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We study soft threshold estimates of the non-centrality parameter ξ of a non-central Xd(ξ)
distribution, of interest, for example, in estimation of the squared length of the mean of a
Gaussian vector. Mean squared error and oracle bounds, both upper and lower, are derived
for all degrees of freedom d. These bounds are remarkably similar to those in the limiting
Gaussian shift case. In nonparametric estimation of / / 2 , a dyadic block implementation
of these ideas leads to an alternate proof of the optimal adaptivity result of Efromovich
and Low.
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1 Introduction

The aim of this paper is to develop thresholding tools for estimation of cer-
tain quadratic functionals. We begin in a finite dimensional setting, with
the estimation of the squared length of the mean of a Gaussian vector with
spherical covariance. The transition from linear to quadratic functionals of
the data entails a shift from Gaussian to (non-central) chi-squared distri-
butions χ^(ξ) and it is the non-centrality parameter ξ that we now seek to
estimate. It turns out that (soft) threshold estimators of the noncentral-
ity parameter have mean squared error properties which, after appropriate
scaling, very closely match those of the Gaussian shift model. This might
be expected for large d, but this is not solely an asymptotic phenomenon -
the detailed structure of the chi-squared distribution family allows relatively
sharp bounds to be established for the full range of degrees of freedom d.

We develop oracle inequalities which show that thresholding of the nat-
ural unbiased estimator of ξ at y/2 log d standard deviations (according to
central χ^) leads to an estimator of the non-centrality parameter that is
within a multiplicative factor 2 log d + βd of an 'ideal' estimator that can
use knowledge of ξ to choose between an unbiased rule or simply estimating
zero. These results are outlined in Section 2.

Section 3 shows that the multiplicative 2 log d penalty is sharp for large
degrees of freedom d, essentially by reduction to a limiting Gaussian shift
problem.

lrΓhis research was supported by NSF DMS 9505151 and ANU.
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Section 4 illustrates thresholding in a well-studied nonparametric set-
ting, namely estimation of / / 2 , which figures in the asymptotic properties
(variance, efficiency) of rank based tests and estimates. We apply the oracle
inequalities in the now classical model in which a signal / is observed in
Gaussian white noise of scale e. When this model is expressed in a Haar
wavelet basis, the sum of squares of the empirical coefficients at a resolution
level j has a €2χlj(pj/e2) distribution with parameter pj equal to the sum
of squares of the corresponding theoretical coefficients. Thus / f2 = ]Γ pj
and this leads to use of the oracle inequalities on each separate level j .

Section 5 contains some remarks on the extension of our thresholding
results to weighted combinations of chi-squared variates. In addition to proof
details, the final section collects some useful identities for central and non-
central χ2, as well as a moderate deviations bound for central χ2, Lemma
6.1, in the style of the Mill's ratio bound for Gaussian variates.

2 Estimating the norm of a Gaussian Vector

Suppose we observe y = (yi) £ Rd, where y ~ Nd(θ, e2/). We wish to estimate
p = ||0||2 A natural unbiased estimate is U = \y\2 — de2 — Σ{y2 — e2). We
propose to study the shrunken estimate

(1) pt = p(U;t) = (U-te2)+.

This estimate is always non-negative, and like similar shrunken estimators
we have studied elsewhere, enjoys risk benefits over U when p is zero or
near zero. We will be particularly interested in t = td = σ^\/2 log d, where
σd = \pΐd is the variance of χ^, the distribution of |y|2/e2 when θ = 0. [The
positive part estimator, corresponding to t = 0, has already been studied,
for example by Saxena and Alam (1982); Chow (1987).]

The estimator pt may be motivated as follows. Let

(2) σ2 (p) = Var (U) =2e*d + 4e2p.

An "ideal" but non-measurable estimate of p would estimate by 0 if p < σ(p)
and by U if p > σ(p). This rule improves on U when the parameter p is
so small that the bias incurred by estimating 0 is less than the variance
incurred by using estimator U. Hence, this ideal strategy would have risk
min{p2,σ2(p)}.

Of course, no statistic can be found which achieves this ideal, because
the data cannot tell us whether p < σ(p) for certain. However, we show that
βt comes as close to this ideal as can be hoped for.

