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Suppose a random sample is observed from a density which is a known transformation of
an unknown underlying density to be recovered. Expansion of this unknown density in a
wavelet basis yields Fourier coeflicients that can be reexpressed in terms of the sampled
density and an extension of the adjoint of the inverse of the operator involved. This seems
to yield a new approach to inverse estimation. Focusing on deconvolution optimal error
rates are obtained in the case of certain irregular kernels like the boxcar that cannot easily
be dealt with by classical techniques or by Donoho’s (1995) wavelet-vaguelette method.
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1 Introduction

When a smooth input signal is to be recovered from indirect, noisy measure-
ments, Hilbert space methods based on a regularized inverse of the integral
operator involved usually yield optimal rates of convergence of the mean
integrated squared error (MISE). Statistical theory can be conveniently de-
veloped exploiting Halmos’ (1963) version of the spectral theorem (van Rooij
& Ruymgaart (1996), van Rooij, Ruymgaart & van Zwet (1998)). In prac-
tice, however, the input signal often is not regular like, for instance, in
dynamical systems where it might be a pulse function. In such cases the
traditional recovery technique may fail to capture the local irregularities of
the input. Difficulties also arise in instances where the kernel of the integral
operator itself displays a certain lack of smoothness. Whenever one has to
deal with irregularities, wavelet methods seem pertinent. In classical, direct
estimation of discontinuous densities Hall & Patil (1995) successfully apply
a wavelet expansion. For certain inverse estimation models Donoho (1995),
in a seminal paper, proposes a wavelet-vaguelette decomposition for opti-
mal recovery of spatially inhomogeneous inputs. In both papers nonlinear
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techniques are used. Donoho (1995) points out that his method remains
essentially restricted to so-called renormalizable problems (Donoho & Low
(1992)). Convolution with the “boxcar” (the indicator of the unit interval)
is an example of an operator that is excluded.

In this paper we propose an alternative approach to statistical inverse
problems with a special view towards irregularities, by using a wavelet ex-
pansion where an extension of the inverse operator appears in the Fourier
coefficients. More precisely, let K : L2(R) —L?(R) be a bounded, injective
integral operator and consider the equation

(1.1) g=Kf, feL*R).

Suppose we can find an operator D with dense domain so that its adjoint D*
is well-defined. Let F C L?(R) and suppose that the domain of D contains
KF and that D satisfies DKf = f, f € F; in other words, let D be an
extension of the restriction of K~! to K. Given any orthonormal basis 1y,
A € A, we have for f € F the expansion

(L12) =) (Hoata=Y (DKfda)ta= Y (g, D) ¥y,

A€EA A€EA A€EA

provided that the 1) are in the domain of D*. Since in practice g is imper-
fectly known, it may be much better to deal with D*1) than with Dg. Also,
the D*y,, are independent of the specific function f and hence can be used
for the entire class . The use of generalized Fourier coefficients to obtain
convergence rates as such is, of course, not new and appears for instance in
Wahba (1977) and Wahba & Wang (1990).

In simpler situations it will be possible to choose ) in the domain of
K~1. Calculation of the Fourier coefficients will then be usually performed in
the spectral domain by application of Halmos’ (1963) spectral theorem, men-
tioned before, coupled with the polar decomposition (Riesz & Nagy (1990)).

It is far too ambitious to deal with (1.1) for arbitrary K and we will
focus on examples of operators whose inverses are suitably related to certain
differential operators. In Section 2 we will see that the boxcar convolution
and the Abel type integral operator in Wicksell’s problem are in this class,
and that recovery of the forcing term in certain dynamical systems is a pro-
totype. We will, moreover, restrict ourselves to indirect density estimation.
Hence we will assume F to be a class of square integrable densities, and
g = K f is also supposed to be a density. The data consist of an i.i.d. sam-
ple X1,..., X, from g, with generic sample element X. An estimator of f
is obtained by replacing the Fourier coefficients in (1.2) with their estima-
tors and by truncation and data-driven thresholding like in the direct case
(Donoho, Johnstone, Kerkyacharian & Picard (1996), Hall & Patil (1995)).
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The boxcar convolution g = 1jg 1) * f, mentioned before, provides a good
example of the difficulties, both statistical and analytical, that one may
encounter when irregularities are involved. In Section 3 it will be shown
that for smooth input functions the spectral cut-off type regularized inverse
estimator does not yield optimal convergence rates of the MISE over most of
the smoothness range. Furthermore, by directly expressing the convolution
in terms of an indefinite integral of f, it can be easily seen that inversion
boils down to a sum of shifted derivatives of the image g, provided that f
has finite support. The generic way of solving a convolution, however, is by
transformation to the frequency domain via the Fourier transform, where
in this particular case the inverse rec}l.lces to division by the characteristic
function of 1} 1), i.e. to division by ezsinczt, where

