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We propose and investigate a simple nonparametric estimator of the period of a cyclic
Poisson process. It is assumed that only a single realization of the Poisson process is
observed in a bounded window. We prove consistency and establish a rate of convergence
of the proposed estimator when the size of the window expands.

1. Introduction and main result

Let X denote a cyclic Poisson point process defined on a probability
space (Ω,*4, P), with absolutely continuous σ-finite mean measure μ w.r.t.
Lebesgue measure v and with (unknown) locally integrable intensity func-
tion λ: R —> R + U {0}, i.e., for any bounded Borel set B, we have
μ(B) = JBX(s)ds < oo. In addition, λ is cyclic (with period r), i.e., for
some r G R+

(1.1) X(s + kr) = X(s)

for all s G R and k E TL. The period r is assumed to be unknown.
Suppose that, for some ω G Ω, a single realization X(ω) of the Pois-

son point process X is observed, though only in a bounded interval (called
window) W C R. Since λ is locally integrable, the Poisson point process
X always places only a finite number of points in any bounded subset of
R. In order to investigate the consistency of an estimator of τ we let the
window W depend on "time" n = 1, 2,..., in such a way that \Wn\ —• oo,
as n —• oo, where \Wn\ denotes the size (or Lebesgue measure) of Wn. In
this set-up, a necessary condition for the existence of a consistent estimator
(of r) is that J R X(s) ds = EX(R) = oc, which implies that P almost surely
the point pattern X{u) contains infinitely many points (cf. Rathbun and
Cressie, 1994). Note that for cyclic λ the requirement J^X(s)ds = oo is
automatically satisfied, provided the global intensity θ — τ~ι /Q

r X(s) ds of
the process X is positive. Therefore we will assume throughout that θ > 0.

The aim of this paper is to propose and investigate a simple nonpara-
metric estimator τn of the period r of a cyclic Poisson process X, using a
single realization X(ω) of X, observed in the window Wn. Let θ denote the
parameter space, τ £ θ, and let Θ be a bounded open interval in R+, such
that no multiple of τ is contained in Θ. Our estimator τn of r is obtained as
follows: for any δ G θ, define
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with Nns = [|Wn|/5], denoting the (maximum) number of adjacent disjoint
intervals Us,i of length δ in the window Wn\ for convenience we denote by an

and bn the left- and right-endpoint of Wn, that is Wn = [αn, 6n], and require
that the Us/s are intervals of the form [an + r + (i — l)δ,an + r + iδ) for
some r G [0, (|Wn| — δNn$)}. Otherwise the specific choice of r is free and
basically of no importance (cf. condition (E)). Now we define

(1.3) fn =

The parameter τ can also be estimated as follows: first estimate fcr, for some

positive integer fc, satisfying k = o(\Wn\), by kfn^ which is given by

(1.4) kfnik = arg min Qn(δ)
δeθ

and let τn?& denote the resulting estimator of r. Here Θ& = (^^5^,1) is a n

open interval, such that no other multiple of r than kr is contained in θfc.
Of course θ i = θ and fn?i = fn. The restriction on the parameter space Θ&
of course requires some prior information about the value of kr. Note that
fn^ is not uniquely determined by (1.4), because Qn{6) may have flat parts.
However, it can be checked that whatever specific choice of τn^ is made, our
results remain valid.

In practice one may obtain the estimator τn^ by inspection of the graph
of Qn{S). Because of relation (A.2) in the Appendix and the remark following
Theorem 1.1 we know that typically a single realization of Qn{β) will behave
approximately like a quadratic in a neighborhood of fcr, provided k = kn ~
|Wn|Cj f° r some 0 < c < g, whereas Qn(δ) will attain larger values elsewhere
(cf. relation (A.I) in the Appendix). Hence, one may as well obtain the
fcfn>fc's by minimising Qn(δ) for δ G (0, Dn), where Dn is of the order IW^I1/3;
the requirement on ©^ becomes superfluous.