To formulate the main results, it is convenient to rescale to noise level
6 = 1, and to change notation to avoid confusion.
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Thus, let Wd ~ χl(ξ) - we seek to estimate ξ using a threshold estimator

it{w) = (w-d-t)+.

Write σ2(ξ) = 2d + 4ξ for the variance of Wd, and Fd(w) = P{χ2

d > w) for
the survivor function of the corresponding central χ2 distribution. Introduce
two auxiliary constants (which are small for d large and t = o(d) large):

(3) 771 = 2Fd+2(d + ί), 7/2 = ηι + t/d, t > 2.

Let Dζ and Z)| denote partial derivatives with respect to ξ.

Theorem 2.1 With these definitions, the mean squared error r(ξ,t) =
E(ξt(Wd) - ξ)2 satisfies, for all d> l,ξ > 0 and t > 2,

(4) r(ξ,t)<σ2(ξ)+t2,

(5) r(ξ,t)< 2

(6) r ( 0 , ί ) <

(7) D2r(ξ,t)< 2(1+t/d).

Bound (4) has a "variance" character and is useful for large ξ, while
(5) has a "bias" flavour and is effective for small ξ. Bound (6) shows that
the larger the threshold t, the smaller is the risk at 0, while (7) is a global
curvature estimate.

Remark. These inequalities are valid for all degrees of freedom d > 1.

However, since Wd is asymptotically Gaussian for d large, it is also informa-

tive to rescale these by defining

and

p(θ, λ) = E(θx(Xd) - θf = r(ξ, t)/2d.

Thus X is approximately distributed as N(θ, 1 + θy/%fd) for large d. If we

also introduce Φd(z) = P{Xd > z}, eγ = ηι/2d and e2 = η2 then inequalities

(4) - (7) become

, λ) < 2λ" 2 ( l + Xy/2β)2Φd(λ),

D%p(θ, λ) < 2 + λy/8/d
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Aside from terms that are O(d~1/2) or smaller, these inequalities are essen-
tially identical to those for the Gaussian shift problem in which soft thresh-
olding at λ is applied to X ~ JV(0,1) (compare Donoho and Johnstone (1994,
Appendix 2)).

Proof Missing details and basic facts about (non-) central χ2 are collected
in the Appendix. First define t\ = t+d and write f^d for the density function
°f Xrf(0 The "variance" bound (4) is easy: since ξ > 0,

r(ί, t) = E[(Wd - hU - ξ? < E[Wd - ii - ξ}2 = Var Wd + t\

Partial integration and formula (49) lead to useful expressions for the risk
function and its derivatives (details in Appendix): Let p\(x) = e~λ\x/Γ(x +
1) denote the Poisson p.d.f. with mean λ: pχ{x) is also well defined for
half-integer x.

rt\ poo

(8) r(ξ, t) = ξ2 fa + (w-h- ξ)2fa(w)dw,
JO Jti

(9) r(0, ί) = (ί2 + 2d)Fd(d +1) - d(t - 2)ptl/2(d/2),

(10) Dςr(ξ, t) = 2ξ f1 fa+2 + 4 Γ fa+2,
Jθ Jti

(11) D2

ξr(ξ,t) = 2 f1 fa+2 + (4 - 2ξ)fa+i(h).
Jo

Some fairly crude bounds in (11) (see Appendix) then yield (7).
For (5), substitute (10) and (7) into the Taylor expansion

r(ξ,t) = r(O,ί)+ξI>fr(O,t)+ / ds duDJr(u,t)
Jo Jo

Replacing 2ξ < 1 + ξ2 leads to (5). Finally, formula (6) is derived from (8)
in the Appendix. •

2.1 Numerical Illustration

Formulas (9) and (10) enable a straightforward numerical evalution of the
risk of thresholding. Figure 1 compares the mean squared error (MSE) of
thresholding at t = 0,1 or \/2 log d standard deviations σd for d = 8 and
16. [Numerical integration in r(ξ, ί) = r(0, ί) + f£ Dςr(u, t)du was performed
using the routine integrate in S-PLUS.] The positive part rule (REFER TO
THIS) (ί = 0), namely (w - d)+ yields up to 50% MSE savings at ξ =
0. However, to obtain smaller risks at 0 necessarily entails larger MSE at
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MSE of soft thresholding at d=8 d.f.

