SPEARMAN’S RHO AND KENDALL’S TAU FOR
MULTIVARIATE DATA SETS

HAaMANI EL MAACHE AND YVES LEPAGE
Université de Montréal

A class of U-statistics matrices is introduced to obtain the distribution of the matrices of
the Spearman and Kendall correlation coefficients between the components of a random
vector. These results are used to construct nonparametric tests of independence between
two sets of variables based on three measures of multivariate relationship. The tests are
illustrated by an example and a simulation study is performed to compare the tests based
on Kendall’s matrix with those based on Spearman’s matrix.

1. Introduction

Let F(z) = F(zM,z/3) be the continuous c.d.f. (cumulative distribution
function) of a random vector X = (X1, XY where z = (... z(™Y ¢
R™, m > 2, zll € RP, 2@ € R? (p + ¢ = m) and FH(z¥) (k = 1,2)
denote the marginal c.d.f. of X (K], The objective of this paper is to de-
tect deviation from the null hypothesis of independence that is, to test Hy:
F(z) = Fl(zM)FPR(z[2) against appropriate classes of alternatives Hy.,.
A nonparametric approach to this problem was explored by Puri, Sen and
Gokhale (1970) who defined a class of association parameters based on com-
ponentwise ranking. The statistic they proposed uses the elements of the

matrix D, = (g;i ID)g ), where

1 (RO (RO
(1.1) D, ZE;J(n)J(T) ,j=1,...,m.

Here, R,(f) is the rank of Xg), that denote the ith coordinate of the vector
Xa,; the symbol a will run over the sample (from X) with a = 1,...,n
and J represents an arbitrary standardized score function. Puri, Sen and
Gokhale (1970) established the joint asymptotic multivariate normality of
the vector formed by the elements of D,,.

When the score function is J(u) = Jo(u) = v/12(u — 1), then

. 12 - v on+1 Non+1
(g) — % @_nr?t G) _
1) D= 23 (- (o - 2EY),

a=1

,j=1,...,m,
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which reduces to Spearman’s rank correlation with asymptotic mean given
by Spearman’s coefficient (see Hoeffding, 1948, p. 318)

(1.3) o) =3 / / 20 (30) — 1)2P0) (z0)) — 1] dFGD) (20, 200,

,7=1,...,m,

where F(* (x(i)) and F®J )(Cﬂ(i),w(j )) denote the marginals c.d.f. of Xc(f) and
(Xg) , X C(f ) )’ respectively.

They based their test of independence on the statistic SY = |Dy| x
(|D11| |Da2|)~1, where |A| denotes the determinant of A. They also showed

that under Hy, —nlog S £, ng. With Jy, the statistic S” is a generaliza-
tion of Spearman’s rho for multivariate data sets.

Using the results of Puri, Sen and Gokhale (1970) with Jyp(u), Cléroux,
Lazraq and Lepage (1995) and Lazraq, Lepage and Cléroux (1995) proposed
other tests of independence between two or more random vectors which are
based on the measures of multivariate association proposed by Escoufier
(1973) and Cramer and Nicewander (1979).

In the present paper, we present an approach based an original concept of
U-statistics matrix inspired from Hoeffding (1948) to the problem of detect-
ing dependence between two random vectors. This theoretical tool allows us
to deduce the asymptotic distribution of a general association matrix. The
first application is to construct the association matrix with Kendall’s tau and
study its relationship with Spearman’s rho. We also propose nonparamet-
ric tests of independence between two random vectors based on three known
measures of multivariate relationship with the Kendall and Spearman associ-
ation matrices. We obtain the asymptotic distribution of the tests statistics
under the null hypothesis and under a sequence of alternatives. In order
to assess the behavior of the tests, a Monte Carlo study is performed to
compare the empirical level and the empirical power of the tests based on
Kendall’s matrix with those based on Spearman’s matrix.

Some multivariate generalizations of the Kendall’s tau correlation coeffi-
cient have been studied in the literature by Hays (1960), Simon (1977) and
Joe (1990). They have used the Kendall’s tau correlation coefficient to test
the total independence but not for the independence of two or more random
vectors.

The paper is organized as follows. In Section 2, we give the asymptotic
distribution of the matrices of U-statistics and deduce those for Spearman’s
matrix and Kendall’s matrix. Section 3 is concerned with the three known
measures of multivariate relationship: some properties and their asymptotic
distributions under the null hypothesis and under a sequence of alternatives
are given. In Section 4, we propose some tests of independence based on
Spearman’s and Kendall’s matrices. We illustrate all the tests by an example.
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Finally, Section 5 contains an empirical comparison of the new tests based
on Kendall’s matrix with the competitors based on Spearman’s matrix. The
results of this paper, can easily be extended to test the independence between
several random vectors.