(1.3) sinc z := 0 %

, £#0, sinc0:=1.

Hence we divide by a function that has zeros at 2k, k € Z, and zeros at too.
It is a fair conjecture, corroborated by the recovery via the direct method in
the time domain, that the latter zeros represent differentiation in the actual
inversion procedure, but the interpretation of the other zeros is not at all
immediate. As a referee pointed out, however, a much more sophisticated
kind of harmonic analysis has been developed by S. Mallat and his students
to deal with such transfer functions. This analysis involves wavelet bases
with dyadic decomposition tailored to the problem at hand. Here we propose
a different approach. Convolutions are a very important class of operators
and it would be interesting to classify their inverses exploiting the properties
in the frequency domain. This is still too ambitious but in Section 4 inverses
are obtained for a subclass that contains the boxcar.

Finally, in Section 5 we compute the MISE for indirect density estimators
constructed by means of the wavelet method (1.2). As has already been
observed above, we will restrict ourselves to operators K for which K~! is
a kind of differential operator. Calculations for the MISE for both smooth
and discontinuous input functions can be patterned on those in Hall & Patil
(1995). Due to space limitations we will restrict ourselves to smooth input
functions, and how to obtain optimal rates in the boxcar example.

2 Examples

It will often be convenient to precondition and replace the original equation
with an equivalent equation

(2.1) p:=Tg=TKf=:Rf, feL*R),

where T : L?(R) —L?(R) is a bounded injective operator that we can choose
at our convenience. Setting 7' = K* would yield a strictly positive Hermitian
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operator R. In Example 2.2 preconditioning with K itself will be convenient.
Preconditioning will not in general introduce extra, undue ill-posedness.

Example 2.1 Let us first consider the boxcar convolution and assume that
f has support in a compact interval [4, B]. If F is an indefinite integral of
[, it is immediate that g(z) = (1jo,1)* f)(z) = F(z) — F(z — 1), which entails
g (z) = f(z) — f(z—1). Choosing an integer I with I > B— A —1, it follows
that

I
(2.2) f#) =) d@—1i), z€lA,B]

=0

The condition on f may be weakened at the cost of more involved techni-
calities.

Example 2.2 Next let us consider Wicksell’s unfolding problem where the
density of the radii of not directly observable spherical particles is to be
recovered from a sample of planar cuts. The relation between the density f
of the squares of the radii of the spheres and the density g of the squares of
the observed radii of the cuts is given by

— ') _. < 2
23) o) =u | TUdy=uKNE), 0<a<1, feIX(1),
assuming that the radii of the spheres are all smaller than 1, and where p
is a constant that for simplicity we will assume to be known. This model
plays a role in stereology and medicine. For some recent results we refer
to Nychka, Wahba, Goldfarb & Pugh (1984), Silverman, Jones, Wilson &
Nychka (1990), and Groeneboom & Jongbloed (1995). We have already
mentioned that inversion of (2.3) is included in Donoho (1995) as a special
case. Yet we want to include it here to show that it also fits in our framework.
This is due to the circumstance that the operator K represents a fractional
integration, meaning that preconditioning with T' = K yields the equivalent
equation p := Kg = uK2f =: uRf, where

1
(24)  (Bf)(=)= W[) L) f(y)dy = n{F(1) - F(2)}, 0<z <1,

where F is an indefinite integral of f. This means that

(2.5) f(z) = —,%p'«c), 0<e<l.
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Example 2.3 Let D7 be the j-th derivative and consider a dynamical sys-
tem driven by the differential equation E‘jlzo cj(Dig)(z) = bf(z), = > 0,
under the usual initial conditions and conditions on the given numbers
b, co,...,cy. The forcing term f is unknown and to be recovered from g.
Again f is supposed to have support in a compact interval [A4, B] C [0, 0co).
Although in this case no real inversion is involved, the relationship

(2.6) ZcJ (D7g)(2)1(a By(z), >0,
J =0

between f and g still involves an unbounded operator. In practice the noisy
data on g usually lead to a regression model.

