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We investigate the asymptotic properties of order statistics in the immediate vicinity of
the maximum of a sample. The usual domain of attraction condition for the maximum
needs to be replaced by a continuity condition. We illustrate the potential of the approach
by a number of examples.
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1 Introduction

Let X\,X2,..^Xn be a sample from X with distribution F. For conve-
nience, we assume that F(x) = P(X < x) is ultimately continuous for large
values of x. We denote the order statistics of the sample by

χt<χ*2<...<χ*n.

Under the (extremal domain of) attraction condition, we mean the condition
on F inducing the convergence in distribution of the normalized maximum
(X* — bn)/an to a non-degenerate limit law. Here an are positive constants
while the constants &n, (n = 1,2,...) are real. The attraction condition can
be given in terms of the tail quantile function U(y) := inf{x : F(x) > 1 — | }
as shown by de Haan [10]. F belongs to an extremal domain of attraction
if and only if there exists an ultimately positive auxiliary function g and a
real extremal index 7 such that for all y > 0 the condition

m r U(xy)-U{x) Λ 7 - i . . , x
(1) hm — — = / wΊ dw =: hJy)

holds. In particular, ho(y) — logy. The constants can then be taken as
bn = U(ή) and an = g(n) while the one-parameter family of possible limit
laws is given by the (class of) extreme value distributions

GΊ(x) : = e x p -
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If the tail quant ile function U of F satisfies (1), we will write F G CΊ(g). Note
that the function g can be taken to be continuous. Furthermore g satisfies
the regular variation property for u > 0

g{χu) ΛΠ

when x t oo. If 7 > 0, then g(x)/U(x) -> 7; if 7 < 0, U(x) t x+, the
right-end point of F, and g(x)/(x+ - U{x)) -» - 7 .

In what follows we are interested in order statistics X*_£+1 that are
very close to the maximum. To be more precise, we assume that n and t
tend to 00 but that ί/n —> 0. We search for a centering sequence {bn} of
real numbers and a normalizing sequence {αn} of positive reals for which
α~x(X*_^+1 — bn) converges in distribution. The solution to this kind of
problem depends on the type of condition one would like to impose. One
could for example quantify the dependence of i on n explicitly, imposing
some strong regularity conditions on ί. Non-normal laws are then possible as
shown by Chibisov [5] and more recently by Cheng, de Haan and Huang [4].
Alternatively, conditions can be imposed on the underlying distribution F or
on its tail-quant ile function U. This approach has been followed by Mason
and van Zwet [14] and more particularly by Falk in [6,7]. For a comprehensive
treatment, see the books by Reiss [15] and Leadbetter, Lindgren and Rootzen
[12].

In this paper we offer a sufficient but unifying condition to arrive at
asymptotic normality of the intermediate order statistics close to the max-
imum. We also illustrate the potential of the condition with a variety of
different examples. After developing a rationale for its introduction in the
next section, the condition is described and illustrated in section 3. The
remaining sections contain applications to one and two order statistics.

2 Rationale for the condition

We outline two approaches. The first is based on the Helly-Bray theorem

[11] while the second proceeds along a transformation.

2.1 Helly-Bray approach

Take m to be any real-valued bounded and continuous function on 5R. We

investigate the limiting behaviour of En := E {m (α~ι(X^_i+1 - bn))} By

a classical combinatorial argument one writes

Note that the two exponents in the integrand are tending to oo. So we need
to rewrite the integrand in such a way that both factors can be handled
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simultaneously. To achieve that, we follow a procedure suggested by Smirnov

[16]. Substitute 1 - F(x) = q + pυ where the sequences q = q(£,n) and

p = p{£,n) will be determined soon. Here and in the sequel, we write

q = 1 — q. Then an easy calculation yields

where we used the abbreviation

τn(w):=

for convenience. The form of the integrand suggests to take q = q{l, n) — £
and p2 = p2(ί, n) = qq n~ι. We now follow the same approach as in [16,18].
Subdivide the integration in En over the three intervals (—|, —T) , [—T,Γ]

and (T, | ) where T is a fixed quantity. It is then easy to show that with the

notations above, the central part can be controlled by the condition

(A): rn(v) := — s ^ — - -> τ(υ) uniformly on bounded ^-intervals.