2. U-statistics matrix

Let Xi,...,X, be n independent random vectors, X, = (Xc(xl), e ém))’,
a=1,...,n, from an unknown continuous c.d.f. F. Let ®®9)(z,... z ¢.5),

fori=1,...,pand j = 1,...,q, be symmetric function with (3 (r(t)) ¢ N)
arguments. Let

UT(ll,]) = n Z @(Z’J)(Xﬁl" .. 7XBr(i ])),
r(i»j)) BeB ’
where B = {ﬁ = (617"'7 r(i,j)) | 1<p <0 < ﬂr(i,j) < Tl}, be a

U-statistic for the parameter v(»7) of degree (%7 based on the symmetric
kernel ®(7) Let

(2.1)

@&”])(;p) = E[Q(Z’J)(w,Xg, . ’Xﬁr(i,j))]’ fori=1,...,pand j =1,...,q.

We note that E[Uff’j)] = E[@gi’j)(X)] = +(9) (see Hoeffding, 1948)). We
now define the matrices of U-statistics U, of degrees R and of parameters
I" by respectively

vy o g r&0 0 p19)
Un = : : , R= : :
e . e r®l) )
and
ALY 40
r=| : S
AP P

Consider vec U, as the vector formed by stacking the columns of U,.
The asymptotic multivariate normality of vec U,, follows from Theorem 7.1
of Hoeffding (1948).

Theorem 2.1. If the kernel function ®@9) for the parameter v7) of degree
r(@3) is such that

E[Q(i’j)(Xl, e X)) = ’)’(i’j) and E[(tb(i’j)(Xl, . ,X,,.(i,j)))2] < 00,

fori=1,....,pandj=1,...,q, then \/n(vecU, —vecT) £, Npq(0,92) where
the elements of ) are given by

mikD) = @) kD E@ED) (x1)DFD (X)) — 404 KD]
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@gi’j)(m) and ng’l)(ac) are given in (2.1) fori,k=1,...,pandj,l=1,...,q
We can also deduce from Hoeffding (1948) that vec U, L, vecT.

Spearman’s matrix

To express the rank correlation in terms of indicators, we define the signum
function as s(z) =1ifz > 0,0if z = 0 and —1 if z < 0. Then we can define

the U-statistic
St9) = Z DS wED( Xy, Xp, X))

1<a<ﬁ<u<n
for Spearman’s coefficient p(*7) of degree 3 based on the kernel function
VI (X1, Xo, X3) = 5 ZZZ X(z) X(z (Xéj) - Xlgj))_
1<arBAv<3
Here, we have (see Hoeffding, 1948, p. 320)

(22) ¥ (Xa) = [ -2FO (X)) - 2PV (X))
4 / [FG9) (20, X0y — pO) (30 p0) (X0 dF® (20)
+4/[F(i’j)(Xc(f),w(j)) — FOXYFO) (£0))] dF W) (20

where ") (z) = E[W(9)(z, X5, X3)]. For i = j, we have S\ = (d) = 1.
Obviously S$7 is an unbiased estimator of () while DG+ given by (1.2))
is not. ,

The matrix S, = (Sp (ixd )) ,] =1,..m will be called Spearman’s matrix for
the parameter matrix P = (o ’J))z j=1...m- For all 7 # j the degree is 3 and
zero for ¢ = j. The application of Theorem 2.1 leads immediately to the
following theorem.

Theorem 2.2. The random vector \/n(vec S, — vec P) has a limiting m?-
multivariate normal distribution N,,2(0,Xs) where the elements of Ls are

given by cr(”’kl)=9 Zi:l Zi’:l Cov(Vl(i‘j)’h, Vl(k’l)’h/) with i,7,k,l=1,...,m,
Vi == 2O - 2O (X)),
yEN2 _ g / [F) (¢®, xO) _ pl) (@) p6) (X D] 76 (20

and

Vl(i’j)’?’ — 4/[F(i’j)(X1(l) @Dy — pO (X (1))F(J')($(j))] dF9) (£9),
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Kendall’s matrix

Kendall’s tau is a measure defined by the product moment correlation of
signs of concordance,

K0 = — ZZ X(z - X) (Xg) - X0,

1<a<ﬁ<n

while Spearman’s rank correlation coefficient is the product moment correla-
tion between F®)(X®) and FO)(X©)) (3,5 = 1,...,m) (see Cléroux, Lazraq
and Lepage, 1995, p. 719). Thus, Theorem 4.1 in Puri, Sen and Gokhale