403

MSE of soft thresholding at d=64 d.f.

4 6

sqrt(noncentrality)

Figure 1. Mean squared error (MSE) of thresholding rules, calculated from formulas

(9) and (10) . Horizontal axis is root noncentrality y/ξ, vertical axis is scaled

MSE r(ξ,t)/σ2(ξ) for thresholds t = 0 (dashed line), t = σd (dotted line) and

t = σd\/2ϊogd (solid line).

values of £ near and beyond the threshold ί, as is evident in the figure. The

graphs show the qualitative features captured in the inequalities (4) - (7).

Quantitatively, at d — 64, the variance bound (4) for t = σd\/2 log d gives

scaled MSE bound (σ2(ξ) + t2)/σ2(ξ) = 4.25 at ξ = 50 = (7.07)2 compared

with the actual scaled value r(£,ί)/σ 2(ξ) = 3.75 shown in the figure.

2.2 Oracle Inequalities

For applications of these bounds, in analogy with the Gaussian case, we set

t = td = σd\f2 log cf, where as before σ\ = Var χ2

d = 2d. This choice might

be motivated by the inequality

(12) P{Xd ~d>
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which shows that if ξ = 0, then ξtd = 0 with probability approaching 1 as
d —> oo. Thus, there is a vanishing chance that ξtd will spuriously assert
the presence of structure when ξ is actually 0. Formula (12) follows from
Lemma 6.1 for large d (d > 72 will do), while for smaller d, (12) may be
verified numerically.

We give two inequalities - the first relates MSE to ideal risk, while the
latter is slightly more convenient for the application to adaptive estimation
of J f2 in Section 4. The proof is given in the appendix.

Corollary 2.1 Let td = σdλ/2 log d. Then

(13) r(ξ,td) < (21ogd+l){ l + min(ξ2,σ2(ξ))} d > 3,

and

(14) r(ξ,td) <2/logd + mm{2ξ2,σ2{ξ) + t2

d}, d > 18.

We record the arbitrary noise level version of (14) for use in Section 4.

Corollary 2.2 Suppose that Y ~ Nd{θ,e2I) and that one seeks to estimate
p — \θ\2 using \Y\2 ~ e 2 χ 2 (p/e 2 ). Suppose that the estimator βtd and variance
function σ2(p) are defined by (1) and (2) respectively. Then

(15) E(ptd - p)2 < ^ + min{2p2, σ2(p) + eH\}.

3 Lower Bounds

This section argues that the bounds (13) and (14) are sharp for d large,
in the sense that no other estimator can asymptotically satisfy a uniformly
better bound.

We use a standard Bayesian two point prior method, but with non-
standard loss function. The resulting bound in the Gaussian case, Proposi-
tion 3.1, is then carried over to the chi-square setting via asymptotic nor-
mality, to give Proposition 3.2.

Let {PΘ} be a family of probability measures on R, indexed by θ G Θ C M.
Denote point mass at θ by VQ and consider two point prior distributions π =
πo^0o +

7 Γi I /0i To use weighted squared error measure L(a,θ) = l(θ)(a — θ)2,
we will need loss-weighted versions of these priors. With U = /(0i), these are

π = ι-ψ vθo + ι-ψ vθl, L =

Denote the corresponding posterior probabilities for π by

η(x) = P*({θo}\x), η(x) = P*{{θi}\*) = 1 "

L e m m a 3.1 With the previous definitions and for ΘQ = 0,

(16) R := inf sup l(θ)Eθ[θ(X) - θ]2 > lλΈλθ\ Eθlη
2(X).

