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The method of Yakir and Pollak (1998) is applied heuristically to a stochastic recursion
studied by Goldie (1991). An alternative derivation of the Goldie's tail approximation
with a new representation for the constant and some related results are derived.

AMS subject classifications: 60H25, 62L10.
Keywords and phrases: ARCH process, change-point, tail approximation.

1 Introduction

The stochastic recursion

(1.1) Rn = Qn + MnRn-U

has been studied by a number of authors. See, for example, Kesten (1973)
and Goldie (1991), who obtained an expression for the tail behavior of the
stationary distribution of (1.1), and de Haan, Resnick, Rootzen and de
Vries (1989), who as an application of Kesten's result obtained inter alia
the asymptotic distribution of max(i?i, , i ϊ m ) . In these studies it is as-
sumed that ( M I , Q I ) , ( M 2 , Q 2 ) J

 a r e independent, identically distributed
and satisfy

(1.2) P{Mn >0} = l, £( logM n )<0, P{Mn > 1} > 0

along with other technical conditions. One motive for studying (1.1) is
to obtain information about the ARCH(l) process, which has been pro-
posed as a model for financial time series. It is defined by the recur-
sion Xn = {μ + λX^_1}

1/2en, where ei,€2, are independent standard
normal random variables. The process X% is a special case of (1.1) with
Qn = μe2, Mn = λe^. See Embrechts, Klύppelberg and Mikosch (1997)
for an excellent introduction to these and related ideas, and their applica-
tions. The special case of (1.1) having Qn = 1 and E{Mn) = 1 has also been
studied in numerous papers involving change-point detection, e.g., Shiryayev
(1963), Pollak (1985, 1987).
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The process Rn defined by (1.1) behaves similarly to the solution of the

recursion

(1.3) log(iO = pogίΛn-i) + log(Mn)]] +

which plays an important role in queueing theory and in change-point de-
tection. The purpose of this note is to indicate the potential of a method
motivated by change-point analysis (Yakir and Pollak, 1998; Siegmund and
Yakir, 1999a, 1999b) and applied to processes similar to (1.3) to give in-
sight into the results of Goldie and of de Haan, et al. The calculations are
heuristic; rigorous justification appears to be a substantial undertaking. A
by-product of this approach is a different and possibly more satisfactory
expression for the constant C in equation (2.2) below (cf. (3.6)).

2 The Kesten/Goldie approximation

Let R denote the stationary solution of (1.1). For precise conditions under
which this solution exists, see Vervaat (1979). Under the conditions (1.2),
if Mn has (positive) moments of all orders there will by convexity exist a
unique θ > 0 such that

(2.1) E{M*) = 1.

We assume that such a θ exists and that I = ΘE[M% log(Mn)] is well defined
and finite. The parameter I is the Kullback-Leibler information for testing
the original distribution of Yn = log(Mn) against the alternative having
relative density exp(0Yn) = Mθ

n (cf. (2.1)). Kesten (1973) and Goldie (1991)
showed that

(2.2) P{R > x} ~ Cx~θ.

Although Kesten considered the more general case of a vector recursion, he
did not characterize C. In the case of integer θ Goldie gave the constant
C explicitly in terms of mixed integer moments of (Mn, Qn). In general he
characterized C in terms of the distribution of R itself. This characterization
does not appear to be useful for evaluating C in the case of non-integral θ.

Building on earlier research of Cramer, Wald and others, Feller (1972)
showed how a number of results in queueing and insurance risk theory could
be elegantly derived by an application of the renewal theorem to an "asso-
ciated" distribution. Kesten's and Goldie's methods of proof involve clever
extensions of this idea along with substantial analysis. Goldie's associated
distribution will appear in the calculation given below; but the motivation
behind it is entirely different, and the renewal theorem has been replaced by
a simple local limit theorem.
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3 Alternative, heuristic derivation of (2.2)

Let P denote the measure of Sections 1 and 2. Let Sj = Σ{Yi and for j < n,

put l^n = θ(Sn - Sj). Finally let the probability measure P^n be defined by

(3.1) dPj,n/dP = exp(ίJ9n).

The change-point interpretation mentioned above is that under P^n the ran-
dom variables Yi, , Yn are independent and have distribution in an expo-
nential family with natural parameter ξ = 0 for i = 1, ,j and ξ — θ for
t = j + l,. -,n.