(1970) cannot be used to obtain the asymptotic multivariate normality of

the elements of the Kendall’s matrix. The element K,,(f’j ) is a U-statistic of

degree 2 based on the symmetric kernel
09Xy, Xp) = s(X;) _ Xfi))s(XQ(j) _ X{j))
for Kendall’s coefficient defined as
H0d) — 4 / / F) (z0), 50)) gpEd) (z0) 500 —
Here also (see Hoeffding, 1948, p. 316), we have

2.3) @0 (x,) =1-2FD(X®) - 2F0)(X{)) 4+ 4FGI) (XD xO))
= [1 - 2FO(X)][1 - 270 (X))
+ 4[F(i’j)(Xg),Xg)) _F® (Xg))F(j)(X((lj))]
where @gi’j)(x) = E[®®9)(x, X5)]. For i = j, we have K = 760 =1,
The matrix K, = (Kp, (6.3 )) i,j=1,..,m Will be called Kendall’s matrix for the
parameter matrix A = (T(”J ) )1’]_1,“" . For all 7 # j, the degree is 2 while it

is zero for i = j. The application of Theorem 2.1 leads immediately to the
following theorem.

Theorem 2.3. The random vector v/n(vec K, — vec A) has a limiting m?-
multivariate normal distribution N,,2(0, X k) where the elements of Xk are

given by a(”’kl) = 4Zh S22, _, Cov (U(”)h Ul(k’l)’h/) with i,j,k and | =
1,...,m,

Ut = 1 - 2P O (XL - 270 (X))
and

{2 = a[pE)(x ), x7) - FO ) FO (x;)].
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If we insert the rank R(z) of Xg) defined by

n
RY = n+1 —l—%Zs X0 - x5
f=1

n (1.2), we have
n—2 3
D, = K
" n+ 13n + n+1"
(see Hoeffding, 1948, p. 318). Then, \/n(vec D, — vec P) and /n(vecS, —
vec P) have the same limiting distribution given by Theorem 2.2; we find
here the result given by Puri, Sen and Gokhale (1970).
Let us now partition P and A and their analogue sample matrices S,

and K, in following way:

Py P12> <A11 Aig K K12)
P = y A = s K, =
(P21 Pao Aoy Ago " K21 Ka

and

where Moy (M = P, A, S or K) is of order gxp. Now, we have Po; = A9y = O
under Hy. Under Hy, Xg) and Xc(f ) are independent for ¢t = p+1,...,m
and j=1,...,p.

Theorem 2.4. Under Hy and when n — oo, we have

Vvnvec Ko £, 720 where 2 follows a Npq(O, %PH ® Py)
and
V/n vee Sgq £, 70 yhere 7 follows a Npq(O, P11 ® Pa2).

Proof. From Theorem 2.3, we note that under Hy the random vector
v/nvec K has a limiting multivariate normal distribution Npq(O, A) where
the elements of A are given for ¢, j,k,l = 1,...,m by

Ugéj,kl) _ 4B gDy
= 4E[1 — 2FD (x)[1 — 27® (x{F))]
x B[l — 2F9D (X1 — 2FO (x)]

— 460 46D,

Thus, A = %Pu ® Pys. In a similar way, we can obtain the limiting multi-
variate distribution of \/n vec So; under Hy. O
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We shall now study the asymptotic distribution of My (M = S or K)
under a sequence of alternatives {Hi.,,m = 1,2,...} (see Puri, Sen and
Gokhale, 1970) which specifies that

QULED (Rl L[y pl2] (2]

Vvn
where QU2 is some function of (FM(z[), FR2(z@)) and QUL £ 0.
H;., implies that for i =p+1,...,mand j=1,...,p,
(24) FO () z0) = PO (50)F0) (20)
Q6D ( FO (£6)) FO) (20)
(12 QD(FOED), FOE0)
Vn

where Q(9) is a function of (F®), F)) and Q49 # 0; it also implies that

(2.5) F(ij,kl)(m(i),x(j),x(k)7$(l)) — F(i,k)(x(i),x(k))F(j,l)(x(j),x(l))
(1 Qid:kl) (F(i,k) (2@, z(®)), FGD) (m(j)’x(l)))
N
where FU3ED) ig the c.d.f. of the (X(i),X(j),X(k),X(l)) for j,l = 1,...,p;

i,k=p+1,...,m, and QW) £ 0 is a function of (F&K) FGH).
Letfori=p+1,...,mand j=1,...,p,