We intend to show that in all three examples the exact relation between
f and g is of the form f = Dg where D is a differential operator of the
following type:

J I
(2.7) (Dg)(z Z Z )(DIg)(z — aji), z€ER

7=01i=0

Here I and J are nonnegative integers, each aj; is a real number, each cj; is a
real-valued compactly supported function with a continuous j-th derivative.
(I, J,aj; and cj; may depend on the interval [A, B] but not on the specific
f)

Example 2.1 is easy. Letting I be larger than (B+1) — (A—1) — 1 we
have f(z) = 3I_ —o 9 (z—1) for all z € [A— 1, B+1]. Hence, if we choose any
continuously differentiable function ¢ : R = R with ¢(z) = 1 for z € [A, B]
and ¢(z) =0 for z ¢ [A — 1, B + 1], we find

I
(2.8) fl@) =) cl@)g(z—i), zeR

=0

Example 2.2 requires some poetic license. Firstly, we want to recover

f from p, not from g (see (2.5)). Secondly, we need to interpret f as a
function defined not only on [0,1] but on all of R (and vanishing outside
[0,1]). Extending p to a continuous function on R that is constant on (—o0, 0]
and on [1,00) we have f = —(um)~1p’ (almost everywhere) on R. Then,
choosing any compactly supported, continuously differentiable function c :
R — R with ¢(z) =1 for all z € [0, 1], we have

(2.9) f(@) =—(um) " c(2)p'(z), z€R

Example 2.3 is quite similar. Again we view f as a function defined
on R. We extend g to a J — 1 times differentiable function on R, satis-
fying Z}‘I=o cjg¥)(z) = 0, z < 0. (This is always possible.) Then f =
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b! Z}I:O cjg(j) a.e. on R If ¢ is any compactly supported, J times contin-
uously differentiable function with c¢(z) = 1 for z € [A, B], then

J

1
2.1 = )gU)( R
(2.10) bEZO z)gv'(z), T€

3 A traditional approach to the boxcar convolution problem

In this section we will elaborate on the statistical shortcomings of a tra-
ditional recovery of the input when convoluted with the boxcar. If K is
convolution with 19 1) the adjoint K* is convolution with 1|_; ). Precondi-
tioning with K* yields the equivalent equation

(3.1) p=1l1g*xg=Axf, A:=1_19*1p1,

where f is an unknown density in L?(R), and where the sample is from g.
Application of the Fourier-Plancherel transform F : L?(R) — L?(R) yields
(see also (1.3))

(32) Rf:=F'A-Ff), feclIR), A(t)=sinc2%t, teR

(~ indicates the Fourier Transformation.)
An unbiased and /n-consistent estimator of p is given by

p(z) == n~t Z 1[_170](:5 - Xk), T € R,
k=1

with Fourier transform (Fp)(t) = 1/_[_\/1,0](t))“((t), t € R, where

1 o=
3.3 R(t) == eltXx,
(3.3) x(t) nk_le

is the empirical characteristic function. Since p is only an approximation
of p, the unbounded inverse of R requires regularization. Spectral cut-off
regularization yields an estimator of type

Fo_ 1Ly NS Sy
(34) fa =F (ZI{AZQ}FP)—EF 1[01] {A>a} a>01

for the input f. The formula shows that preconditioning has not introduced
undue ill-posedness, indeed, since eventually we divide only by 11}, which
is the characteristic function of the original convolution kernel.
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To compute the MISE we will assume that the density f is in the class F,
of all probability densities with Fourier transform bounded by C(1 + |¢|)™%,
teR forsomeu>%and0<C<oo.Wehave

sup El|fa—f|> = sup {Ellfo—Efal*+||Efa~fIP} »
fEF feF,

1 f (1—[§(t))|2 dt + f |t|—2udt ~

{A>a} {A<a}

[1/+/a] kr(1+/a) oo
(3.5) ety [tk [ tits
k=1 kn(1—y/a) (1/va]

1 17/l —2v T —2v

magetve [ tTdt+ [ t7%dt,
1 [1/v/a]

Q

Q

Q

where “~” indicates that the L.h.s. and r.h.s are of the same order as a | 0.
The following result is now immediate.