By taking T large enough, the two remaining pieces ultimately vanish since
min(|, | ) -> oo . This then leads to the following result.

Lemma 2.1 Under condition (A)

(2) E (m (Xn-^ι-bΛ \ _, 1

In the subsequent applications of the lemma we have the freedom of
choosing the constants an and bn in such a way that condition (A) is satisfied.
The choice of bn is usually automatic. If we put v = 0 in (A), then it is almost
obvious that we should take bn = U(q~1) — U(n/ί). Then, the choice of an

has to be made by requiring the convergence of

for \v\ <T and T any positive constant. The choice of an will of course be
determined by the limiting behaviour of the ratio ίjn.

Trying to understand the kind of condition needed on 17, let us look at
the quantity q + pv which, by the choice of q and p, satisfies the relation

q + pv
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when I, n —> oo. Introduce this approximation in (3) to obtain

Let us compare this condition with the extremal condition (1). We then
clearly can take x = n/ί which tends to oo by our assumptions. However,
the fixed quantity y in (1) has to be replaced in (4) by a quantity that tends
to 1 together with x. The resulting condition is discussed in the next section.

Apart from the case where ί —>• oo, ίjn -» 0, there are at least two other
situations.

(i) First, ί could be taken fixed. Then results for fixed i can be obtained if
and only the same result can be found for £ = 1. The extremal domain
of attraction will play a predominant role. See for example [3,9,12,15].

(ii) If ί —> oo but ^ -> λ E (0,1). Condition (4) can then be replaced by

The latter condition is a differentiability condition of U in a neighbour-
hood of j and is classical in the theory of order statistics [7,15,17].

The condition that we need should be intermediate between conditions

(1) and (5).

2.2 Transformation approach

Assume that Z has a standard exponential distribution and let Z* < Z% <
. . . < Z* be the order statistics of a sample of size n from Z. It is well known
that for this specific distribution

when ί -> oo and n — £ —> oo. See for example [15, p. 108] where the result is

given for the equivalent case of uniform random variables. In order to trans-

fer this asymptotic normality to a more general situation, we can identify X

with U(ez) := φ(Z). This transfer function φ should then be approximately

linear on intervals of size of order ί~ιl2 around log(n/£). More explicitly, we

need a condition of the form

φ(x + tδ{x))-φ{x)
(6) wwd >*
when δ(x) -> 0 for x ->• oo. We will transform (6) into a condition on U.
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3 The class C*

Motivated by the arguments above, we now introduce our working condition.

Definition 3.1 Assume that the tail quantile function U is uniformly dif-
ferentiable at oo with ultimately positive derivative u. The distribution F
belongs to C* iff for ally eft

U(x + yxe(x))-U(x)
( 7 ) >y

whenever e(x) —»> 0 when x t oo.

We first show how this condition emerges from the two approaches above.

(i) Prom the Helly-Bray approach. Take the definition of CΊ(g) and replace
y by 1 + ye(x) in (1). Then approximately

U{x + yxe{x)) - U{x) (1 + ye{x))^ - 1

e(x)g(x) ηe(x)

Expanding and taking limits on the right hand side yields y. Note that
the quantity 7 disappeared from the expression.

(ii) Prom the transformation approach. Replace φ{x) by U(ex) in (6), then
(7) emerges naturally.

Before embarking on the applicability of condition (7), we make a number
of remarks.

Remark 3.1 a. Note first that (7) is satisfied if \og(xu(x)) is uniformly
continuous on a neighbourhood of 00. Alternatively, xuf(x)/u(x) is bounded
on such a neighbourhood. The latter condition is satisfied if the distribution
F has a density that satisfies a Von Mises condition xu'(x)/u(x) —> c G K. As
such, (7) slightly generalizes the conditions given by Falk [6]. Alternatively,
look in [15, p.164].

Remark 3.2 b. The condition for C* is equivalently transformed into a
condition in terms of F itself. For such comparisons in general, see [3,9].