Throughout we also assume that λ satisfies condition (E):

(E) // there exists a t G (0, r) such that, for each n > 1, fjj . λ(s) ds = tθ

with Ut,i = [an + r + (i — l)t, an + r + it]), for i = 1,. . . , Nnt, then

Λr: ί
I Ms

\(s)ds = tθ, i = l , . . . , i V n Λ = 0

J

Condition (E) is only violated in exceptional cases. It is meant to guarantee
that if An(δ) = EQn(δ) attains its minimum value at θ + O(k/\Wn\), this
implies that δ = kr for z/-almost every r; otherwise (A.I) may fail. It is
satisfied in trigonometric models where λ can be expressed by a Fourier
series. Note that (E) implies that λ is not constant a.e. [v]. This latter
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condition ensures that τ is identifiable, a necessary condition for the existence
of a consistent estimator.

Our main result is:

Theorem 1.1. Suppose λ is cyclic (with period τ) and Lipschitz. In addition
assume that condition (E) is satisfied. Let k = kn ~ |Wn |c, for some 0 <
c < I . Then we have for any 7 < ^

(1-5) |Wg 7 |τ n, f e-τ|-^0
P

as n —> oo.

The requirement c < ^ in Theorem 1.1 ensures that the deterministic part
Λn(ί) of Qn(δ) dominates its purely random part Qn(δ) — Qn(δ) — ΈQn(δ),
whenever δ e θ/~; otherwise (1.5) would fail. Throughout the relation kn ~
|Wn | c will mean that limn_^oo fcn/|Wn|c — l

Vere-Jones (1982) proposed a periodogram estimate and obtained an
almost sure rate of order o(n~ι) where (0, n) denotes the observation window,
provided λ admits a Fourier series with coefficients which are monotone
decreasing, a condition which seems rather restrictive in our nonparametric
framework.

In Helmers, Mangku and Zitikis (2003a) kernel type estimation of a cyclic
intensity function λ (with unknown period r) at a given point s € W, using
only a single realization X{ω) of the cyclic Poisson process X, is investigated.
Using any estimator τn of r the estimator

of λ(s) is shown to be weakly consistent for any Lebesgue point s of λ,
provided K is a bounded probability density function with support being a
subset of [—1,1], and having at most a finite number of discontinuities, while

(1.7) ?|f,-rh»
h P

as hn I 0 and /ιn |Wn | —> oo. Statistical properties such as the MSE of Xn^
are obtained in Helmers, Mangku and Zitikis (2003b). Helmers and Zitikis
(1999) consider a uniform kernel type estimator for \(s) in the case where
λ is a parametric function of spatial location. In the present paper and also
in Helmers and Zitikis (1999), Helmers, Mangku and Zitikis (2003a, b) and
Mangku (2001) λ is assumed to be fixed, but the observation window Wn

expands, that is \Wn\ —• oo. This approach appears to be an useful one,
since the size of Wn is often under the investigator's control.
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To conclude this section we note that by taking fn in (1.6) and (1.7)

to be our estimator fn^ (cf. (1.4)) one can check that assumption (1.7)

is satisfied, provided τn^ is computed using the whole information about

X in the window Wn, while to construct λ n ^(s) (cf. (1.6)) we use only the

information about X in a smaller window Wo,n C Wn of a size determined by

the rate at which hn j 0 (cf. Mangku, 2001, p. 106). Bebbington and Zitikis

(2002) recently proposed some modifications of our estimator of r, which

appear to work more satisfactory in practice. In any case better methods

than ours for estimating r with high accuracy are desirable. The authors

hope to pursue this problem elsewhere.

2. Proof of Theorem 1.1

To prove (1.5) we have to show that for any 7 < ^ and each e > 0

(2.1) P(|WnΠfn ϊ f c - τ\ > e) -> 0, as n -> oo.