Theorem 3.1 For suitable choice of a = a,n | 0, as n — 00, we have

n~@-D/@+2) 0 1/2<v <

n"1, v>1

PN

(36)  swp E|lfa—fI’~ {
FEF,

Next let us adopt the lower bound to the minimax MISE in van Rooij &
Ruymgaart (1998), and let 7 denote the class of all L?(R)-valued estimators
with finite expected squared norm. The symbol C will be used as a generic
constant. In the present case we then arrive at

. —2v
infrersupser, EIT - fII2 > Cf% (L+zl)

(3.7) % 14n(sinc Lt)’(1+(t)-2

> Cn~(2u—1)/(2u+2), v> %
These results imply that for v > 1, i.e. for most of the smoothness range,
the convergence rate of the MISE for the spectral cut-off type estimators is
suboptimal. It should be noted that the smoothness class F, is somewhat
different from the smoothness classes in terms of derivatives that one usually
finds in the literature. See also Section 5.

For regular kernels spectral cut-off estimators in general obtain the op-
timal rate (van Rooij & Ruymgaart (1996)). A regular kernel has a Fourier
transform that decays monotonically to zero in the tails. In such a regular
case the summation in the third line of (3.5), which is due to the oscillations
of A between its zeros, would not have been present and the optimal rate
would indeed have emerged.
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4 Exact inverses of certain irregular convolution operators

In this section we present some convolution operators K that have inverses
of the type described in (2.7). Our function f has its support contained in
a compact interval (4, B].

Example 4.1 First, let K be convolution with a kernel of the type

N
(4.1) k(.’E) = Z c'nl[sn_l,sn] ((C), z€R,
n=1
where c1,...,cn and sg, s1,...,S8N are given numbers and
(4.2) ci=1 0=s<s <...<3sn.

Set yn =cp —cpy1 forn=1,...,N—1 and yy = cy. If F is an indefinite
integral of f, then for z € R we have
(4.3)

g(z) = (k= f)(z) Ecn f f(z—t)d

N N
- nZ=:1 F(z—sp—1) — F(z—s,)) = F(z) — 'n2=:1 nF(z—3n).
Thus,
N
(4.4) g =f=) mfle—sa)=f—pxf

n=1

if we define p to be the real-valued measure concentrated on the finite set
{s1,...,sn} with u({sn}) = ¥ for each n.

Let p*1, 4*2,... be the convolution powers of y, i.e., p*! := p, p*™+1) .=
w* p*™ for m € N. It follows from (4.4) that

M-1
(4.5) f=g+) wmegd+uMxf

m=1

for all M. Each p*™ is concentrated on a finite subset of [ms;,00), and,
of course, ms; — 00 as m — oo. It follows that it makes sense to speak
of the infinite sum ) >, 4*™ and that there exist numbers A, Ag,... and
0<ti <ty <...with

(4.6) > u™(8) =) Nls(t:), SCR bounded.
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As f has compact support, it also follows that p*™ x f — 0 a.e., as m — oo,
so that, by (4.5)

— A & *m !
f =4+ wm+gd=

(4.7) msl 0o
= g+ Y Ng(e—t:) =) Nig'(e — ta),
=1 1=0

where we introduce A\g :=1, ¢ := 0.

Actually, f is supported by [A, B], and g, which is k  f, by [A, B+sy].
Therefore, if I is a nonnegative integer with tI > B—A+1, then ¢'(z—t;) =0
1fz>Iandm€[A 1, B+1), so that f = "7 Xig’(e — t;) on [A—1, B+1].
Choosing an infinitely differentiable ¢ : R =+ R with ¢(z) =1 for z € [A, B]
and ¢(z) =0 for z ¢ [A—1, B+1] we see that

(4.8) Z)\C "(z—t;), z€R,

a formula of the type described in (2.7).