(2.6) dF9) = £09) (20 £0))dz® dz ()
B 2 F(:3) (2 50))

- O o)

. 4 1 ) . . )
_ gF® gpo) (1 + FO (0 F(J)(x(a))) ,

20 gz

where the function wj; is obtained by differentiating (2.4)). In a similar way,
letfori=p+1,....mand j=1,...,p,
2.7) R (0 z0) Lk 20y

FAFRD (1) 2(@) 2(k) 2 D)

Oz 8z (k) 9z 1)
=T 02002 02000 |

To simplify the notations, we set
dF(kD) — U3k (@) 505), z® 20) dz® dz@) dz®) dz®
OAF (kD (@) (@) g (k) 1)

@) 7..3) 7,.(k) 7..(0)
a9, s R agm  r dedz dz
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and
dFk) — f(i,k) (w(i), x(k))da:(i)dx(k).

Let B = (3(9)) be the ¢ x p matrix where
i) — / / FO(20) O (50))069) (PO (o0), FO) (20))) dF69).
Using (1.3) and \Ilgi’j ) defined by (2.2) where
E[\Ilgi’j)(Xl)] = (i) = 3//[2F(i)($(i)) — 1][2F9) (z1)) — 1] dF @),
we obtain under Hj.,,

pid) = % od) 48 / / [FE) (20, 20)) = FO) (z®)F0) (0] dF )

1 . 8 .. 1230:4)
— _g(m) + _Ig(w) — &

3 Vn Voo

In a similar way, using @gi’j ) defined by (2.3), we obtain under Hj.p,,

R 4 .. 8 ..
(17.7) P (7’7]) —_— (17]) —_ — (Z,J).
T 3¢ + \/ﬁﬁ nﬁ

We thus have shown the following lemma.

Lemma 2.1. Under H;.,, we have

8 12
A21 = %B and P21 = %

The next theorem gives the limiting distribution of K9 and Ss; under
the sequence Hj.;,.

B.

Theorem 2.5. Under Hy.,, and when n — 0o, we have
vnvec Ko £, 720 where Z(7) follows a Npq(8vec B, %PM ® Pa2),
V/n vec Sgq £, 20 yhere (@ follows a Npq(12vec B, P11 ® Py3).

Proof. From Theorem 2.3, the random vector y/n vec K2; has a limiting mul-
tivariate distribution with mean vector E[\/n vec K21] = 8 vec B and covari-
ance matrix %Pu ® P,y whose its elements are

agj,kl) _ 4COV(Ul(i,j),1’U1(k,l),1) _ %Q(i,k)g(j,l)'
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Using the expression for dF@/*) given by equation (2.7), we have
COV(U]F’LJ)J, Ul(k,l),l)
= E[Ul(i,j),lUl(k,l),l] _ E[Ul(i,j),l] E[Ul(k’l)’l]
= <//[l — 2F(i)(x(i))][1 _ 2F(k)(x(k))] dF(i’k))
X (/ [1 — 2F(J)(:E(~7))][1 _ 2F(l) (CL‘(l))] dF(j’l)>

/// [ — 250 (2O)][1 — 270 (@)1 — 2F®) (z(0))]
x [1 — 2FD(zW)wy; gy dz® dz@ dz® dz®

_ 8 ﬂ(i,j) kD

- 1Q(z K) 40D

////1‘”(” )1 = 270 (zD)][1 - 25®) (z0)]

— 2P O (g®)uy; 1 da® dz) dz® do®

— _ﬁ(w)lg(k,l)
n
1, .
= §Q(z,k) o) 4 o(n~1/?).
The result follows from Serfling (1980) (Lemma A, p. 20). In a similar way,
we have the limiting distribution of \/n vec Sg; from Theorem 2.2. O

3. Measures of association

We now apply the measures of multivariate relationship proposed by Es-
coufier (1973), Stewart and Love (1968) and Cramer and Nicewander (1979)
to the Kendall and Spearman matrices.

For the Escoufier’s measure (1973), we have

Ry — _ T(E12K) and RV©@ — _ t(S1251y)
V(K3 tr(K3,) tr(Sf;) tr(S5)
The Stewart and Love’s measure (1968) gives
S — tr(K12K3' K1) and  SL© — tr(31252‘215{2).
p p

Finally with the Cramer and Nicewander’s measure (1979), we have

tr(Kp; KiaKgy K1) and CN(g)ztr(Sﬁlslz‘S{zlS{z)'
P P

CN(™ =
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The corresponding measures at the level of the population are defined
by:

pRv(T) — tr(AIZAI12) and pRv(Q) _ t;I‘(-P12'P1/2)
tr(A%l) tr(A3,) tr(13121) tr(Ps5)
for the Escoufier’s measure,
pSL(T) — tr(A1pAgy Aly) and pSL(® — tr(P12 Py, Ply)
p p
for the Stewart and Love’s measure,
pCN(") = tr(Ay Ar2Azy A%) and pCN(©@ = tr(Piy' PraPay' Ppy)
p p

for the Cramer and Nicewander’s measure.

