be transformed to yield a test
with drift § and error probabilities & and § at § = F1. This adaption of a sym-
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Table 1: AMTT with stopping boundaries x = a — bt and x = —a' + b't.
o [¢] a a' b b’ J,,
0.005 | 0.005 | 4.19249 | 4.19249 | 0.41497 | 0.41497 | 0.00000
0.005 | 0.010 | 4.01179 | 3.68946 | 0.38927 | 0.42844 | 0.06000
0.005 | 0.025 | 3.74717 | 2.99777 | 0.34737 | 0.44118 | 0.15996
0.005 | 0.050 | 3.51873 | 2.44691 | 0.30678 | 0.44403 | 0.25957
0.005 | 0.100 | 3.25186 | 1.86139 | 0.25383 | 0.43670 | 0.39410
0.005 | 0.200 | 2.91899 | 1.22212 | 0.17899 | 0.41360 | 0.59405
0.010 | 0.010 | 3.53296 | 3.53296 | 0.40272 | 0.40272 | 0.00000
0.010 | 0.025 | 3.29308 | 2.86912 | 0.36111 | 0.42086 | 0.10042
0.010 | 0.050 | 3.08561 | 2.34198 | 0.32039 | 0.42559 | 0.20102
0.010 | 0.100 | 2.84213 | 1.78330 | 0.26665 | 0.41589 | 0.33764
0.010 | 0.200 | 2.53554 | 1.17537 | 0.18965 | 0.38062 | 0.54205
0.025 | 0.025 | 2.67230 | 2.67230 | 0.38025 | 0.38025 | 0.00000
0.025 | 0.050 | 2.49670 | 2.18120 | 0.34046 | 0.39605 | 0.10149
0.025 | 0.100 | 2.28888 | 1.66358 | 0.28666 | 0.39034 | 0.24058
0.025 | 0.200 | 2.02230 | 1.10397 | 0.20726 | 0.34119 | 0.45107
0.050 | 0.050 | 2.03275 | 2.03275 | 0.35564 | 0.35564 | 0.00000
0.050 | 0.100 | 1.85709 | 1.55133 | 0.30410 | 0.36970 | 0.14039
0.050 | 0.200 | 1.62667 | 1.03467 | 0.22464 | 0.32175 | 0.35527
0.100 | 0.100 | 1.40561 | 1.40561 | 0.32034 | 0.32034 | 0.00000
0.100 | 0.200 | 1.21934 | 0.93767 | 0.24725 | 0.31818 | 0.21828

metric 2-SPRT provides an approach to deal with asymmetric hypothesis testing
problems, but no optimality criterion is used.

Figure 4 shows that the OC functions for the AMTT and PEST designs are
almost identical, but the AST of AMTT is uniformly smaller than that of the
PEST design for different combinations of (a,3). The PEST designs have smaller
maximum stopping times and, in asymmetric case, steeper slopes for the lower
boundaries. It is quite possible that AMTT has a stopping time distribution with
a larger median or 90th percentile. Hence, it will be more interesting to study
the stopping boundaries such that the g-th percentile of the stopping time Q(4, q),
solving Ps{T < Q(J,q)} = g, is small under certain criteria. For example, we can
consider finding the design which has minimax in Q(4,q), or the one which has
minimum of some weighted average of Q(J, g). The value of g can be chosen as 50%,
90% or 95%, for example.

5. Acknowledgments. The author wants to express her sincere thanks to
her thesis advisor W. J. Hall for guidance in the preparation of this work, to
Vladimir Dragalin for helpful suggestions, and to John E. Kolassa for help in using
Mathematica™.

Appendix A: Proof of Lemma 1. Define A = a'/a.
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() For w_; < & < wo : Applying (2) and (3) and Mill’s ratio expansion,

1-0c() = Yo rf( 2t2 +0(al2)}
:fe [ t(a(b+5)+a(2b+b'+5))

4v/2Gb 2(a+a')(b+ V')
a(2b+ b +4) + a'(3b+ 2b' + 9) 1
_C°t< 2(a+ a')(b+ b') ) +O(5)]

E5(T 1y) = O(Vae™P),

— -B
EJ(TlL)=ﬂ[$(S° TLt”)—e s”” ]

L \/t_‘l: V27r
—B +o0
S5 — S; +T ty
o D [ (2 ) ()]
-B
S0 Spe T, ty — So S0 + T, ty ] - _p
== - M + M(2"2L2) | +0(Wae ),
n m@?[(\/ﬁ) ()] +orvae™)
a' _B
v _3 +0(Vae™?),
completing (z).
(43) For 6 = wp : From (2) we have
1 1 8o + T, ty
oC(8) == + M £
@) 2 \or ( Vi )
LSy (e M(M)]
V2 = Vi Vs
1 1
= -+ 0(—%).
To obtain E;T, we first calculate it when b = b'. Applying (3),
Es(T1y) = 7% + Vit [_ no__mn . n
Ty Ty V2T To+ Tyty T1—Tyly T1+ Tty

+ TOtv + Tltv rlt'u
(ro +Tyty)3  (r1—Tuty)? (T 4+ Ty ty)3

+—H+0(_

Nor 3/2)
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where H equals

= 1 1
2a)\t?,/ 2 Z [ + ] +

et (ren = Tyto)(T2n41 — Tyty)  (T2n + Tyty) (P2ngr + Tytv)