For each k satisfying k = kn = o(|Wn |), define the auxiliary quantity fnks

by

(2.2) kfn^s = arg rnin Qn(δ)

where Φn?£ = [kr — en, kr + en) and en is such that en [ 0 as n —> oo. Then

(2.3) P{\WnV\fnM - τ\ > e) < P(|WnΠfn, f c,β - r | > e) + P(fn,fc)β + fn<k)

where

(2.4) P{rnχs + τn,k) = P(\kτn,k - kr\ > en)

with en I 0 as in (2.2). To prove that (2.4) converges to zero, as n —* oo, we

first note that by a standard argument

(2.5) P(\kfn9k - kτ\ > en) < P( inf Qn(δ) < Qn(knr))

< p( min Qn(δi) - Qn(knτ) < an)
M:<5teθ f c\Φn f c /

P( max sup \Qn(δ) - Qn(δi)\ > αn)
\l<i<Ln δi!<δ<δi J

for any αn > 0 (cf., e.g., Guyon, 1995, pp. 119-120). Here and elsewhere
{δi}i=o denotes a grid of equally spaced points in θfc, so that for any δ £ Θ&
there exists δι such that \δ — δi\ < η = |θfc|/Ln, for all i = 1,. . . , Ln. Take
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Ln = [\Wn\P] for some β > 2 (cf. also the appendix). The first probability
on the r.h.s. of (2.5) does not exceed

(2.6) Σ P(Qn(δi)-Qn(knr)<an)

n(δi) - Qn{knτ) < an -
iΛGθ f c \Φ n > f c

where An(δ) = EQn(δ) and Qn(δ) = Qn(δ) - EQn(δ). Relation (A.I)
of Lemma A.I in the Appendix tells us that An(δi) — An(knr) > c\{δι —
knτ)2/kn + O(k/\Wn\) for all δi G θk\^n,k and some constant c\ > 0. With
δi G θk \ Φn,fc and a proper choice of en (cf. the argument given after (2.7))
this directly yields that An(δi) — An(knτ) > cιe^\Wn\~c{l + o(l)), so that
with an — ^cι€n\Wn\~

c we find that an — {An{βi) — Λ(fcnr)) is negative for
n large enough and its absolute value is bigger than Icie^lW^I"0. Hence,
the sum in (2.6) does not exceed

(2.7) Σ P(\Qn(δi) - Qn{knτ)\ > \Cle
2

n\Wn\-c)

δi)\ > WlIWn\-C) + LnP(\Qn(knr)
2 = 1

By applying Lemma A.2 in the Appendix twice this directly yields that the
r.h.s. of (2.7) converges to zero, as n —> oo, provided 0 < c < \ and en [ 0
such that 6n |Wn |(1~3c)/4 —> oo. Hence the first probability on the r.h.s. of
(2.5) —• 0, as n —> oo.

Prom Lemma A.3 in the Appendix we know that the second probabil-
ity on the r.h.s. of (2.5), with an = ^cie^|Wn|~c, converges to zero, as
n —> oo, provided 0 < c < 1 and en j 0 such that en |Wn |(1~c)/4 —• oo,
as n —• oo. Since for any en [ 0 satisfying en |Wn |(1~3 c)/4 -^ oo we have
^ n l ^ n l ^ 1 0 ^ 4 —*• oo? the exponential bounds appearing in Lemmas A.2 and
A.3 both converge to zero, as n —» oo, provided 0 < c < | and en [ 0 at a
slower rate than IW^3 0""1)/4. This completes this proof that (2.4) converges
to zero, whenever k ~ iWnl0, for some 0 < c < ^. Therefore, the estimator
fUik, obtained by global minimisation of Qn(δ) on θ&, can for our purposes
be replaced by fnjfcjβ, the auxiliary quantity (2.2), defined by local minimi-
sation of Qn{8) on Φn>fc. In other words, it remains to show that the first
term on the r.h.s. of (2.3) converges to zero, that is, for any 7 < \ and each
e > 0