To simplify the notation when there is no risk of confusion, I drop the
subscript n and write more concisely ίj and Pj. It will also be convenient to
let Pj denote the extended measure under which the Yi are independent for
all — oo < i < oc and have distribution with parameter ξ = 0 for i < j and
ξ = θ for i > j.

Putting R-ι = 0, one obtains from the recursion (1.1) that

(3.2) Rn = Σ%Qjexp(Sn-Sj).

If RQ = <3o has the stationary distribution of i?, then Rn also has this
stationary distribution. Let α = 01og(:r). Prom (3.1) and (3.2) follows the
identity
(3.3)

£ £ e α] = Σ ^ l / Σ ^ logtO > α].

Here the summation nominally extends over all i and j less than or equal
to n. A rigorous proof would require showing that it suffices to sum over
smaller subsets of these indices. For the moment it suffices to consider i and
j such that n — j and n — i belong to the interval [α/I — eα, α/I + eα] for a
suitable small positive e; additional restrictions will be introduced below.

By straightforward algebra the term indexed by j on the right hand side
of (3.3) can be rewritten as

(3.4) e ^ [

exp{-[ίj - α + θlog(ΣiQiexp(Sj - Si)}}; [•••]> 0},

where [ •] > 0 indicates that the expectation is taken over the event where
the immediately preceding bracketed quantity is positive.

Under Pj the random walks Sj - Si have negative drift both for i >
j and for i < j. (This is clear without calculation from the change-point
interpretation, since this sum is proportional to the log likelihood ratio for
testing that the change-point is at j against the alternative that it is at z; and
j is the true change-point under Pj.) Hence with overwhelming probability
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the exponential of these sums is close to 0 unless i is close to j , say \i — j \ <
clog(α). Also, ίj = θ(Sn — Sj) is the sum of approximately α/I terms; and
α is assumed to be large. This means that the expressions involving Sj — Si
and that involving ίj are asymptotically independent, so (3.4)

<3 5 ) ~ ' - ^

For j in the critical interval satisfying n — j £ [α/I — eα, α/I + eα], under the

assumption that the Pj-distribution of Yj+ι is sufficiently smooth for a local

central limit theorem to apply, the second expectation in (3.5) is asymptotic

to

φ[[α - (n - j)I)/σ(n - j)ιl2]/σ{n - jfl\

where φ denotes the standard normal density and σ2 = θ2Vaij(Yj+ι). The
first expectation in (3.5) is easily seen to be asymptotically independent of
j , so the sum over j in (3.3) involves only the second expectation and can
be evaluated approximately to obtain

In the asymptotic (large α) limit the index i, which was previously con-
strained to satisfy \i — j \ < clogα, now extends over all integers, and Pj
now denotes the probability under which the independent random variables
Yi have distribution with parameter ξ = 0 for — oo < i < j and parameter
ξ = θ for i > j .

This is Goldie's approximation (2.2) with a new representation for the
constant C. Unlike Goldie's form of this constant, which involves the distri-
bution of i?, the form given in (3.6) involves only the distribution of (Mi, Qi),
albeit in a complicated way. Evaluation of this constant is considered in the
following section.

4 Evaluation of the expectation in (3.6)

In general the expectation in (3.6) seems difficult to evaluate explicitly. How-
ever, the form given is quite suitable for simulation, unlike the expression
given by Goldie (1991), which involves the distribution of R itself. See Yakir
and Pollak (1998) for a related numerical example. For the special case of
integral θ Goldie gives an explicit evaluation. The expectation in (3.6) can
be rewritten and then shown to equal Goldie's expression, although the de-
tails are messy when θ is large. The first part of this calculation comes from
Siegmund and Yakir (1999a) and does not require that θ be an integer.

Let m be an arbitrary positive integer. The expectation in (3.6) can
be expressed as the limit as m —> oo of the same expression with the range
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of i restricted to l, ,ra and j any integer which satisfies j -> oo and
m — j —> oo. Hence this expectation also equals the limit of

(ΛΛ\ [Σ

Since the limit of (4.1) is the same uniformly in j (provided j is far from 1 and
from m), it also equals in the limit the average over j of these expectations,
viz.

(A 2) m
(4.2) m

Recalling that F J ? m is defined by the likelihood ratio dP^mjdP — exp[θ(Sm-
5j)], one sees that (4.2) equals

(4.3) m-1E{[ΣiQiexp(Sm-Si)}θ}.

