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1 Introduction

The aim of this paper is to present a review of some results about nonpara-
metric estimation of analytic functions. A part of it is written in exposition
style and summarizes some recent work of the author on the subject (de-
tailed versions have already been published). The rest of the paper contains
new results in the area. Sometimes the proofs are only outlined and will be
published elsewhere.

Generally the problem looks as follows. We are given a class F of func-
tions defined on a region D C Rd and analytic in a vicinity of D. It means
that all / G F admit analytic continuation into a domain G D D of the
complex space Cd. To esimate an unknown function / G F one makes ob-
servations Xε. Consider as risk functions of estimators / for / the averaged
Lp(D)-norms

J/(t)-/(t)|Λj , l<p<oo,

- /lloo = E{sup |/(a:) - /(x)|
D

where in the case of noncontinuous / the supremum is understood as an
essential supremum. Put

Δp(ε,F) = Δ(F) = inf supE/ll/ - /||p.

1 This work is partly supported by the Russian Foundation for Basic Research, grants
99-01-00111, 96-15-96199, 00-15-96019 and INTAS, grant 95-0099, 99-1317.
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The last expression gives some understanding of our estimation problem and
below we study the asymptotic (ε -» 0, say) behaviour of Δ p(ε, F) . The rate
of convergence of Δ depends on F and the understanding of this dependence
is the main interest of the paper. Of course the problem is formulated too
general and to have reasonable results we are to consider concrete variants
of it. Below we are dealing with the following problems.

Problem I An observed signal Xε on the interval [α, b] is of the form

dXε{t) = f(t)dt + εdw(t).

Here w(t) is the Wiener process, ε is a known small parameter and the
unknown function / belongs to a known class F of functions analytic in a
vicinity of [α,&].

Problem II Assume that one observes iid random variables Xi, X<ι,... Xn

taking values in ϋ 1 and having a density function / G F where again F
consists of functions analytic in a vicinity of an interval D = [α, 6]. The
problem is to estimate f on the interval [α, b].

Problem III Let {Xt} be a real-valued stationary Gaussian process with
discrete or continuous time f, mean zero and spectral density /(λ). We
assume that the spectral density / is unknown and should be estimated
on the base of observations Xt,0 < t < T. Assume further that / G F
where F is a given (known) class of spectral densities. Let [α, 6] be an
interval and assume that we would like to estimate the restriction of / to
[α, 6], {/(λ), α < λ < &}, when all / E F are analytic in a vicinity of [α, b].

Problem IV Let / be an unknown function belonging to a known class F of

functions analytic in a vicinity of an interval [α, b]. To estimate / one makes

n observations of the function / at the points -XΊ, X<ι, Xn and observes

where Έ(Gj{Xj^ω)\Xι^ -Xj-i) = 0 and the noise variables Gj are con-
ditionally independent under a given observation plan (see in more detail

One may ask why such attention to the estimation of analytic functions,

isn't the class of such functions too special and too narrow? I believe that

apart of their mathematical beauty these problems are rather natural. I

appeal to two arguments of authority.

"When I asked Hubert what were the general considerations which
brought him to the hypothesis (proved later by myself) that all solutions
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to regular problems of the calculus of variations are analytic, the cele-
brated geometer answered that by his opinion solutions to all naturally
posed problems should be analytic." (S. Bernstein, Sur la deformation
de surfaces, Ann.Math., 1905).

"It may seem that analytic functions are a refined, a recherche object
and that such a refined property as analyticity is not necessary in nu-
merical analysis. In fact it is not true. Analytical functions constitute a
very disseminated object and many natural scientific problems lead to
analytic functions. Ignoring the analytic nature of solutions we narrow
drastically our possibilities and operate squanderingly." (K. Babenko,
Foundations on numerical analysis).

Notice also that in the case of stationary processes a fast decay of the
correlation function implies the analyticity of the spectral density. If the
correlation radius is finite, the spectral density is even an integer function.

Below we denote through c, C with or without indices various constants.

In different places the same notation may stay for different constants.

2 Functions analytic on bounded regions

In this section we suppose that the class F consists of functions analytic on

the bounded region G D [α, b] of the complex plane and bounded there by a

constant M. The region G and the constant M are supposed to be known.