The main advantage of considering these transformed measures are that:
(a) the individual data may be ordinal variables, (b) the scale of measurement
for each variable may be different, (c) the classical hypotheses of multivariate
normality or ellipticity of the parent population may be omitted, (d) they
lead to a robust procedure against outliers. Moreover, the three measures
applied to Kendall’s matrix or Spearman’s matrix have the following prop-
erties:

(1) pM) = pM@ = 0 if and only if Py; = Ajp =0, for M = RV, SL and
CN.

(ii) when p = ¢ = 1, the three measures reduce to the square of Kendall’s

coefficient or to the square of Spearman’s coefficient between the vari-
ables X and X®.

(iii) 0 < pM®) < 1, for s = 7, p and M = RV, SL and CN. The sample
analogue of the measures, M (%) for s = 7, p and M = RV, SL and CN,
have the same properties.

For the proof of these properties and other results on measures of mul-
tivariate relationship, the reader is referred to Lazraq and Cléroux (1988).
The testing problem is now restated as Hy: pM®) = 0 versus pM©®) > 0, for
s=17, 0and M = RV, SL and CN.

In the following theorems we give the asymptotic distribution of our
statistics under the null hypothesis and under a sequence of alternatives. We
will show that they are represented as linear combinations of independent
central X2 and noncentral X2 random variables respectively.
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Theorem 3.1. Let K,, and S, be Kendall’s and Spearman’s matrices respec-
tively obtained from a sample of size n drawn from a m-dimensional random
vector with an arbitrary continuous c.d.f. F(x). Then, under Hy and when
n — 00, we have

(i) nRV(™ £

’L/“LJ z]?

O

P q
tr(All) Z -

z:lj 1

(ii) nRV(@ Z AipUZ,
\/ Pfl tr(Pg) < 1; Y

where the U;’s are iid N(0,1), i = 1,...,p; j = 1,...,q, random variables
and \; and p; are the eigenvalues of P11 and Pyy respectively.

P g
(iid) nSLO L L5732,
9 i=1 j=1
L 1
(iv) nSL® = ="\ Z2,,
P
where the Z2 ’s are iid Xz, i=1,...,p, random variables with q degrees of

freedom, X\;, i =1,...,p are the the eigenvalues of P;; and t( ), i=1,...,q,
are the eigenvalues of A22 Py

P g

v) nCN™ %, Z Z V1 PU2,
XZ

(vi) nCN@ £, ZPa
p

where tz(.l), i=1,...,p, are the eigenvalues of A1_11P11.

Proof. (i) Since K, converges in probability to A as n — oo, the submatrices
Ki1 and K99 converges in probability to Aj; and Agg respectively as n —
0o. Furthermore, under Hy, \/n vec K21 converges to Z (") with distribution
Npg(O, %Pu ® Ps2) Theorem 2.3. Since

ntr(Kqul) = (\/ﬁvec Kgl)'(\/ﬁvec K21) —£> Z(T)IZ(T),

we deduce using classical results on quadratic form (see Baldessari, 1967 or
Johnson and Kotz, 1970) that,
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where the Uj;’s are iid N(0,1), i = 1,...,p; j = 1,...,q, random variables
and \;, p; are the eigenvalues of P11, P»p respectively.
Noting that ntr(K12K2_21K21) = (v/nvec K21)'(I, ® Ko2) "1 (y/nvec Ka1),

we have
nSLM £, = Z Z At U
z—l j=1
where t( ) ,j=1,...,q, are the eigenvalues of A2’21P22. For the case nCN("),
we use

n tl‘(KﬂleKg—Qle) = (\/ﬁvec Kgl)/(Kll ® Kgg)_l(\/ﬁvec Kgl).
The proofs are analogous when Spearman’s matrix is used. O

Theorem 3.2. If the conditions of Theorem 3.1 are satisfied then under
Hi., and when n — oo, we have

(i) nRV(™) £

O i~

q
zﬂ z 1
Vitr (A%l) tr(A%,) ; ; e

where the Usj1’s are independent N'(8;5,1),i=1,...,p, j =1,...,q, random
variables;