3/2 +oo -1 1 1 1
[ 2 Tt z T 2 2] +
Ty et (7'211, - Tutv) (TZn + 7 tv) (7'2n+1 — Ty tv) (7'2n,+1 + Tutv)

1 1 1
5/2 _
t3 Z[(m_Tt + + ]

(7'2n + 7 tv)3 (7'2n+1 - Tutv)a (7'2n+1 + 7y tv)3
Summing the series, we obtain

ot VaTd [2+2-meot ()]

Es(T 1y) = TR Wk +
w3/2 m of ™
Wm [(6+6)\—37TC013(1+)\)>CSC (1+/\)
1
1+A)]+0< 3/2)
Similarly,
v/ ’ — A
(T 1,) = ata a+a' [2+2)—mAcot (1+A)] N
4b 8\/TAb3/2
32 A o [ T
Wm [<6+6/\—37T/\00t (1+)\>) CSC (1 +/\>
1
—2(1+A)] +O( 3/2>
Hence
a a®/?
ET=~+-—-———
8 b /27 a'q b3/2
(14)

ﬁﬂ's/z a3/2 )
+-56 aqgiz_ L0 T cos(2qm)] esc®(qm) + O ( 3/2)

The formula for E5T when b # b’ can be obtained by replacing b in (14) by b =
(b+b)/2.

(444) For wo < § < wy : Applying (2) and (3),

t,e B 1 1 1 1
§) =22 - -
OC( ) 21 [ro + Tty + To —Tyly T1+Tyty T1— Tyly

++2'° ( 1 1 L1 1 )
el Top + Ty ity Topt1 + Tty Top — Ty by Tont+1 — Tyty

U
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1
+0 (a_z) ]
Summing the series yields the formula in (¢i7). The formula for EsT can be obtained
as in (7).

(tv) For § = w; : The formulas can be obtained as in (i2).

Appendix B: Constants c;; in (8)

ci0 = 7{;(2\/§a_1R) exp[ba/R — 2aoR + 4a2_1R2],

1 _ 1
= gr eb2/R—2a0R [ﬁ (2(a0 + ay)R® + mR? cot[rR] — by — (b2 + by)R

—2aoR2) +2¢%21 R (by 4+ 2R(—(a1R) + a1 (b2 + 2a0R2)))5(2\/§a_1R)],

c12 = (exp(ba/R — 2aoR)((6(b3 + 2R(—(a1R) + a_1(bs + 2agR?)))(=bs
—bsR — byR — 2a0R? + 2a9R® + 2a(R® + mR*Cot[nR]))/(v/7R?)
+6 exp(4a® , R?)((bs/R — 2a1 R + 2a_1(bs + 2a0R?))? + 2(2aoba + bs/R
—2asR + 2a_y (bs + 2a;R?)))®(2v2a_1 R) + (2(-3(b3(1 + R)
—a_1(ba(1 + R) + R(by — 2R(ag(R — 1) + a{R)))?
+R(by + 2R(a; — a1 R — R(a} + (a_1 +a’_;)(b2 + by — 2(ao + ay)R?)))))
+7mR? csc(nR)*(nR?(6a’_ R+ a_1(—1+ 6R)) + a_17R? cos(27R)
—3(a"R? + a_1(b2(1 + R) + R(b5 + R(1 — 2a0(R — 1)
—2a4R)))) sin(27R))))/ (V7 R)))/12,

c20 = exp(2ah(R — 1) + (b, — byR + 40’ ,°R*)/R%)3(2v24’_, R),

ca1 = ((exp(((R — 1)(=b5 + 2ayR?))/R?)(b3(~2 + R) + ba(R — 1)
~2R?*(~ao +agR + ayR)))/(v7R) — exp(((R — 1)(=by
+2ayR?))/R*)y/TR cot(nrR) — (exp(2ah(R — 1) + (b, — b5R
+4a' ,’R*)/R?)(by — byR + 2R*(a} (R — 1)
+al, (b, + 2a3R?)))(22(2v24_ | R)))/ R?)/2,

e22 = ((3exp(((R — 1)(=b; + 2ayR?))/ R?) (b3 (-2 + R) + bo(R - 1)
—2R?*(—ag + aoR + ayR))(bs — bR + 2R*(a} (R — 1)
+a’y (by + 2a5R?))))/ (VT R?) — (3exp(((R — 1)(—b; + 2ayR?))/ R?)(bs
—b3(—2+ R) —b3R —a'_;(by — bs(—2 + R) — bR + 2R*(—ao
+aoR + ayR))? + 2R*(—(a’_1b2) —a’ by +a;(R—1) + a}R+a' ;b2R
+a’ B4R + 2a0a’_{ R? + 2apa’_ R? — 2apa’_, R® — 2ala’ | R®
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+a_1(R — 1)(bz + by — 2(ao + ap) R?))))/(v/7R) + 6 exp(2a)(R — 1)
+(by — By R + 4a’ ;> R*)/R?)(ahbh, + a’_, b + aj(R — 1)

—(b3(R —1))/(2R?) + 2a_, 0, R* + (a_; b5 + a1 (R - 1)

—(b3(R —1))/(2R?) + 2a{a’_; R?)?)(28(2v2a’_, R))

+(exp(((R — 1)(=b; + 2a5R?)) /R?)v/7(3(R — 1)(b; + 2R*(—a}
—a’_1 (b2 + by — 2(ag + ay) R?))) cot(wR) — R*(2a’_ ;7

—3(a_1 +a’ ;) csc(mR)*(—27(R — 1) +sin(27R)))))/R) /6.
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