Thus
rb

Δf>(P)=infsup(/ \f{t)-f(t)\pdt)
l/p

T h e o r e m 2.1 Under the conditions of Problem I when ε -» 0 the minimax

risk Δ P ( F , ε) satisfies the following asymptotic relations

Δ p (F))xε0n(l/ε), 1 < P < 4 ,

(2.1) Δ4(F) x εy^l/εXlnlnU/ε))1/4,

Δ P (F) x ε(ln{l/ε))ι-2/p, 4 < p < oo.

The constants under the x sign depend on G, M, and p only.

Recall that the sign " α n x 6n" means that 0 < c = liminf(αn/6n) <

limsup(αn/bn) = C < oo.

T h e o r e m 2.2 Under the conditions of Problem II when n —> oo the
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minimax risk Δ p (F, n) satisήes the following asymptotic relations

Δ4(F) >c . f e
V n

ΔP(F)

The constants depend on G, M, and p oniy.

4 < p < oo.

Theorem 2.3 Let Xt be a stationary gaussian process with discrete time.
Under the conditions of Problem III when T —>• oo the minimax risk Δ P (F, T)
satisβes the following asymptotic relations

Δ4(T)

4 < p < o o .

The constants depend on (7, M, and p oniy.

In the Theorems 2.4 and 2.5 below we suppose that Xt is a stationary

Gaussian process with continuous time (may be a generalized one).

Theorem 2.4 Let the set F consist of all spectral densities of generalized
processes analytic in some bounded region G, [α, 6] C G and bounded there
by a common constant M. Then there exist estimators fr such that

βupE/1/r - / | p <
feF

supE / |/ τ - / | 4 <

supE/1/τ - / | p <
feF

The constants C depend on G, M, and p only

1 <p < 4,

4 < p < oo.

Theorem 2.5 Let the set F consist of all spectral densities of real-valued

(not generalized) processes analytic in some bounded region G, [α, b] C G
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and bounded there by a common constant M. Then there exist positive
constants c > 0 such that

1 <p<4
V ±

(2.5)

Δp(T) > cT-^lnT)1-2/*, 4 < p < oo.

The constants c depend on G, M, and p only.

Theorem 2.6 Let under the conditions of Problem IV the variables Gj
have moments of all orders. Then when n -» oo the minimax risk ΔP(F, n)
satisfies the following asymptotic relations

Δp(F)xJ—, l<p<oo,
(2.6) V "

Δ o o ( F ) x J — ( I n Inn)1/2.
y Tb

The constants depend on G,M, and p only.

Theorems 2.1, 2.2 and 2.6 and their multidimensional analogues are
proved in [1]. Theorem 2.3 is proved in [2]. The proofs of Theorems 2.4
and 2.5, which also have been mentioned in [2], will be published elsewhere.

3 Functions analytic in strips

In this section we suppose that the interval [α, b] = (—oc,oo) and the set F
consists of functions f(z),z = t + is, analytic inside the strip |s| < Λ and
bounded in the closure of this strip by a common constant M, \f{z)\ < M.
The strip and the constant are supposed to be known.

Theorem 3.1 Under the conditions of Problem II when n ->• oo the
minimax risk Δ p(F, n) satisfies the following asymptotic relations

p , 2<p<oo,

(3.1) V J L
,π\ /Inn r.—:—

Δoo(F) x \ VIn Inn.
Y n

The constants depend on Λ, M, and p only
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Note that the restriction p > 2 here is essential. For p < 1 the behaviour
of Δ p(F) depends on p. For p = lwe can not even have consistent estimators
for / (see [3]).

Theorem 3.2 Let under the conditions of Problem III Xt be a real valued

Gaussian process with continuous time. Then when T ->> oo the minimax

risk Δ p (F,Γ) satisfies the following asymptotic relations

P l < ί > < o o ,
(3.2) V T

The constants depend on Λ, M, and p only.