Example 4.2 It is not difficult to generalize the above. Clearly, the con-
dition ¢; = 1 may be replaced by c¢; # 0 without noticeable harm. The
condition sg = 0 is not serious, either. Indeed, let k be as in (4.1) (without
having s9 = 0). Let Kj be convolution with kg := k(e + s¢). Then kg is of
the type considered above, and there exist I € N, numbers )g,...,A; and
to < ... < tr, and a compactly supported, infinitely differentiable function ¢
for which

I I
(49) f@) =) Xic(@)(Kof)(z—t:) =Y _ hic(z)g' (—ti+s0), TER,
=0

=0
which brings us back to (2.7).

Example 4.3 The preceding generalizes easily to a suitable class of spline
functions. Suppose sg < s;1 < ... < sy, J € N, and let k: R — R be
such that k vanishes identically outside the interval [so,sy] and has J — 1
continuous derivatives, whereas for each n € {1,..., N} the restriction of
k to [sn—1, 8] is a polynomial of degree at most J. Assume k # 0. The
function k has a J-th derivative at all points except possibly sg, $1,...,8N,
and k) is constant on each (s,_1,8,). For each j € {1,...,J}, kG-1) ig
an indefinite integral of k). Hence, k) # 0. By the previous examples,
there exist I € N, numbers Ag,...,Ar and ¢y < ... < t7, and a compactly
supported, inﬁnitely differentiable function ¢ such that

(4.10) f(z Z)\cw) (k) % £ (z— t,)—Z)\c:c)g(J’H)(a: t;), z€R
1=0 1=0
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and again we have an instance of (2.7).

5 Estimation and MISE when the wavelet expansion is used

Let W; denote the class of all compactly supported functions on R with J
continuous derivatives. Given any y € W; we write

(5.1) Xmk(T) = 2™y (2mz —k), z€R meZkel.

Let ¢ € W; be a scaling function and v the corresponding wavelet. For
our purposes the wavelet ¥ € W, must satisfy the additional property
ffooomjzp(:c)dw =0,7=0,..,7r—1 for some r € N (see below). The re-
sulting orthonormal wavelet basis is {m i, (m, k) € Z x Z}. The existence
of a wavelet with all these properties is shown in Daubechies (1992). At a
given resolution level M € Z the low frequency elements can be combined
in the usual way to yield the orthonormal system {pak,k € Z}, that can
be complemented to an orthonormal basis of L?(R) by adding the system of
high frequency wavelets {m k,m > M,k € Z}. Restricting ourselves in this
section to operators K with K~! = D as in (2.7), we see from (1.2) that we
will need the adjoint, D*. The domain of D* contains Wy, and for y € Wy
we have

.Mk
M~

<
Il
=)
S
Il
=)

D*x = (=1)(cji X)W (o + aji) =
(5.2)

dji - X9 (o + ajs),

Il
Mo
M~

<

Il
IS
<.

I
o

for certain, easily obtained continuous functions d;; that have compact sup-
ports.

Let us write, for brevity, farx := (f, omk) and frm i := (f, Ym i), m > M,
so that we have the expansion

f= Z MMk + Z Z g Vm k-

k=—00 m=M+1k=—o0
Since X has density g = K f we have E(D*y)(X) = (g,D*x) = (Dg, x) =
(f,x)» X € Wy, so that

n n

(5.3) Frg = %Z(D*SOMJ:)(X:'), frnge := %Z(D*"l’m,k)(xi),

i=1 i=1
are unbiased estimators of fysx and fp, k. We are now in a position to present
the general form of the wavelet-type inverse estimator

M+v oo

(54)  fuwsi= Y, furome+ > Y 1{|fm’k|>5}fm,k'€bm,ka

k=—00 m=M+1k=—00
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for M € Z, v € N, and threshold § > 0. This kind of estimator has been
introduced by Donoho (1995) in an inverse model and by Donoho, Johnstone,
Kerkyacharian & Picard (1996) and Hall & Patil (1995) in a direct model.
The difference is that here the estimated Fourier coefficients contain the
exact inverse of the operator. In asymptotics the parameters M, v, and §
will depend on n. Let us write

(5.5) s = Efarus.