1 P 4
(i) nRV© £, >SS AU,
V(P tr(Ps) (5 ’

i=1 j=1

where the Usj2’s are independent N (v 25%, 1),i=1,...,p,7=1,...,q, ran-
dom variables and X\;, pu; are the eigenvalues of P11, Py resp. corresponding
to the normalized eigenvectors a;, bj, 6% = 64 tr(B'b;b) P221BP11 a;a;) and

B is the matriz defined in Lemma 2 1

(i) nSL™ £, Z Z AtSD X263 ),

1—1] 1

where the Xf”( ij1)’s are independent chi-squared random variables with
one degree of freedom, with §2; ;1= tr(B’ pjp;PilBPﬁlaiag) as noncentrality
parameter and pj, j = 1,...,q, is the normalized eigenvector corresponding
to the eigenvalue t§~2) of Agy Pao;

: 2)
(iv) nSL® £, Z Ai X(q) (67),



Kendall and Spearman for Multivariate Data Sets 125

where the Xf(q)(52) s, ¢ = 1,...,p, random variables are independent chi-
squared random variables wzth q degrees of freedom and moncentrality pa-

rameter defined by 6% = 64 tr(B’P{zlAP_llaia")'

(v) nCN( Z Z t(l)t(2 U 3

21]1

where the U;;’s are independent N (Aj,1),i=1,...,p,j=1,...,q, random
variables with AZ; = 64 tr(B' pjpg.P{QlBPl‘lldidg) as noncentrality parameter
and dz, i =1,...,p, is the normalized eigenvector corresponding to the eigen-
value t ofA LPyy;
X2 (82
(vi) nCN®@ £, ﬂ_(_)’
p

where the Xﬁq random variable has qp degrees of freedom and noncentrality
parameter defined as 62 = tr(B' Py, BP').

The proof of this Theorem is analogous to Theorem 3.1, but a noncentral-
ity parameter is introduced in the asymptotic distribution of nRV(®), nSL(®)
and nCN(®).

4. Tests of independence of two vectors

The results of the preceding section can be used to construct asymptotic
tests of independence between two vectors. We will test for M = RV, SL
or CN and s = 7 or p, Hy: pM®) = 0, against pM©®) > 0 at level a by
rejecting Hy if nM(®) > M) where c(s M) is the 100(1 — a)th percentile
of the corresponding distribution given in Theorem 3.1. Under Hy.,, nM ()
converges in probability to pM®) for M = RV, SL, CN and s = 7, ¢ and
thus the asymptotic power of each of these six tests converges to 1 when
n — o0o. Thus, each test is consistent.

The limiting distributions given in Theorem 3.1 are not easy to deal
with and consequently, the percentiles will be computed by using Imhof’s
algorithm (Imhof, 1961). Moreover, in these distributions, P11, P2, A11 and
Ags are usually unknown, we thus use instead the estimators S11, So2, K11
and Ko. Since the estimators are consistent, the asymptotic distributions
remain unchanged.

Let us notice that the tests nM(™ (M = RV, SL and CN) based on the
matrix of Kendall depend on the tests M (@ based on the matrix of Spearman.
For example, the asymptotic distribution of nRV(") and nRV(@ use the same
eigenvalues resulting from the submatrices P;; and P»3 of Spearman’s matrix.
They are asymptotically equivalent, up to a multiplicative coefficient which
depends on Kendall matrix. In the case of total independence, this constant
is g 4 and this is already mentioned by several authors (see, for example, Hajek

and Sidék, 1967).
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Description of the procedure

Given a sample of size n, (X{l], X{Q])’, ey (X,[Ll], ,[12])’ where Xi[l]: px1and
X}Q]: gxlfori=1,...,n.

Step 1: Compute K11, Koz, K12, K21 and S11, S22, S12, Sar.
Step 2: Compute the required eigenvalues from the consistent estimators.
Step 3: Compute nM®) for M =RV, SL, CN and s = 7, p.

Step 4: For each distribution given by Theorem 3.1, obtain the 100(1 — a)th
percentile, cEf’M), for M = RV, SL, CN and s = 7, g, by using the

Imhof (1961) algorithm.

Step 5: Reject Hy at level a if pM® > &™) for M = RV, SL, CN and
s=T, 0.

Example. The six tests are illustrated with sport data. The data consist of
the 1984 Olympic track records of 55 nations for women as well as men (see
Naik and Khattree, 1996). The data matrix for women is a 55 x 7 matrix
with seven events represented: the 100 meters, 200 meters, 400 meters, 800
meters, 1500 meters, 3000 meters and marathon (which is 42195 meters).
For the men the corresponding matrix is of order 55 x 8 differing from the
women’s events in that the 3000 meters was excluded but 5000 meters and
10000 meters were included.