Theorem 3.3 Let under the conditions of Problem III Xt be a real valued
Gaussian process with discrete time. If F consists of all 2π-periodic functions
analytic and uniformly bounded inside a strip \s\ < A, then when T —> oo
the minimax risk ΔP(F,T) satisfies the following asymptotic relations

(3.3)

The constants depend on Λ, M, and p only

Evidently in the case of Problems I or IV we can not expect reasonable

results in the Lp(Rι) norms. So we suppose that the risk functions are

defined with respect to a bounded interval [α,6] and that the estimated

functions / axe (6 — α)- periodic functions analytic and bounded inside the

strip \s\ < Λ. Under such conditions relations (3.1) are true for both these

problems (in the case of Problem I we have to substitute ε instead of 1/y/n).

All the above mentioned theorems of this Section have been found by

Ibragimov and Khasminskii beginning from the middle of the 70's (see [4],

[12], [14]). In 1980 M. Pinsker [5] worked out a new method which in the

case of L2 norms allowed to compute the precise asymptotics of the type ~

not x(the relation αn ~ 6n,n -> 00, means that l i m ^ = 1). His method

heavily used the fact that in the case of L2 spaces the sets F are ellipsoids

in Hubert space L<χ. Later Korostelev, Donoho, Golubev, Levit, Tsybakov

have spread Pinsker's results on non Hubert norms case. I quote below some

last results of F. Guerre and A. Tsybakov [6].
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Denote by F = F(L, 7) the class of all real valued functions f E L2 such
that

/ cosh2(yt)\g(t)\2dt<2πL
J-00

where g is the Fourier transform of / and L, 7 are positive constants. Evi-

dently the functions / £ F are analytic inside the strip |s| < 7.

Consider now the Problem I when the signal f(t) is observed on the

whole real line. Denote by | \p the norm in the space Lp[0,1],

Theorem 3.4 (F. Guerre, A. Tsybakov) Let 1 <p < 00. Then

where

liminf supε-Hlnίl/ε))"1/^;!/ - f\p = Mp

jπKy/π 2 n

The case p = oo has been treated earlier by Golubev, Levit, Tsybakov

PI-
Theorem 3.5 (Golubev, Levit, Tsybakov) When ε —> 0

O x-1/9 / 2 λ l / 2

liminfsupe ln(l/ε)lnln(l/ε) ' E/|/— / j ^ = ( — ) ; .

Notice that one may expect the same results for the other problems
mentioned in Section 1. Notice also that in the frames of Theorems 3.4
and 3.5 it would be natural to make observations on the interval [0,1] only.
The final formulas would change of course but how?

4 Integer functions

In this section we will suppose that the class F consists of functions analytic

on the whole complex plane. One may expect that now the rate of Δ P (F) will

depend on the growth of functions / e F at oo. We consider the following

well known standard classes of integer functions (see [20]).

1. The class Fi(M, c, p) consists of all integer functions f(z),z = x + iy,

such that

sup|/(x + iy)| < Mexp{c\y\p}.

2. The class F 2 (M, c,p) consists of all integer functions f(z) such that

sup \f(z)\ <Mexp{crp}.
\z\<τ



366 I. Ibragimov

Theorem 4.1 Let under the conditions of Problem II the unknown density
function belong to a class F i with p > 1. Let the minimax risks Ap be defined
through Lp(Rι) norms. Then when n -» oo

(4.1)

The constants depend on M, c, p, and p only.

Proof of Theorem 4.1 Upper bounds. Consider estimators
defined by the formula

and study the behaviour of its bias and stochastic term.
1. Bias. Let ^

φ{t) = Efe
itXl = [ Jtxf{x)dx

J—oo

be the characteristic function of Xj under the density function /. Then the

bias of the estimator fτ(x) at the point x is

f(x) - Έffτ(x) = f(x) - i f sklT{y~x

7Γ J— oo V ~ x

(4.3) = T- f

= JL f e-
itxφ(t)dt.

2π / | t | r ΨK J

A function g e Lp,p>2, and its Fourier transform g satisfy the following

inequalities (see [8], ch. IV):

(4.4) \\g\\p < C\\~g\\q,

Hence for 2 < p < oo the Lp-norm of the bias satisfies

(4.5) \\f-Έffτ\\p<cJ \φ(t)\«dt<cj τ\φ(t)\dt.