For the special case 0 = 1, (4.3) equals £(Qi) , so the constant multiply-
ing x~θ in (3.6) is of the form given by Goldie (1991). For the special case
0 = 2, (4.3) equals

m-1Σ^1E[Q2

iexp{2(Sm - Si)}

+ m~ι2Σ?^2ιE[QiQk exp{2(5m - 5,) + # - Sk}}

= EQ\ + m-^ΣT^Σ^EQkEi

-> EQ\ + 2E(Qι)E(Q1Mι)/[l -

which again is of the form given by Goldie (1991). Moreover, one sees that
with some effort similar expansions can be obtained for arbitrary integral
values of θ.

5 Dis t r ibut ion of max(i?i

From the tail approximation (2.2) one can use any of several methods to
obtain the approximate distribution of max(i?i Rm) (e.g., de Haan et al.
(1989) or Woodroofe (1976)). It may be of interest to see briefly how the
present method would deal with this problem-without requiring prior knowl-
edge of (2.2). Assume that mE[M? log(Mi)]/log(z) -» oo and mx~θ -> 0.
This puts P{max(i?i Rm) > x] into the domain of large deviations. A
Poisson approximation can be derived by an auxiliary argument. In terms of
the probabilities Pj ? n defined in (3.1) the argument leading to the equations
(3.3)-(3.4) now yields

_
6

P{max(i?i Rm) > x]

n> - Sn)][ΣjfQjf exp(5J - Sr
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(5.1)
x exp{-[ίnJ - α + θ\og(maxΣj'Qf e x p ( S , - S y + Sn> - Sn))]}; [•••}> 0 } .

The observation that the important values of n' are close to n (say to within
c log α) and the important values of j ' are close to j combined with similar
asymptotic analysis to that given above yields the asymptotic approximation

6 E-°°A Σ n,exP[0 (S n,-S n)] }

Under the probability P-oo,n the independent Ŷ  have parameter £ = 0 for
i < n and ξ = 0 for i > n; under Pj,+oo they have parameter ξ = 0 for i < j
and ξ = θ for i > j . The first expectation on the right hand side of (5.2) is
in the form obtained by Yakir and Pollak (1998) and Siegmund and Yakir
(1999a,b). The second is the same as that obtained above. Since the first
expectation does not involve the Qi, one can use the argument of Siegmund
and Yakir (1999a) to infer its equivalence to the corresponding expression
obtained by de Haan et al. (1989) or to convert it into one of the equivalent
expressions given by Siegmund (1985), which are more suitable for numerical
computation.

6 Discussion

The preceding calculations indicate how one might study the stochastic re-
cursion (1.1) via the changes of measure indicated in (3.3) and (5.1). Note
that this change of measure does not make use of the linear ordering of the
indexing set, and hence is particularly useful for problems involving multi-
dimensional time (e.g., Siegmund and Yakir (1999a,b)).

Although the ARCH(l) process does not itself satisfy (1.1), the marginal
tail probability of its stationary distribution is easily inferred from (2.2): one
simply replaces x by x2 and C by C/2. However, (5.2) requires an auxiliary
argument to produce an approximation for the maximum of an ARCH(l)
process. This argument is straightforward, but it seems intrinsically one
dimensional; and the methods described above do not seem helpful. Let
Γ = min{n : Xn > x}. Let To = min{n : Rn > x 2}, and for k = 1,2,
let Tfc = min{n : n > T^i.Rn > x2}. Also let v = min{A; : eTk > 0}. Prom
the representation T = TU and the approximation (5.2) one can derive, for
example by the method of Woodroofe (1976), a tail probability approxima-
tion for max(Xi, , Xm). Except for some details of the calculation, this is
closely related to the argument of de Haan et al. (1989). It leads to still a
third constant, which is similar to the first expectation appearing in (5.2) in
the sense that it is a functional of a random walk with increments K. More
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precisely, under the conditions of the preceding section one obtains

ί\l < Tϊl] ^ Till X G1G2,

where C\ is the product of the two expectations on the right hand of (5.2)
and

= 2 Γ e-Θx[l - E2~N*]dx,
Jo

with Nx = Σg°l{5n > -x}.

The constant C2 can be calculated by simulation or possibly by repeated
numerical integration as follows. Let u{x) = E(2~Nχ) and h(x) = l/21^x>0h
Also let Q denote the operator defined by Qf(x) = Ef(x + Y{). Then u
satisfies u = h Qu and can be obtained recursively as linin-tooUn, where
uo = h G (w, 1] and un = h Qun-\.
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