(2.8) P( |WnΠf n , M - τ\ > e) -> 0, as n -* 00.
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To prove (2.8) we need a stochastic expansion for the purely random part

Qn{S) — Qn(δ) - Λn(5) of Qn(δ)' for any positive integer k satisfying

k = o{\Wn\),

(2.9) Qn(δ) = 2 { S k T }

as n —> (X) and 5 — &τ —> 0. The Lipschitz condition on λ is needed to obtain

(2.9). Here and elsewhere we write X(U$^) to indicate X(U$,i) — E I ( [ / ^ ) ;

in particular X2(Uδ^) means (X{Uδii))2 - E(X(Uδji))2. In addition, the
variances of the first two terms on the r.h.s. of (2.9) are—up to a factor
(δ — kτ)2/\Wn\ respectively l/|Wn |—given by

(2.10) Var

and

(2 n) K r ^
and the covariance satisfies the relation

(2.12) cov

* )+Of(ί-*r)»+τ Jo ) \\Wn\J V \Wn\\δ-
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as n —> oc and δ — kτ —» 0. Note that the O(k/\Wn\ \δ — kτ\) term appearing
in (2.10) and (2.12) is negligible for our purposes, whenever δ — kτ —> 0
at a slower rate than ιμA/2 We refer to Mangku (2001, pp. 126-138) for
detailed proofs of (2.9)-(2.12).

Next we approximate the r.v.'s appearing in (2.10) and (2.11)—up to
remainder terms of lower order—by

^n,δ,kr JJδ,kτ

(2.13) Σ
1 n | j=l i=U-l)Jί,fcτ+l

O[\δ-kτ\
\Wn\\δ-kr\

and

nj,kτ

Σ Σ
jJδ,kτ

Σ

respectively, where Jδikτ = [r/|5 - fcτ|] and Mn^kτ = [\Wn\ \δ - kr\/kτ2],
as n —> oc and 5 — fcr —•> 0. Since λ is cyclic with period r and Lipschitz,

the collection X(U$j)\(an + r + (i — l)(δ — fcr)) respectively X2(C/^5i), i =
1,..., iVn(j, is splitted into Mn^^τ blocks, such that within each block the
sum of the Js,kτ r.v.'s corresponding to this block has the same distribution
for each of the Mn^τ blocks, up to a remainder term, negligible for our
purposes. Application of Theorem 9.3.1 in Dudley (1999) to (2.13) and
(2.14) directly yields that on some probability space there exist, for any
positive integer A:, Mn^^τ R2-valued independent r.v.'s Zjk, with the same
law as

and Yjk independent mean zero r.v.'s with bivariate normal law with vari-
ances c2 and C2, where

c2 = θτ Γ(λ(s) - θfds, c\ = 2θ2τ3

Jo

and covariance
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such that

as n —> oo and | ί — /cτ| —> 0. Here || || denotes the Euclidian norm in R 2 .
Define fn^s by kτn^s = argmin<5€Φn>ife Qn(δ), with

ds(2.16) Qn(5) = {δ ~k^
? j\\{s) -

where Γj, j = 1,2 denote standard normal r.v.'s, with vanishing correlation
as \δ - kτ\ -> 0.

Note that Qn(^) is nothing but the sum of the quadratic approximation
to An(δ) = Έ>Qn(δ) (cf. Lemma A.I) and a "normal approximation" based
on (2.15) (cf. also (2.10_)-(2.12)) to Qn(δ) = Qn(δ) - EQn{δ). Minimising
the quadratic function Qn(δ) w.r.t. (δ — kr) yields a stochastic expansion for

(Jo (λW - θf ώ)i/2 2(20fcτ + 1)V2 β(X(s) - θf ds

(2.17)

so that fn^,s — T — OpdWnl"1/2), which directly yields (1.5) with fn^,s

instead of fnj/-.
Note that the error of the normal approximation (2.15) will not affect the

rate of convergence iWnl"1/2 of fn^s to r, because it amounts to replacing
Tj by Tj + op(ί), j = 1,2 in (2.16) and (2.17); let Q'n denote Qn (cf. (2.16))
with Tj replaced by Tj + o p(l), j = 1,2.