To estimate the last integral consider an analytic function φ G L2 whose
Fourier transform φ is zero outside an interval [—A, A]. Then for any y

φ(x + iy) = ±-Γ
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and ParsevaΓs identity implies that

Γ f(x)ψ(x + iy)dx = ±-Γ φ{\)e-χyψ{-\)d\.
J-oo *π J-oo

Changing on the left the contour of integration we find that for any y

(4.6) Γ f(x + iy)φ(x)dx = i- Γ φ{\)eχyψ(-\)dλ.
J-oo *Tt J-oo

Take at the last relation

Ϊ,(X) - Z.(x) _ / ^(λ)(l - |λ|/A), if |λ| < A,ψ{λ) - ψA(λ) - I O j . f | λ | > A

where A is a positive number. Then

ΦA(X) = ^ Γ e-iλxφA(λ) = ±-Γ φ(X)(l - \\\/A)e-iX*dλ =

( } 1

and

(4.8) Γ φA(x)dx = 1.
J-OO

It follows from (4.6) and (4.7), (4.8) that

= Γ f(x + iy)φA(x)dx
J-oo

[
2π J-A

< sup\f(x + iy)\ < Mexp{c\y\p}.
X

The last inequality implies that for any y

(4.9) Γ |0(λ)|2exp{|λ| |y|}dλ <
J—oo

But then for \y\ > 1

Hence for any y > 0

Γ W)\dt < e~Ty Γ
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Take here y = T^. We find that

(4.10) \φ(t)\dt <

The last inequality together with (4.5) gives us the following bound for

the bias. For any p, 2 < p < oo,

(4.11) - Έffτ\\p <

where the constants B, b > 0 depend on M, c, p, and p only.

2. The stochastic term is the Lp(il1)-norm of the random function

n
"ϊsmTjXj-x) smTjXj-x)'

1\ ^f
3 ~ x 3 - x

To estimate it we use the following inequality of Rosenthal ([9], see also [10]):

Lemma 4.2 Let ξ i , . . . , ξn be independent random variables with Eξj = 0.
Then for 2 < p < oo

(4.12)
1 1 1

It follows from this inequality that for 2 < p < oo

Φ"1)-

Xι-x
dx

Γ
J— o

p/2

(Xi-x)
dx.

Now for p > 2

J-oo \

sin2T(Xi-x)
p/2

p/2-l
oo ,oo

f { y ) d y

It follows from these two inequalities that

(4.13) E | | / r -
sin a;

x
dx

TV
nj
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We always suppose that Γ = o(ή). The last inequality implies then that for
2 <p < oo

(4.14) E||/r-E/r||p<CpJ-.
Y Tί

The case p = oo needs a special consideration. At first we need to know
the behaviour of Cp in (4.14) for large p. Letting

sinTjXj-x)
ξj{X) - ξj -

X j x
t,

Xj-x \ Xj-x

we find for even p = 2k and p = o(n) that

" UEξι + {2) (2k-2)12^ Eξί + • • + [k)

It follows from this inequality that if p < n 1 " 7 , 7 > 0, which will be the case,
that

(4.15) Γ \J2^(x)\2kdx<(Ck)k(-)k

J-00 2 V * * /

where C is a constant. It means that (4.14) can be rewritten as

(4.16) E/ll/r - E/Zrllp < c^

where the constant c does not depend on p. We apply now the following

Nikolskii inequality (see [11]):

Lemma 4.3 Let g(x) be an integer function such that

(4.17) | 5 ( z ) | <

Then for 1 < p < q < 00

(4.18) \\g\\q <

where c is an absolute constant.

The function gτ(x) = fτ(x)—Efτ{x) is a random integer function which
satisfies (4.17). The inequalities (4.16), (4.18) imply then that

E||/τ - E/rlloo < cT^EWfr - Έfτ\\p <
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Take here p = ]nT. We find that

(4.19) E| |/r - E/rlloo < C/

Now we are ready to establish the upper bounds of the theorem. If
p< oo, we apply (4.11) and (4.14) (or (4.16)) and get that

E/H/T - /Up < ||E//τ - /Up + E/ll/r - E//r||p <

Take here T ~ (lnn)^"1)/''. We find that for such fr

(4.20) E/ll/r - /Up < C-^(lnn)^-1)/2".