θ θ



Chi-square Oracle Inequalities 405

Proof The minimax risk R is bounded below by the Bayes risk £(τr), using
prior distribution π and loss function Z(α, 0) :

R > B(π) = inf [ π(dθ) Eθl(θ)[θ(X) - θ]2.
θ J

At least to aid intuition, it helps to convert this into a Bayes risk for squared
error loss with modified prior π given above, so that

B(π) = L inf f π(dθ) EΘ[Θ(X) - θ}2 =: B(π).
θ J

For squared error loss, now, the Bayes estimator 0^ that attains the minimum
JB(τf) is given by the posterior mean, which in the two point case with 0o = 0
takes the simple form

0#(s) = ^n[θ\x] = 0iP({0i}|x) = θiη{x),

which implies the desired formula (16):

B(π) = L f π(dθ)Eθ[θ*(X) - θ]2 > Lπ({θι})EOl[θιη(X) - 0i]2.

Proposition 3.1 Suppose X ~ N(θ, 1). Then as d -> cx>,

Proof In Lemma 3.1, let PQ correspond to X ~ N(θ, 1) and take l(θ) —

[dΓι + {θ2 A I ) ] " 1 . Choose θ0 = 0 and θι = θd » 1 (to be specified below),

so that lo = d and k = (1 + d " 1 ) " 1 .

Set TΓO = 1/ log d and TΓI = 1 — τro so that L = KQIO + π\l\ ~ dj log d and

the loss weighted prior π = (1 — e)i/o + e^ d with e = π\l\jL ~ logd/d small.

The idea is that with e small, we choose θd so that even for x near 0^,

η[x) = P^({0}|x) « 1. Thus, with probability essentially e we estimate

θjt w 0 even though θ = θd and so incur an error of about 0^.

Now the details. Write g{x; θ) for the JV(0,1) density and, since we will

recenter at 0 ,̂ put x = θd + z. Then the likelihood ratio
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Of course, the posterior probability η(x) can be written in terms of the
likelihood ratio as

(19) η{βd + z) = [1 + ί̂ ZooCz; θd)]-\

Put αd = log log d and specify θd as the solution to η(θd + α<f) = 1/2? so that

(20) θdαd + θj/2 = log ί ^ = log d - log log d + o(l),

and hence θd ~ \/2 log d, and also

for all fixed 2:. Consequently

= Jη2(θd

by the dominated convergence theorem. Since hπ\ ~ 1 and θ\ ~ 21ogd, the
result now follows from Lemma 3.1. •

With the Gaussian bound as template, we turn to the corresponding
result for the non-central chi-squared distributions.

Proposition 3.2 Suppose that Wd ~ X^(0 As d -> 00,

Proof The rescaled variable X = (W - d)/y/2d has mean θ = ξ/y/2d,
variance σ\(θ) = 1 + θy/8/d and is εtsymptotically Gaussian as d —> 00.
Let <7d(£#? ̂ ) denote its density function. As in the proof of Proposition 3.1,
we recenter at θd ~ \/2 log d (to be defined precisely below) and form the
likelihood ratio

/ 9 9 N j ,.n \ 9d{θd + Z\ θd)

9d\βd + z',ϋ)

With Zoo(y ^d) the corresponding Gaussian likelihood ratio defined at (18),

(23) ud(y) = l^f ^ 1 , â  d -4 oo

uniformly in |y| < logd, say (see Appendix.)
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To an arbitrary estimator f (W^), associate Θ(X) = ξ(Wd)/y/2d. Hence

Q 2

 = E(θ - θ)2

Now proceed as in Proposition 3.1: set l(θ) = [(2d)~1 + min{02, σ2

x{θ)}}~1 so
that Zo = 2d,/i = [l + ̂ v ^ + ί 2 ^ ) " 1 ] " 1 - S e t πo = 1/logd, andπi = l - π 0

and define π and e as before. Prom Lemma 3.1,

(24) R > hπtfl Jη2(θd + z)gd(θd + z)dz

and ZiTΓi ^ l. The posterior probability η(θd + 2:) is again defined by (19),
with ZQO now replaced by ld. Again put αd = log log d and define θd as the
solution to η(θd + αd) = 1/2, which is equivalent to

In view of (23), (20) shows that here too θd ~ \/2 log d. Prom the definition
of θd and using (23),

By Pratt's version of the dominated convergence theorem Pratt (1960) or
Hall and Heyde (1980, p 281.), the integral in (24) converges to one and this
completes the proof of (21). •

Remark. An analagous result holds if the denominator in (21) is replaced
by (RHSof (14))/21ogd.