We will consider the details for the asymptotics of the MISE under the
assumption that f is in the class F, of all functions on R that have r € N
square integrable derivatives. Results for nonsmooth f could be likewise
patterned on Hall & Patil (1995) but require more technicalities that cannot
be presented here due to space limitations. For the present choice of wavelet
we have

(o o] (o o]
(5.6) Yoo Y fAr=027"M), as M » 00, f€F.
m=M+1k=—o00

For such smooth functions there is no need to include the high frequency
terms in the estimator which then reduces to

oo
(5.7) fu =Y furerp, with far := Efar.
k=—o00

By (5.6) and because fM,k is an unbiased estimator of fas it follows
that the MISE equals

Ellfu = fIB = Ellfs — full® +lfae = fI°

= Y Varfyy+ 0@2"7M).

k=—o00

(5.8)

It will be convenient to set ®p/(z) := j:o S0 Gl (@+2Maj)|, x €
R, M € Z, where for each j and i, dj is the maximal absolute value of
the function dj;, introduced in (5.2). As ¢ is continuous and compactly
supported, there is a constant C with 50 &% (z—k) < C,z € R, M € Z.
Using the generic sample element X, from (5.3) we obtain:

> Varfyr <1l Y ED*omp)*(X) =

k=—o00 k=—o0
o) J I . 2
= %kz E{Zof%dji(x)ws\zf),k(x'*aji)} =
=—00 J=U 1=

(5.9)

k=—o0 |j=0i=0

2
=1 fj E { zJ: zlj dji(X)2M/22M3 o) (2M (X + aji) — k)} <

< LgM(L420) § E®2,(2Mz — k) < 1aM(+2))C,

k=—00
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In order to balance the variance and the bias part we should choose
M ~ 2log n!/(2J+2r+1) —: M(n), which yields the following result.

Theorem 5.1 For f € F, we have
(5.10) E||fa — fI[? = O(n~"/U+742)), as n - oo,
provided that we choose M ~ M(n) as defined above.

Example 5.1 Let us return once more to the boxcar convolution. If we
do not want to make the assumption that f (and hence g) have bounded
support we obtain an infinite sum on the right in (2.2). Because ¢ has
compact support, however, D*y,, ; will involve only a fixed finite number
of terms for all k,mm > M, and any given number M. Apparently J = 1 and
for f € F! the asymptotic order of the MISE equals O(n~2"/(2r+3)). In order
to compare with (3.7) for f € F,, we should take v = r + % and it follows
that the wavelet-type estimators obtain the optimal rate for any number of

derivatives and hence are superior to the regularized-inverse type estimators
in (3.6).

Remark 5.1 A more general situation arises when preconditioning is ap-
plied. In Example 2.2, for instance, it is only after preconditioning that we
arrive at an operator R with inverse of type (2.7). Expansion (1.2) general-

izesto f =3 5ca (U0 ¥a = aen (B7ID,¥A) ¥a = Yonen (DTg,¥a) tha =
Y oxea (9, T*D*ty) y. For f € F, the estimator will again be given by

(5.11) Frg = %Z(T*D*SOM,k)(Xi)-

=1

The extra ill-posedness contained in D* due to the preconditioning would
be compensated by T* which is a smoothing operator. In the calculation of
the MISE this should be reflected in the order of the variance of fM’k. We
will not consider this point here.

Remark 5.2 The main difficulty with the boxcar convolution are the zeros
of the characteristic function of its kernel that prevent us from conveniently
dealing with the deconvolution in the frequency domain. Many kernels have
characteristic functions that don’t have any zeros and that decay monotoni-
cally in the tails. The Fourier coefficients in expansion (1.2) can be computed
in the frequency domain. In fact we have

(512) =S (Fo.FK ) ir)pr=3 <Fg, (1 7c)F¢A> ¥

A€EA A€EA
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For suitable wavelets the Fourier coefficients can be unbiasedly estimated
by substituting the empirical characteristic function, multiplied by 51;, for
Fg. All that matters for calculation of the MISE along these lines is that
the order of the variance of these Fourier coefficients can be obtained with
sufficient accuracy.
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