Proposition 3.1 Assume that F has an ultimately positive density f. Then
FeC* ifffor ally eft

δ(x)

whenever δ(x) ~> 0 for x
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Proof Choose g(v) = vu(v) and write —yx for the expression on the left.
Then

1-F(x

Put x = U{υ) and yx = y'υ. Then

= (1- - yxδ(x)).

Now, define e(υ) by the equation 1 + ye(v) := {1 - ^
that u and / are linked by the equality υu(υ) = (^

Pfo + yvejv)) - U(v) _ δ(U(v))
e(v)vu(v) ~y e(v)

As all steps can be reversed, also the converse holds.

)}" 1 and note
. Then

Remark 3.3 c. A useful implication of the condition F E C* is given in
the next result.

Lemma 3.1 Let xn -> oo; yn ->- y and rn φ 0, a sequence tending to 0. If
F e C* then for n -> oo,

ynrn))-U(xn)(8)
xn u(xn)

y

Proof First assume that the sequence {yn} is constant and equal to y.
Suppose now on the contrary that (8) does not hold. Then there exists a
subsequence {xn} and a positive δ for which xn+1 > xn + 1 and

!Li7—v ~ y > δ
rn xn u{xn)

for all n. Define e(x) = rn when xn < x < xn+ι and e(x) = 0 when x < x\.
As τn -> 0 and xn+ι > %n + 1? e(.) is well defined and e(x) —> 0 as x -> oo.
Nevertheless

U(χm(l 4- ly^frr-r,)^ — U(x»)
>e(xn) xn u(xn)

for all n, leading to a contradiction with the definition of C*. The sequence
of increasing functions

( _
In[y)' rnxnu(xn)

converges pointwise to the function f(y) := y. But then the convergence is
uniform as follows from Polya's extension of Dini's theorem [13]. Hence the
result follows. •
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Remark 3.4 d. All of the results in the next sections can also be derived
by following a transformation approach. To avoid duplication we only deal
with the Helly-Bray procedure.

Remark 3.5 e. A link between the conditions (1) and (7) is given by the
relation g(x) = xu{x) which has already been used in b. above. In what
follows both functions g and u will be used repeatedly.

4 One large order statistic

We illustrate the above concept first in the easiest possible situation, i.e.
that of one order statistic close to the maximum. Recall a well-known weak
law under the condition F E CΊ(g). For then

0 = T(V).

But then by lemma 1, g~1(n/£)(Xn_i+ι - U{n/£)) 4 0. Note that in the

case 7 > 0 we can go one step further. Since ^ y -¥ η~λ, we also have

g~ι{n/£) X*_i+1 4 7" 1 . When 7 < 0, we find similarly that g-1{n/£){x+ -

χu+ι) $ -7-1.
A key point for introducing the class C* is illustrated in the following re-

sult, which specifies the speed of convergence in the above weak law. Because
of its basic importance, we formulate the result in the form of a theorem.

Theorem 4.1 Let F eC*. If t,n -> oo such that £ -> 0, then

nu(n/i)

Proof Look anew at τn(v) above. Then with x = nfi and e{x) = £~2
the condition F eC* shows that τn(v) -> — υ. By the symmetry of a normal
random variable the result follows. •

The above result is precisely of the form deduced by Falk [6] under the
traditional Von Mises conditions. See also Reiss [15]. We can expect that
the speed of convergence in the above result might be very slow. For fixed ί
the limit law for n —> oo is linked to the classical extreme value distribution
while for ί —>- oo and £/n 4 θ w e get a very different distribution in the
normal law.
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5 Two large order statistics

We turn to the case of X*_s_t+1 and X^-s+i where s and t are two integers
both converging to infinity. Prom lemma 1 we know that we have to use a
specific normalisation inspired by a reduction of the kernel of the integrand
to a bivariate normal density.