4 Illustration: Estimation of f f2

The estimation of quadratic functionals such as J f2 or more generally
J(Dιf)2 for non-negative integer / has received sustained attention in the
last three decades. See, for example Hall and Marron (1987); Bickel and Ri-
tov (1988); Hall and Johnstone (1992) Ibragimov et al. (1986); Donoho and
Nussbaum (1990); Fan (1991); Birge and Massart (1995); Laurent (1996);
Gayraud and Tribouley (1999); Laurent and Massart (1998) and the refer-
ences therein.

Bickel and Ritov (1988) found a curious 'elbow' phenomenon: for / / 2 ,
if / has Holder smoothness a > 1/4, efficient estimation at mean squared
error rate n~ι is possible, while for a < 1/4, the best MSE rate is n~ r =

n-8α/(i+4α) rp^ p r o b i e r n of "adaptive estimation" concerns whether one
can, without knowledge of α, build estimators that achieve these optimal
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rates for every α in a suitable range. Alas, Efromovich and Low (1996α,6)
showed that this is not possible as soon as 0 < α < 1/4. They go on to
adapt version of Lepskii's general purpose step-down adaptivity construction
(Lepskii, 1991) to build an estimator that is efficient for α > 1/4 and attains
the best rate (logarithmically worse than n~r) that is possible simultaneously
for 0 < α < 1/4.

The treatment here is simply an illustration of chi-square thresholding
to obtain the Efromovich-Low result. Two recent works (received after the
first draft was completed) go much further with the f f2 problem. Gayraud
and Tribouley (1999) use hard thresholding to derive Efromovich-Low, and
go on to provide limiting Gaussian distribution results and even confidence
intervals. Laurent and Massart (1998) derive non-asymptotic risk bounds
via penalized least squares model selection and consider a wide family of
functional classes including ip and Besov bodies.

Consider the white noise model, where one observes Yt = f£ f(s)ds+eWt,
0 < t < 1, where W% is standard Brownian motion and / G I/2([0,1]) is
unknown. It is desired to estimate Qf = J f2. We use the Haar orthonormal
basis, defined by h(t) = i"[o,i/2] ~ J[i/2,i] a n d ψi(t) = 2^2h(2H — k) for indices
/ = (j, A;) with j G N and k e lj = {1,... , 2j}. We add the scaling function
^(-i,o) = [̂0,1] ^ n t e r m s of Λe orthonormal coefficients, the observations
take the dyadic sequence form

(25) yi = θt + ezi

where θj = Jφif and the noise variables zι are i.i.d. standard Gaussian.
By Parseval's identity, Qf — £)0j, and we group the coefficients by level j:

where \lj\ = dj = 2J (and equals 1 for j = — 1). The corresponding sums of
data coefficients have non-central χ2 distributions:

We estimate Qf by estimating pj at each level separately and then adding.

To quantify smoothness, we use, for simplicity, the Holder classes, which

can be expressed for a < 1 in terms of the Haar wavelet coefficients as

(26) θa(C) = {θ : \θi\ < C 2 " ( Q + 1 / 2 ^ for all J}.

See Meyer (1990, Sec. 6.4), or Hardle et al. (1998, Theorem 9.6) for a specific

result. Thus, in terms of the levelwise squared l<ι norms:

(27) θ <Ξ Θ α (C) => Pj < pj = C22~2aj for all j > 0.
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In smoother cases, the low frequencies are most important, whereas in
rough settings, higher frequencies are critical. For the lower frequencies,
define l e — {I : j < j0}. The estimate combines unbiased estimation at
these lower frequencies (where efficiency is the goal)

(28) Qe = £ (y? - e2),
ieXe

with thresholding at higher frequencies

(29) Qt=
j

where, in notation matching Section 2, we put y/2dj tj = y/2 log dj and

Of course jo &nd jι as just defined need not be integer valued. We
adopt throughout the convention that a sum Σbj=α is taken to run over
j = [α\ = floor(α) to j = [b] = ceiling(6). Below, c denotes a constant
depending only on α, not necessarily the same at each appearance.