It remains to verify that the transition from Tn?fcj5 to fn5fc5S (cf. (2.2)) is
of negligible order, that is, for any 7 < ^,

(2.18)

To see this note first that a simple calculation using (2.16) yields

(219) ^{s+
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as n —> oo and \δ — kτ\ —> 0. Combining now (2.9) with (A.2) directly gives

(2.20) Qn(δ) = Q'n(δ)

where

,2,1)

The three random terms on the r.h.s. of (2.21) are easily seen to be of the
order of the remainder term in (2.19), whenever \δ — kτ\ = O(en), whereas
the deterministic error term \δ — kτ\s/k (cf. (A.2)) can be incorporated with
impunity in the first term on the r.h.s. of (2.16). The latter change will not
affect the order of magnitude |Wn|~

1//2 of fn^,s ~ r We can conclude that
minimisation of Qn(δ) on θ n ^ behaves asymptotically like minimisation of
Q'n(δ + op{k/\Wn\

Ί)) w.r.t. δ, that is (2.18) holds true. This completes the
proof of Theorem 1.1. D

APPENDIX

In this appendix we provide some technical tools—in the form of three
lemmas—which were needed in the proof of Theorem 1.1. In our first lemma
we show that An(δ) — An(kτ) = E(Qn(δ) — Qn{kr)) behaves like a quadratic
in a neighborhood of fcr, whenever k = o /

Lemma A.I. Suppose that λ is cyclic and Lipschitz. Moreover, assume
that condition (E) is satisfied. Then, for v-almost every r and any positive
integer k satisfying k = o /

(A.I) An(δi) - An(kr) > afr - kτ)2/k +

for all δi G Θ& \ Φ n ^ and all n > no, for some positive integer no and
constant c\ > 0. In addition, we have

(A.2) An(δ)-An(kτ)

as n —* oo and δ — kτ —> 0.

Proof. See Mangku (2001, pp. 153-157). D
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In the next lemma we derive an exponential probability bound for the

Qn($i)% i — IJ J^Π The proof uses the fact that the X2(Us,i), i =
1,.. ., Ln are easily shown to be sub-Gaussian r.v.'s so that Lemma 8.2 of
van de Geer (2000) can be applied.

L e m m a A.2. Let Ln = [\Wn\P] for some β > 0. Suppose that λ is cyclic and

locally integrable, then, for each integer k = kn ~ \Wn\
c for some 0 < c < |

and for each sequence en j 0, there exists a positive constant C\ such that,

as n —> ex),

(A.3)

with δi G Θk, i = 1,. . . , Ln.

Proof A simple calculation (cf. Mangku, 2001, p. I l l ) shows that
Nnδ. ^-^_^

(A.4) Qn(δi) = ^ £ ^

3=1

where i ^
To obtain an exponential bound for the first term on the r.h.s. of (A.4)

we apply Lemma 8.2 of van de Geer (2000) to find that

(A.5)

for some constant C\ > 0. This bound together with a similar bound—
namely 2exp(—C2^n\Wn\

ι~2c)—for the other two terms in (A.4) (cf. Reiss,
1993, p. 222), completes the proof. D

In the third and final lemma we give an exponential probability bound
for the modulus of continuity of the Qn-process.

L e m m a A.3. Let Ln = [\Wnf] for some β > 2. Suppose that λ is cyclic
and bounded, then, for any integer k = kn ~ \Wn\

c for some 0 < c < 1 and
for each sequence en j 0, there exists a positive constant C2 such that

(A.6) P ( m a x sup \Qn(δ) - Qn(δi)\ > el\Wn\~c)
\l<ι<Ln δt^δKδi '

as n —>> (X).
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Proof. See Mangku (2001, pp. 114-123, 125). D
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