5.1 General approach

As in section 2.1 we start from the expression for the joint expectation. Then
with

En := E < m ί —^=^

it is easy to show that

(9) En = cyLt α8^t"1{l-α)n-8-t bs-λ(l -b)t'1mn{α,b) db dα
Jo Jo

where in general

(n) Tl\

αn <

and where

mn(α, b) := m

keeps all the references to the original distribution.
We make the change of variables α = q+pu and b = qf + p'υ where qι

and p1 are determined as before. We easily find the identifications

s + t , s 2 g(l - q) / 2 q'{l-q')

With these choices the remaining steps are easy when deriving possible

asymptotic distributions. We can formulate an auxiliary result which is

of the same form as lemma 1. Actually, the proof is a bivariate version of

that of lemma 1.

Lemma 5.1 Assume n,s, ί —> oo and let m be continuous and bounded on

5R2 If, with the above choices of q, p, q' andp',

τn(u) := — {U((q +pu)~ι) - bn) -> r(u)
tin

and

σn(u,υ) := — {U({q+ pu)~ι{qf +pfv)~ι) -b'n) -> σ{u,v)
<*ή
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for appropriate constants an, bn, a'n and b'n, and uniformly on bounded u and

υ intervals, then

— Γ
2τr J_oo y .

<
Γ e-^u2

e-^u2+υ^m(τ{u),σ(u,v)) dv du.

We apply the lemma under the condition that F E C*. We assume from the

outset that ^ -* 0. To deal with τn(u), compare with (4). Take bn = U{^-t)

and an = g(^ι)/Vs + t; then apply lemma 2 with the choice xn = ^i,rn =

(5 +1)~1/2 and yn = — u + o(l). It then easily follows that τn(u) -> — u. For

σn(u, υ), the situation is more complicated. The argument of U equals

{q+pu)(qf +p'υ)

n / u . 1 Λs+t
= I 1 + o( ) ) x

1 * _L ' *
1 - 4 / , . .,« + 0β(β + t) VV Φ + <)

n u t 1

It therefore seems natural to assume that while s, t —> oo, their ratio | —>• 0 E
[0, oo). With this choice, we can apply lemma 2. Take b'n = U(n/s), xn =
n/s, rn = 5"1/2, a'n = g(n/s)/>/s and yn = —(u + \/0ϋ)(l + Θ)~ιl2 + o(l).
We then easily find that σ(w, v) = — (u + v/0/^)(l + Θ)~ιl2. Introducing all of
this and g(v) = t;?i(?;) in the expression En we arrive at the following result.

Theorem 5.1 Assume F E C*. Assume n,s,t —• oo, s/n -> 0 and t/s —>
θ E [0,oo). Then

where (V, W) Λas a bivariate normal distribution with zero means, unit vari-

ances and correlation coefficient pv,w — \l JTΘ-

5.2 Spacings

We put m(a, b) = k(b — a) for some continuous and bounded k in the general
formula (10). Further, we define the general t — spacing by

rp{t) γ* _ y*
±ns •— ^n-s+1 ^n-s-t+l
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We get the following expression for the normalized expectation

τ-s-t

/"
JO

d b d α .

We assume as before that s -» oo such that s/n ->• 0 but that £ remains fixed.
The appropriate substitutions are now α = q + pu with q = s/n,p2 = sn~2

and b = l—(v/s). With these choices we need the convergence for appropriate
αn of

so as to have that

2 /

The natural choice for the convergence of rn(w, v) is of course that F G £*(<?)•
For then the norming constant αn = ~g(^) while rn — s~ι. With this choice,
τ(u,υ) = v and we obtain the following result

Theorem 5.2 Assume F E C*. Assume n,5 t °°; β/n -> 0 and ί yixed.
TΛen

S (Xn-s+l - Xn-s-t+l) V „

Ml) yZ

where Z has the gamma density fz(v) = (t\\\e~vvt~l

6 Symmetric distributions

To show the flexibility of the condition F E C*, we give an unusual applica-
tion to possible centering and dispersion measures for symmetric distribu-
tions.