Theorem 4.1 Let observations be taken from the Gaussian dyadic sequence
model (25) and let the estimator Q = Qe + Qt of Qf = J f2 be defined via
(28) and (29). Let r = 8α/(l + 4α),

(i) For 0 < α < 1/4,

(30) sup E(Q - Qf)2 < cC2^2-r\e2y/\og(Ce-^)r{l + o(l)),
/Gθ«(C)

^ For α > 1/4,

(31) sup \E(Q-Qf)2-4e2Qf\ = o
()

Proof. Decompose Qf = Σ,Pj = Qef + Qtf + Qrf where the ranges of
summation match those of Qe and Qt in (28) and (29). From the triangle
inequality for \\δ\\ =

(32) y/E{Q - Qf)2 < \]E{Qe - Qef)
2 + sjE{Qt - Qtf)

2 + QJ

The tail bound is negligible in all cases: from (27) and (29)

oo

rj < o > z s cu Δ — co e .

Jl
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Efficient Term. Since Qt is unbiased, we have, using (28) and (2),

(33) E(Qe - Qef)
2 = Var Qe = 4e2 ] Γ θj + 2 J 0 + 2 e 4 .

The second term is always negligible: from (28), 2 7 0 e 4 = e2(log2e~2)~1/2

o(e2). Further, using (27), for / G Θ α (C),

Xe iθ + 1

Combining the two previous displays

(34) sup \E(Qe - QJ)2 - 4ε 2 Q/| = o(e2).
feeσ{c)

Thresholding term. The rest of the proof is concerned with bounding

(35) yjE(Qt - Qtf? < Σ \lE{pj - Pj)2 =: Te(/).
JO

The oracle inequality (15) yields

(36) ^(p,- - P j ) 2 < 2e4 + min{2p2, σ2(Pj) + ί^e4},

where σ2(pj) = 2 J + 1 e 4 + 4e2pj. First, we evaluate

jl

(37) f^^minίp^ί . e2}.

30

Since pj = C22~2αi is geometrically decreasing in j and tjβ2 = cj1/22 J/2e2

is geometrically increasing in j , we must have Te < c(α)pj2, where j2 =
j2(c; C, &) is the crossing point, namely the (usually non-integer) solution to

j 2(i+4a)j = c c 4

e - 4 . As spelled out in (56) in the Appendix, as e -> 0,

(38) fe < c(α)p j 2 = cC 2 2- 2 ^ ' 2 - c C 2 " r ( e 2 logίCe"1))7*/2.

We conclude by checking that on Θ α (C), Te(f) < cTe for small e. Looking
at the terms in (36), we observe first that j\e2 = o(T€). Now let j% be the
solution to pj = ί 2e 2, or equivalently j 2 ( 1 + 2 a ) J = cC2e~2. Again using (56),

and so (28) shows that for small e, js(e) < jo(e) From this it follows that
for θ E θα(C) and j > j 0 we have σ2(pj) < cήeA, so that (37) is indeed the
dominant term in (35).
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In the efficient case, (38) is negligible, so that (31) follows from (32)
and (35). In the nonparametric zone 0 < α < 1/4, (38) shows that (34) is
negligible relative to (35), from which we obtain (30). •

Remark. Haar wavelets have been ingeniously used by Kerkyacharian
and Picard (1996) in the context of estimating f f2 and especially J / 3 .
However, thresholding is not used there, nor is adaptivity considered.

5 Remarks on weighted chi-square

Suppose, as before, that yk ~ ΛΓ(0fc,e
2),fc = l , . . . d are independent, but

that now we desire to estimate pa = 5 ^ OL\ZΘ\ with α^ > 0. Such a scenario

emerges in estimation of f(Dιf)2, for example. Then the natural unbiased

estimator pu^a = Σ i ak{Vk ~~ e 2 ) ι s n 0 l ° n g e r a shift of a chi-square variate.

If the weights are comparable, say 1 < otk < ot for all fc, then an extension

of the risk bounds of Theorem 2.1 is possible. We cite here only the extension

of Corollary 2.2, referring to Johnstone (2000) for further results and details.

Proposition 5.1 With the above notations, set td = σ^\/2 log d. There ex-

ists an absolute constant 7 such that

E[p{Ua; Std) - Pa? < Ίa2 [ ^ + min{2p2, σ

2(Pa) + eH
2}}.