In the same way we find applying (4.11) and (4.19) that for the same T

(4.21) E | | / Γ -/ | |oo<c4=(lnn)^

Lower bounds. To prove the lower bounds of the theorem we use methods
from Hasminskii and Ibragimov [12]. The following lemma is proved in [12].

Lemma 4.4 Assume that there are N(δ) densities fi$ E F, i = 1, , iV,
such that \\fiδ — fjδ\\p ^ δ for i φ j . Let {/o<s} be a family of densities . Let

(4.22) δ(n,F) = suplδ : - — — - max fiδ ~ fjδ
<

Then for any estimator fn of f and all p > 1

(4.23) s u p E / | | / Λ - / | | p >
/GF

For the sake of simplicity we consider the technically simpler casep = oo.
We begin with constructing a family {fiδ} which will satisfy the conditions
of Lemma 4.4. Set

- ib) sin(7x — ib)

ηx + ib ηx — ib

where the real positive constants α, 7, b axe chosen to make /o a density
function from the class Fi(l/2M,c). Define now
(4.24)

χ\_ _
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where ε will be fixed later. Evidently /f^ fk{x)dx = 1 and if ε is sufficiently
small, ε < cN~3, c is a small constant, fk(x) > 0. Hence all fk are probability
densities for ε sufficiently small. The differences

Evidently all fk are integer functions. Notice that

s\ip\fk(x + iy)\ < -Mexp{c|y|p}
x Δ

sinN(x

x + iy

To ensure that fk £ F we have to choose ε in a such way that for all y

εNeN\y\ < lMec\y\\

The expression
c\y\p + lnM/2 - N\y\ - luN - lnε

takes its maximal value at the points \y\ = {N/cp)ι^p~1^ and it is enough
to take as ε any number

λ < -

We take

where a is a sufficiently large number.
Let us find now J(n, F) from (4.22). We have

fk-fj 2 \ . 9 r°° sinNx 6

N/7O

2 Γ
< 4ε αsup /

fc J-

oo

oo x -
dx

(4.25)

where c is a positive constant. Hence we may take any N which satisfies the
inequality

(4.26) c(lnN)-ιε2N* = c(lnn)"1 exp{-2α7V^/^-1)}7V5 > l/2n.

In particular we may take

(4.27) N ~ c

where c is a sufficiently small positive number. For such a choice of N the
inequalities (4.25), (4.26) imply that

(4.28) δ(N,F) > εN3 > -%
\JTl
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which gives the needed lower bound for the case p = oo.
If p < oo, then (following again [12]) we construct the family fj$ as

sinN(x-2π(k-l)/N)γ

where the vectors α = (αi,...αjv) run a set of vectors α with αj = ± 1 .
Combining arguments from [12] with those we have just used we get the
lower bound for p < oo. The theorem is proved.

Remark. The restriction p > 2 is essential. For p = 1 we cannot even

expect the existence of consistent estimators, see [12], [13].

The last result can be strengthened if p = 1. Namely in 1982 Ibragimov

and Khasminskii proved the following result [13].

Theorem 4.5 Let under the conditions of Problem II the observations
Xj take their values in Rd and have density function f belonging to a class
Fof functions whose Fourier transform is zero outside a compact convex
symmetric set K. Then when n —> oo

where m(K) denotes the Lebesgue measure of K.

Analogous results can be proved also for stationary processes.

Theorem 4.6 Let under the conditions of Problem III Xt be a real valued
Gaussian process with continuous time. Let Δ p be defined through Lp(i?1)-
norms. Then when T —> oo the minimaxrisk Δ p(Fi(Λί, c, p)), p > 1, satisfies
the following asymptotic relations

p ί O ( ) ^ ) / 2 2 < p < oo,

(4.30)

The constants depend on M, c, p, and p only

The theorem will be proved elsewhere. We show below only that in the

case p = 1 the rate of convergence of Ap is T " 1 / 2 .

Theorem 4.7 Let under the conditions of Problem III X(t) be a station-

ary Gaussian process with continuous time and spectral density function f

belonging to a class F = Fχ(M, α, 1) Π {/ : | |/ | | < σ 2}. Then when T -> oo

limsupTΔ^(F) < 4ασ2.
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Proof By the Paley-Wiener theorem the correlation function R(t) of the

process is zero outside the interval [—α, α]. Thus the spectral density

/(λ) = ±-Γ R(t)dt.