As noted by Naik and Khattree (1996), to test athletic performances of
women and men, the appropriate variable that may be more relevant in this
context is the speed, defined as the “distance covered per unit of time.” This
variable succeeds in retaining the possibility of having different degrees of
variability. We will therefore use the speed in the track events as the variable
for the tests of independence between women and men performances. These
two data sets are presented in Tables 1 and 2 of Naik and Khattree (1996).

First, we test the hypothesis Hy of independence between X 1) and X
where X is the vector formed by women performances and X[ is the
vector formed by men performances. We have n = 55, p = 7 and q¢ = 8.
Table 1 gives the value of the statistic, the 5% critical value and the observed
critical value. Therefore, Hy is strongly rejected.

5. Simulation study

In order to assess the behavior of the tests based on Kendall’s matrix, a
Monte-Carlo study is performed to compare its empirical level and its em-
pirical power with those of the three competitors based on Spearman’s matrix
(see Cléroux, Lazraq and Lepage, 1995).
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Table 1. Tests of independence between women and men performances, the value of the
statistic, the 5% critical value and the observed critical value.

| Matrix | Statistic || Value | Critical point Cp g5 | Critical level |

nRV©@ || 44.88 4.33 1.19 x 10~7
Spearman | nSL'@ || 42.14 14.32 1.19 x 107
nCN®@ [ 17.18 10.63 1.25 x 10~6

nRV(™ || 37.16 2.77 0
Kendall | nSL™ || 28.67 3.95 1.19 x 1077
nCN(™ 8.21 1.57 1.19 x 10~7

All the simulation programs were written in FORTRAN programming
language. For ease of comparison, the study is restricted to the case p = 2,
g = 3 and the nominal level 1%. The number of repetitions at each setting
is 10 000. Two types of underlying distributions are imposed. In the fam-
ily of elliptic distributions, we consider a multivariate distribution N5(O, X)
and an elliptic multivariate t5. In the family of nonelliptic distributions, we
consider a multivariate logistic U (see Johnson, 1987) and a general multi-
variate distribution constructed as follows: each component of the vector X
is independently generated from the other, the first is N1(O,1), the second
is uniform on [0, 1] minus 0.5 and multiplied by /12, the third is an expo-
nential distribution (with parameter 1) minus 1, the fourth is a beta (with
parameters 2 and 2) minus 0.5 and multiplied by v/20 and finally the fifth is
a gamma distribution (with parameters 1 and 4) minus 4 and divided by 2.

Under Hy, we generate two independent random vectors X (] and X,
For the alternative hypothesis, we consider the linear transformation ¥ =
CX where C is such that ¥ = CC’. The matrices considered here are

Yiu=1I, Yp=I5 X2=23% = C,Ci, Cis and Co

where the matrices Cy, represent 2 x 3 matrices with all elements being
the real number 0.zy; for example, all elements of Ci5 are equal to 0.15.
This type of matrices was used and justified by Cléroux, Lazraq and Lepage
(1995).

Table 2 summarizes the simulation results for the five distributions. In
order to judge the empirical level of the asymptotic tests and their empirical
power, an empirical level will be good if the nominal level 1% belongs to the
95% confidence interval. So that, for 10 000 repetitions, Cgy column must
vary between 79 and 121.

The first observation is that for Kendall’s tests and Spearman’s tests,
the empirical power of each test increases with departure from the null
hypothesis that is when the value zy of the matrices Cy, increases. The
empirical levels of nM (@ are in general slightly conservative while that of
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Table 2: Empirical power (x10000) of the tests based on Spearman’s matrix and Kendall’s matrix at nominal level 1%
for the multivariate distributions with p =2 and ¢ = 3.

~Multivariate normal

Multivariate

Logistic

[ n ]| matrices [[ Tests

Coo[ Cio [Ci5 1 Cao

ts5
Cool[ Cio [ Ci5 | Cx

Cool Cio [ Ci5 [ Coo

Coo] Cig 1 Ci5 | Coo

nRV(@ |[ 01 | 530 [1395] 2596 || 91 | 627 | 1691] 3050 || 96 | 440 [1066[ 1995 || 91 [2432]5738] 8254

Spearman || nSL(@ || 82 | 543 1587 3603 || 98 | 621 |1913| 4056 || 90 | 455 |1326| 3007 || 105 | 1334|3729 6672