6 Appendix

6.1 Central χ2 distributions

Write fd{w) = e~
wl2

w

dl2-1 /2d/2Γ(d/2) for the density function of χ2

d and

Fd(w) = J°° fdiu)du for the survivor form of the distribution function. We

note the relations

(39) wfdM=

(40) w2fd{w) =

(41) Dwfd+2(w) = \[fd{w)

where Dw denotes partial derivative w.r.t. w. Recall that the Poisson p.d.f.

is denoted by pχ(x) = e~xXx/Γ(x + 1). Prom (41) or via probabilistic argu-

ments,

(42) Fd+2(w) - Fd(w) = pw/2(d/2).
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6.2 A moderate deviations bound for central χ2

Lemma 6.1 Let Wd ~ χ2

d and σ\ = VarWd = 2d.IfO<s< y/dβ, then

(43) P(Wd - d > sσd) < (- + - ^ ~f/2

s σd

In consequence, if d > 16 and 0 < s < d1/6, then

(44) P{Wd -d> sσd) < s-ιe~s2/2.

This bound is an analogue of the Gaussian tail bound P(Z > s) < φ(s)/s,
to which it reduces as d -ϊ oo whenever s = o(dιl2). It may be compared
with two existing bounds, each derived for more general purposes. First, the
Tsirelson-Ibragimov-Sudakov inequality for Lipschitz functions of a standard
Gaussian vector yields, for 5 > 0,

P(Wd -d> V2sσd + s2) < e~s2l2,

while the more refined inequality of Laurent and Massart (1998, Lemma 1)
has as corollary, for positive s:

Substituting 5 = y/2 log d in this latter inequality shows that it does not
suffice for conclusion (12).

Proof For w > d, fd(w) < ^+2(^)5 so it suffices to bound Fd+2(si), where
we have set s\ = d + sσd. Equalities (39) and (41) combine to give

Now use the idea behind the bound Φ(s) < φ(s)/s : for w > si, 1 — d/w >
1 — d/s\ and so

(45) Fd+2(Sl) < 2(1 - d / s i ) " 1 / ^ ^ ! ) .

Stirling's formula, Γ(d/2 + 1) > λ/2^e- ί i/2(ίί/2)(<i+1)/2, implies

(46) = ( π d ) - 1 ' 2 e x p { ( d / 2 ) p o g ( l + v ) - v}},

where si — d + dv. The inequality

(47) losiί + v ) - v < - ^ - „ < . < } ,
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holds because the left side equals (-v2/2) Σ™ ^ ( - i ; ) * , while the right
side equals (-v2/2) Σ5°(§)fc(-v)fe a n d successive sums of pairs of terms
in the first series dominate the corresponding pair sums in the second for
0 < v < 1/2.

If si = d + sVϊd, then υ = Sy/2β and inserting (47) in (46),

< - * exp{
y/2π 1

Substituting this into (45) yields (43). The ratio of the right side of (43) to
(44) is bounded above for d > 16 by

6.3 Non-central χ2

d(ξ)

A non-central χ^(ξ) may be defined as the distribution of Wd = \X\2 for
X ~ Nd(θ,I), with the non-centrality parameter ξ — |0|2. We have

It may be realized as a Poisson(ξ/2) mixture of central χ^+ 2 j distributions:

(48) fcd(w)
i=o

where the latter equality is a formal representation in terms of the difference
operator Afd = fd+2 ~ fd (attributed by Johnson et al. (1995, p. 439) to
BoΓshev and Kuznetzov (1963)). Formally differentiating (48) with respect
to w and using the difference relation (41), one obtains a useful identity
(parts of which appear in Johnson et al. (1995, pp. 442-3)):

(49)

Proof of Theorem 2.1 To obtain (10), differentiate r(ξ,t) =

(50)

Dξr{ξ, t) = -2 Γ[{w - ti)+ - ξ]fζtd + ί Dw[(w -
Jo Jo

(51) =2ξ f1 fζ4 ~ 2 Γ(w - ίi - ξ)[fζ,d ~ Λ,
Jo Jti

rti

(52) = 2ξ / /e,d+2 + 4ξ/C ld+2(ti) - 4
Jo
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Here (50) uses (49) and partial integration, (51) collects terms, (52) uses
(49) twice, and a final partial integration leads from (52) to (10).