6.1 Preparation

Symmetric distributions have always been of great importance in statistics.
It is not surprising that a number of theoretical results can be derived for this
specific situation. In this section we deal with some of them as adaptations
of results derived by Gumbel [8]. We assume that we are dealing with a
symmetric distribution for which F(-x) = 1-F(x) for all x or equivalently
for which the tail quantile function satisfies U(v) = -U(^) for v > 1.
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From the general formula (10), one easily sees that for continuous and

bounded m

E {m(X;, X:_r+1)} = cS+ 1_Γ f β " ( l - a)"1

Jo

(10) x / br-\l - b)n-2rrn(U{-), U(\)) db da.
Jo & &U

In the formula n and r are the remaining indexes.
Under the extremal domain of attraction condition (1), the case where

r is fixed can be treated as in [8] where r = 1 had been taken. If we now
allow r to go to oo with n but such that £ —> 0, then we get a new situation.
Prom the above formula we derive that for any continuous and bounded fc,

Ek\±(m(X;,X*n_Γ+ι)-bn)\

Jo
Both integrands have to be treated. So, put a = q + pu and b = q' + p'υ.
Then it easily follows that q = q' = r/n and p 2 = p'2 = rn~2. With the usual
calculations and since U{\) = —U(^z^) we arrive at a function τn(u,v) as
before.

Lemma 6.1 Let F € C* be symmetric. Assume n,r -> oo and /eί fc 6e
continuous and bounded on 3?2. //, wiίΛ ί/ie choices q = q' = r/n and
P2 =pa = rn~2, τn(u,υ)τn(u,v) :=

(11) Lfm(-U(-1—),U(-, i-i ΓT)^ -6nl->τ(u,t;)

/or bounded u and v, with bn and an centering and normalising constants,
then

where for bounded and continuous k

E(k(Y)) = i - Γ Γ k{τ{u,v)) e-h^+v2) dv du.
2π J_OOJ_OO

We give two examples of the above result. We could prove the asymptotic
independence of the two composing order statistics first and deduce the
results by a continuous mapping argument. We use a direct approach that
again shows the use of condition (7).
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6.2 The pen-ultimate extremal quotient

The pen-ultimate extremal quotient is defined for symmetric distributions by
the expression Qn := X*_ r + 1/(—X*). Actually, one should take the absolute
value, but since the largest order statistics will tend to x+ a.s., we omit the
absolute value sign. The concept of extremal quotient has been studied for
the case r = 1 in [8]. For general r the formula for the expectation is easily
obtained by the choice ra(α, 6) — —b/a in (10) and (11). We prove the
following.

Theorem 6.1 Assume that F is symmetric, continuous and belongs to C*.
If r/n -> 0, then

~3

Proof We need to determine the constants and the resulting limit. Clearly,

bn = 1 in lemma 4. We then turn to the quantity an. Here

U {lϊ+pu)(q>+p<v)) ~ U
 ( F P U J g{X) U(xnZn) - U(xn)

\q-pu

where
n f u 1

[l + +θ(-=)
Jr

Xn = = [ l + = + θ ( =
q — pu r \ \Jr \Jr

and
_ q-pu u + υ , 1 ,

(q+pu)(qf +pfv) y/r y/r

As the latter is of the form zn = 1 + rnyn with rn = \ and yn = -(u +

v) + o(l), we can apply lemma 2 to the major portion of the expression for

τn{u,υ). Choosing an = yjl^β) w e s e e t h at

τn{u,v) -> τ(u,v) = —

By lemma 4, we then get that

where

E(k(Y)) = ±- Γ Γ k{-U-±^) e-W+«2) dv du

fc(α ) e 2 dz
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and hence Y follows a Λf(O,1) distribution. •

A similar result can be derived for the pen-ultimate midrange which is

defined by the quantity ^(X*_ r + 1 + X*)-

6.3 The pen-ultimate geometric mean

This quantity is also introduced by Gumbel [8] for the case r = 1 as the

geometric mean of the two opposite r—th largest order statistics. Put

m(a, b) — yj—ab in (10) and (11). As most of the results follow from previous

arguments, we omit the details.

Theorem 6.2 Assume that F is symmetric, continuous and belongs to C*.

Then if r —> oc and r/n -» 0, then
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