50 nCN® || 89 | 504 |1424| 3137 || 96 | 568 | 1650 | 3521 || 88 | 430 |1187] 2584 || 115| 846 |2520| 5119
nRV) [[109] 589 | 1489 | 2743 || 114] 697 | 1842 3231 || 116 | 494 [1162| 2139 || 104 [ 2561 5903 | 8367

Kendall || nSL(™ || 107 | 590 |1647| 3415 | 119| 713 |2031| 3947 || 115 | 527 |1358| 2801 || 120{2111 5146 | 7800
nON™ || 109 554 | 1552 3187 || 121] 693 [1913| 3704 || 117] 506 | 1288 | 2588 || 1211908 |4803 | 7476

nRV@ || 92 [1453]4120] 6994 || 88 [1799]4802] 7428 [[100[1168]3325[ 5710 [[ 108[5564]9151] 9931

Spearman || nSL(@ || 100| 1534|4745 | 8232 || 100 [ 1877|5465 | 8539 || 103 | 1299|4049 | 7405 || 99 | 3673|8090 | 9751

100 nCN®@ || 04 |1467]4459| 7931 || 97 | 1766|5151 | 8210 || 97 | 1241|3768 | 7062 || 100 | 2578 | 6857 | 9384
nRV) || 98 [1513]4195] 7065 || 97 | 18994934 | 7541 || 107 [ 1235|3387 5802 || 106 | 5632|9185 | 9939

Kendall || nSL(™ || 104 |1573]4629| 7950 || 111]1964|5426 | 8315 || 105 | 1303|3899 | 6991 || 112 | 4895|8826 | 9879
nON™ || 105 1534 4490| 7746 || 108 | 1888 | 5216 | 8127 || 106 | 1281|3739 | 6752 || 108 | 4488|8561 | 9830

nRV@ |[ 94 [4086[8530] 9845 |[ 10348068973 9892 [[ 10234927746 9616 || 100 [9042]9986 | 10000

Spearman || nSL(@ || 98 [4333 (8964 | 9956 || 107 [5076 [9343| 9969 || 100 (3758|8476 | 9905 || 105 (7880|9940 | 9999

200 nCN®@ || 100 | 4212|8889 | 9949 || 102 | 4931|9229 | 9965 || 106 | 3657 |8317| 9892 || 101 | 6719|9816 | 9999
nRV) |[103 41188549 9848 || 113 4905|8974 | 9903 |[103[3539|7795] 9635 || 104 9056 | 9986 | 10000

Kendall || nSL(™ || 104 |4301|8871| 9939 || 107 [5089|9270 | 9964 || 104 |3735|8300| 9860 || 100 | 8651 | 9975 | 99999
nCN(™ || 102 | 4232|8809 | 9935 || 112{5004|9213| 9955 || 103 |3681|8219| 9849 || 111 8353|9963 | 9999

nRV(® [[ 10366799785 | 9996 ][ 107 [7436]9910[10000]] 98 [5961[9565] 9990 [ 110]9859]9999 [ 10000

Spearman || nSL( || 115 {6939 |9874 | 9997 || 1037698 | 9945 | 9998 || 99 | 6350|9793 | 9994 || 101 |9489 [9999 | 10000

300 nCN®@ || 115 | 6837|9862 | 10000 || 97 | 7604|9946 | 10000 || 98 |6250|9762|10000]| 91 | 8954|9996 | 10000
nRV) |[101 [6704]9785] 9996 || 108 [ 7488|9909 [ 10000 || 1026015 | 9568 | 9991 || 110 | 9864 | 9999 | 10000

Kendall || nSL(™ ([110(6897|9844| 9999 || 106 | 7666|9945 | 10000 || 101 6280|9746 | 10000 || 108 | 9736|9999 | 10000
nCN(™ || 115 | 6841|9840 | 9999 || 105 | 7603|9942 | 10000 || 101 | 6210|9719 | 10000 || 103 | 9635 | 9999 | 10000
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nM() (M = RV, SL or CN) are liberal. The tests nM(® have an empir-
ical power slightly inferior to nM(™) (M = RV, SL or CN). In each class
of tests (Kendall or Spearman), we notice that the empirical power of the
tests nSL() (s = 7 or p) is greater than the empirical power of the other
tests, but when the underlying distribution is logistic, the empirical power
of nRV® (s = 7 or p) is greater than the two others. In conclusion, the
empirical power of each test, in a given class, depends on the underlying
distribution. Nevertheless, one notices that the tests of Kendall’s class are
empirically more powerful than the tests of Spearman’s class especially for
small sample sizes and in the vicinity of the null hypothesis Cyg.
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