To derive (11), differentiate (10) and use (49) to get

£>f r(£, i) = 2 / * fξM2 -2ξΓ DwfξM4 - 4 f
JO Jo Jti

and evaluate the final two integrals.

To complete the proof of (7), combine (39) with (48):

°° t
(53) /€ld+4(fi) = ΣPφWd + 2 + 2j

fd+2+2j{tl) " ( 1 +

Again using (49), 2 / w + 2 ( ί i ) = /~/ξ,d+2 - fξ,d < f™ fζW Thus, in
combination with (11) and (53), we arrive at (7):

D2r(ξ, h)<2 f1 fζM2 + 2(1 + t/d) Γ fζM2 < 2(1 + t/d).
Jθ Jti

Finally, for r(0, ί), we derive first an expression useful for numerical eval-
uation. Using (8), then (40) and (39), followed by (42) and the Poisson p.d.f.
identity (x + l)pχ(x + 1) = λp\(x), we obtain

r(0, t) = / (w— tχ)2fd{w)dw
Jti

= [(d - h)2 + 2d\Fd(h) + d(d + 2 ) f t l / 2 ( l + d/2)

2-2ti)ptι,2(d/2)]

- d(t - 2)Ptl/2(d/2).

Turning now the bound (6), use twice both integration by parts and (45)

to obtain

roo roo oj.2

(0,t) = 2 / dw / dvFd(v) < _ - i
.2

Proof of Corollary 2.1 Since cr2(ξ) = 2d + 4ξ and t2

d = 2d 2 log d, bound
(4) yields immediately

r(£,td) <(21ogd+l)σ 2 (0 .
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For (13) it remains to check that r(ξ,td) < (21ogd + 1) + (21ogd + 1)£2. In
view of (5), this will follow from

(54) η2 < 2 log d, r(0, td) + ηλ < 2 log d + 1.

Bearing in mind (3) and bound (6), it can be verified numerically that the
inequalities (54) are valid for d > 3 and d > 2 respectively.

For (14) we need only verify that r(ξ, td) < 2(log d)" 1 + 2ξ2 and this will
follow from more stringent versions of (54):

(55) % < 1 , r(0,*d) + 7/i<2/log<I

These can be verified numerically for d > 14 and d > 18 respectively. For
completeness, we show that (55) (and hence (54)) follow, for large d, from
(44). Indeed, some algebra shows

2Fd(d + td) < 2Fd+2{d + td) =m< ?
a log a

Using bound (6), we then have

Taking d large in these last two displays implies (55).

Proof of (23) Let N ~ Poisson(ξ/2). Prom (48)

fξ,d(w) _ P fd+2N(w) _
} T(d/2 +

The likelihood ratios (22) involve the transformed variable X = (W —
d)l\ί2d. Thus with θ = ξ/\/2d, we have gd(x; θ) = V2dfζ,d(d + x\/2d).
Using Stirling's formula Γ(s) = V^e-^/ ' s*- 1 / 2 , with \η\ < 1/12, and
setting m = d/2 and x = θj, + z, we obtain the representation

and

Lm = N - (m + N - \) log(l + ^) + ΛΠog(l + ^ ) - θ2mz - Θ2

2J2.

Write the Poisson variable in the form N = θdy/m + Zmy/Θ^m1/4, so that

Zm 4 Z as m -> oo. Expanding the logarithms in Taylor series and collecting
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terms shows that Lm = op(l) uniformly in \z\ < logd, and along with Rm =

op(l), this completes the proof of (23). •

Details for Theorem 4.1. Fix 7 > 0. Let x(z) be the solution of xTx = z.

The approximate solution xo = %o(z) given by

(56) 27 X o (* )

log2

as z —> 00. More precisely, for large z,

(57) 2™W e [c(z), 1]2^W, c(z) > 1 -

To verify (57), set w = log2 z, so that log2x{z) = w — jx(z). Then

w w ~ w
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