Zπ J

We estimate R(t) by

^\ du> i f 1*1 < α>
0, if \t\ > α.

and /(λ) by

Not difficult computations show then that

1 ra _ 2 Λ*-|t| r

2TΓ J-a JO JO

— i

(/_>HT
R(t + u- υ)R(t -u + v)) du dv

2

Further i | | i ? | | | = | | / | | | < σ 2 and

Γ Γ Λ(ti)c/^ < 2o||Λ||| < 4πασ2.

The theorem is proved. •

Consider now problems when / G F2(M, c, p). (Recall that the last con-

dition means that sup| z |< r \f(z)\ < Mexp{c|y|p}, see p.6).

Theorem 4.8 Let under the conditions of Problem I the observations
be Xε(t),—oo < α < t < b < oo. If the unknown signal f E F2(M,c,p),
then when ε -> 0 the minimax risk Δ p (F,ε) denned through Lp(α,b)-norm
satisήes the following asymptotic relations

isp<4
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The constants depend on M, c, p, and p only.

The same results take place for all other problems if the risk is measured
in Lp(α, 6)-norms, —oo < α < b < oo except for Problem IV.

Theorem 4.9 Let under the conditions of Problem IV the unknown func-
tion f G F2 (M,c,p) and variables Gj have moments of all orders. Then
when n -> 00 the minimax risk Δp(F,n) satisfies the following asymptotic
relations

A /τ_λ , Inn

(4.32)

The constants depend on M, c, p, and p only.

We give the proof of Theorem 4.8 only. The proof of upper bounds in
(4.32) is based on the inequality (4.33) below and arguments from [1]; the
proof of lower bounds is based on arguments from [14], [15]. A detailed
version of the proof will be published elsewhere.

Proof of Theorem 4.8 The proof repeats the main arguments of the
proof of Theorem 1 from [1] and we omit the details. Evidently we may and
will suppose that [α, b] = [—1,1].

Upper bounds. Consider the Fourier expansion of / with respect to the
Legendre polynomials

and estimate the coefficients α̂  = j \ Pk(x)f(x)dx by the statistics

Introduce now the statistics
N

0

and study separately their bias

x) = f(x) ~ EfN(x) = f ) αkPk(x)
ΛΓ+1
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and the random term

1. The bias. Introduce into the consideration the Chebyshev polynomi-
als Tfc(x) = ^ cos(fcarccosx). They are orthonormal on [—1,1] with respect
to the weight (1 - a; 2 )" 1 / 2 . Let

The value of the best approximation of the function f in the Z/2-norm by
polynomials Q of degree N is equal to

/ r1 \ 1 / 2

α2= inf/ \f(x)-Q(x)\2dx)

/ r\

< (inf / \f(x) - Q(x)\\l -
l/2

The coefficients bk have the following representation (see [11], [16])

bk= ί1 f{*)Tk{xJdx=- Γ f (cosθ) coskθdθ
J-i v 1 — x ft Jo

= - Γ f {cos θ) cos kθdθ

The function / is analytic in the whole complex plane and we can apply the
Cauchy theorem and integrate on the right along the circles of radii i ? " 1 and
R respectively. We find that for R > 1 because of the definition of the class
F 2

Ifefcl < T Γ - 1 ^ - ^ Γ \f(l/2{Reie + R~ιe-iΘ))\dθ
J-π

< 2R~k max \f(z)\ < 2MR~k exp{cRp}.

If we take here R = (£)', we find that |6fc| < 2Mekl? (^Y • But then
(4.33) M < /

V N V N

The Legendre polynomials satisfy the inequality (see [17]): for all x € [—1,1]

(4.34) \Pk(x)\ < Pfe(l) =
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It follows from (4.33) and (4.34) that for all p the Lp-norm of the bias

(4.35) \\bN\\p = || f ) αkPk(x)\\p << C l £ <£*-*/' < (c3iV)

N+l JV+1

2.The random term. The random term is a Gaussian random polynomial

N

o

of degree N whose coefficients

/•i

are iid standard Gaussian variables. It has been proved in [1], pp 195, 196
that the norms \\ZN\\P satisfy the following inequalities:

(4.36) B\\zN\U < c4εv/ΪV(lnΛΓ)1/4?

E | M | p < CpεNι-2/p, 4 < p < oo.

Now we are ready to establish the upper bounds of the theorem. Combining
inequalities (4.35, (4.36) we find that

- fN\\P < ciΛr^/o + p

Letting here N x (In ̂ )(lnln ~)~x with a proper constant we prove the upper
bound of the theorem.

Lower bounds.We begin with the following lemma of Ibragimov and
Khasminskii, see [18], ch. VI.

Lemma 4.10 Let S = {/j, j = 1,..., M} be a family of functions fj G F
such that \\fi - fj\\p > 2δ for all i,j, i Φ j . Then for large M, ε" 1

(4.37) iπf supB/||/ -AH, >> \S ( l - ^ )

The inequality is true for any p > 1.

The construction of the set 5 depends on p and we have to consider
separately three cases: 1 < p < 4,p = 4,p > 4. All these constructions
essentially coincide with those from [1]. The main difference is that now the
norming factor in these constructions is not e~jN as in [1] but N~jN. We
outline shortly how to treat the case p < 4.
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If p < 4, we define the set 5 as such a set of functions

N

fα(x) = N~ΊN Σ αjpj(x), δ = ( α 0 , . . . , αN), α, = ± 1 ,
o

that for any two functions / f i, /a/ G F the distance

(4.37) ||/a-/a'||P>^JV-^.

It is shown in [1] that the number M of the points of the set 5 is bigger than

The polynomials Pk{z) satisfy the inequality (see [16]): for all complex

\Pk(z)\ < y 2

Hence for \z\ = R
\fa(z)\<CN2N^N(l + 2R)N

and it is easy to see that for sufficiently large 7 the functions /α E F2.
Because of (4.36), (4.37) for any estimator f of f

sup Έf\\f - f\\p >
 λ-VNN^N (1 - cε- 2 ΛT 2 ^).

fe¥2

 2

If we take here N as the minimal integer for which cε~2N~2lN < 1/2, we
find that

sup 11/ - /||p > cεJ^gjQr, c > 0.

The theorem is proved.

5 A problem of extrapolation

An analytic function f(z) possesses a remarkable property: being observed
on an interval it becomes immediately known throughout its domain of ana-
lyticity. Of course the problem of recovering f(z) from such observations is
an ill posed problem and it would be interesting to know what will happen
if the observations are noisy. We consider below an example of this problem.

Denote F = F(M, σ) the class of integer functions f(z) such that / are
integer functions of exponential type < σ, real valued on the real line and
such that ||/II2 < M where || • H2 denotes the ^ ( i Z 1 ) norm. By the Paley-
Wiener theorem (see, for example, [20]) functions / E F admit the following
representation

(5.1) f(z) = ± j
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and hence

(5.2) |/(*)| <

Suppose now that a function / G F is observed on the interval [α, 6],
where — oo < α < b < oo, in the Gaussian white noise of intensity ε. It
means that one observes Xε(t) where

(5.3) dXε{t) = f(t)dt + εdw{t), α < t < 6,

w(t) is the standard Wiener process. Consider the following problem: es-
timate the value f(z) of a function / G F at the point z on the base of
observations (5.3).

Theorem 5.1 There exist an estimator fε(z) of f(z) such that uniformly
in{z:\z\<(lnι

Έ)<*},α<l,

(5.4) supE/l/W - Λ(z)|2 < Cαe2*1"").
/€F

Moreover

(5.5) supE ί sup \f(z) - fε(z)\2} < Cα^-α\

Proof We may and will suppose that the interval [α, b] = [—1,1]. Expand
the function /(£) into the Fourier series with respect to the orthonormal
Legendre polynomials

(5-6)
0

It follows from (5.2) (see (4.33)) that

(5.7) \ak\ < dek+

We have seen also that

(5.8) \Pk(z)\ <

Hence the series (5.6) converges in the whole complex plane.
As before consider estimators

SN{Z) = Σάkpk{z), άk = / pk{t)dxε(t)
0
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and study separately their bias and variance.

It follows from (5.7), (5.8) that for \z\ = R the bias satisfies
(5.9)

\f(z)-EfN(z)\<Σ\αk\\Pk(z)\<
N+l

N+l

The random term is a Gaussian random polynomial

N

o

where ξk are iid standard Gaussian random variables. Hence

N

o(5.10)

< ε2 Y, k\R + V ^ T Ϊ | 2 * < ε2N2(cR)2N.
o

Moreover

(5.11) Emax \rN{z)\ < E ^ \ξk\{R+ V^Tΐ)k < (cR)N.
\\<R

Combining (5.9) and (5.10) we find that

- fN(z)\2 < e<*R(c2R)2N(N-2N + ε 2 ).

It follows that if we let N ~ (In ^)(lnln \) ι and denote / # with this Λ̂

trough / e, then for \z\ = R

supE|/(z) - fε(z)\2 < cιε2eC2Rexp{ U \ lni?}.
f£F l n l n -

The last inequality yields the inequality (5.4). In the same way the inequal-

ities (5.9, (5.11) imply the inequality (5.5). The theorem is proved. •

Theorem 5.2 Let \z\ > ( l n ^ ) α , α > 1. Then for all sufficiently small

ε,ε < cQ,

(5.12)
Λ feF
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Proof We reduce our problem to a one dimensional estimation problem of
a parameter θ and establish the lower bound for this new problem. Consider
the following set of functions /#(£) depending on a real parameter 0, |0| < 1,

Qin y °° (o\r\(ni — 1 \( y — T\n~a \

(5.13) fθ,τ(z) = Mz) = θψ Π (Z ί\l. ?Γ "α ) =
n=l \ v

where α > 1,Γ are real numbers. Because of the product on

the right converges uniformly on compacts of the complex plane and deter-
mines an integer function. Moreover this integer function has an exponential
growth < 1. Indeed

|/*(*)|<0exp{|2| + | 2 - Γ | ( α - l _°°
1

In the same time because on the real line | ̂ ^ | < 1

r°° sin2/

11/112 < / ^

Let / be an estimator for fβ(T). We have

(5.14) Eθ\fθ(T) - / | 2 = Έθ\θ - / | 2 .

Consider now the problem of estimation of the parameter θ on the base of
observation Xε{t). It is easy to see that the statistic

Yε= ί φ(t)dXε{t) = θ [ φ2(t)dt + ε[ dw(t)
J-i J-ι 7-i

is a sufficient statistic of the θ estimation problem. Hence

(5.15) supEfllfl - Λ| 2 > supEβ |0 - E{/ ε |y e}|2 > inf supE*|0 - ψ(Yε)\2

V J θ θ Ψ θΨ θ

where

and inf is taken over all statistics ψ(Yε).
We use the following well known result, see [19]:

Lemma 5.3 Suppose one is estimating a parameter \θ\ < α on the base of
observation
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where η is a Gaussian random variable with mean zero and variance s2.
Then

(5.16) infsupE0|0-</>(y)|2 > s2h(α/s)
Ψ Θ

where the function h is an increasing function such that h(x) ~ x2 when
x —> 0 and h(oo) = 1

It follows from the last result together with (5.14) and (5.15) that

infsupE|/(T)-/ ε |
2>cε(7 φ2(t)dt) , c> 0.

Let us estimate the integral on the right. We have

(T - l)- 2 (α - I)" 2 ) < ((T - l)(α - l))- 2 L (L!) 2 α

where L is the largest integer < ((T - l)(α - l))L/α. Hence for large T

φ2(t)dt < c2(T(α - l))Ωe

It follows that for any fε

sup Έf{\f(T)-fε\
2}> 1/2

/GF(2,1)

if T > c(α)(ln ^)α. With slight changes the same arguments will work for
any z, \z\ > c(α)(ln i ) Q . The theorem is proved. •

Remark 5.1 The Theorems 5.1 and 5.2 mean that roughly speaking when
ε —> 0 consistent estimation of f(z) is possible on the disks {|z| << ln^}
and impossible outside larger disks, namely on {|z| >> In ̂ )}.
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