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Various types of likelihood factorization are reviewed and some general statistical conse-
quences noted. In one broad class there is noniterative asymptotically efficient combination
of information across factors via generalized least squares. This is used to discuss miss-
ing information in simple binary problems. It is shown that with observations on a 2 X
2 table supplemented by independent observations on each margin the maximum likeli-
hood estimate of the odds ratio differs from that based on the complete table but is not
asymptotically more efficient.
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1 Introduction

The likelihood function plays a key role in all approaches to the formal theory
of parametric statistical inference and has implications also for semiparamet-
ric problems. We deal here primarily with the former. We consider a number
of types of factorization of the likelihood function. For the important distinc-
tion between parameter-based and concentration-graph based factorizations
and some applications to mixed binary and continuous variables, see Cox
and Wermuth (1998).

We assume throughout what are known in some quarters as the British
regularity conditions.

Suppose that for an observable random vector Y with observed value y
there is a parametric statistical model leading to a likelihood function L(6;y)
with the parameter vector 8 taking values in €2y. Suppose further that we
factorize the likelihood in the form

(1) L(0;y) = L1(¢1;y) La(#2; v),

where (¢1, ¢2) determines 6.

There is no essential loss of generality in restricting the discussion mostly
to two factors. For sampling theory discussions we suppose that (1) is avail-
able for all y whereas for Bayesian calculations it is enough that (1) holds
for the particular observed y.
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2 Some types of factorization

We call the factor L; directly realizable if it is the full likelihood function
for a random system directly associated with that defining Y. The direct
association is typically by conditioning on and or marginalizing over observed
features of the initial random system.

Ezample 1. A cut in an exponential family (Barndorff-Nielsen, 1978)
involves a factorization based on the marginal distribution of a statistic S
and the conditional distribution given S = s. Both marginal and conditional
factors are directly realizable.

Ezample 2. There is a trivial factorization of the form (1) if the full data
derive from observations on two or more independent random systems.

Ezample 3. The normal-theory of the recovery of information in incom-
plete block designs (Yates, 1940) is in effect based on a likelihood factor-
ization in which the first factor is the likelihood of the parameters based
on data transformed to eliminate block effects and the second factor is the
likelihood derived from the block totals. Both factors are directly realizable.

We now give an example of a factorization that is not directly realizable.

Ezample 4. In right censored survival data, taken without explanatory
variables for simplicity, the observations can be written y; = (t;,d;), for
1 =1,...,n, where t; is a recorded time and d; = 1 for a failure and d; =0
for censoring for the ¢ th individual. Then if f(t) and Sf(t) are respectively
the density and survivor function of failure-time and g(t) and Sy(t) are the
corresponding functions for censoring time, the likelihood under random
uninformative censoring can be factorized in the form

(2) Li(¢15y) = T{f (4:) Y4 {S (y:) } 7%,
(3) La(¢2;y) = I{g(ya) }' =% {S, (1) }%.

Here ¢, and ¢, are parameters characterizing respectively the distributions
of failure and censoring times. One or indeed both factors could be left
nonparametric.

The factorization is not directly realizable, any interpretation of this on
its own being remote from the original generating process. We shall give
further examples later.

We call the factor L; asymptotically second-order valid if, in some no-
tional limiting operation in which the amount of information contained in
Y tends to infinity, the asymptotic distribution of 1, the formal maximum
likelihood estimate of ¢; derived from L,, is asymptotically normal with
mean ¢; and covariance matrix estimated via the inverse of the observed
information matrix, i.e. by

(4) {(~VVTl(d1;9)} 7Y,
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where [; = log L; and V is the gradient operator with respect to ¢;.

The factor L; is asymptotically first order valid if <Z>1 is asymptotically
normal with mean ¢;, the covariance matrix not necessarily being deter-
mined from (4).

Well-behaved directly realizable factors will typically satisfy (4). Exam-
ple 4, censored survival data, also satisfies (4).

Ezample 5. A simple example of first-order asymptotic validity is pro-
vided by quasi-likeihood analysis of overdispersion in a Poisson distribu-
tion, treating the case without explanatory variables for simplicity. Let
hp(y; 1), hvB(y; 1, k) denote the probability of value y in respectively a Pois-
son distribution of mean p and a negative binomial distribution of mean u
and index «. For independent observations, write

(5) Li(wy) = Ihp(yi; ), La(p, k;y) = hn(yi; 1, &) [ hp (yi; ).

Then under the negative binomial model, the maximum likelihood esti-
mate of y, fi1, say, calculated from L; is asymptotically first-order valid but
its variance is not given via the second derivative of L, unless the special
case of the Poisson distribution applies. The negative binomial distribution
can be replaced by other distributions of mean u. The second factor con-
tains information about k. Asymptotic expansion in powers of x~! shows
that to first order the dependence of L (u, k;y) on the data is essentially via
a comparison of variance and mean.

We return to this and to another example in Section 3.

Next we call (1) the factorization (1) parameter-based if ¢; and ¢ are
variation independent and

Q¢.1 X Q¢2 = Qg.

There are various extensions, such as to situations in which there are a small
number of common parameters to the two factors possibly orthogonal to one
or both of the disjoint component parameters.

Finally suppose for simplicity that we observe a p x 1 vector on inde-
pendent individuals and the components are represented by the nodes of a
concentration graph (Lauritzen, 1996; Cox and Wermuth, 1996). Then if
the set C of nodes separates the sets A and B we have that Y4 is condition-
ally independent of Yp given Y¢, in a natural notation associating random
variables with the sets of nodes. It follows that the likelihood of the full data
can be factorized, for example in the forms

(6) Lac(0;y)Lpic(6;y)Lc(8;y) = Lac(9;y)Lec(8;y)/Le(6;y).

We call these factorizations concentration-graph based.
For such factorizations to be directly useful in statistical analysis they
need to enjoy one of the other properties listed above. Cox and Wermuth
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(1998) discuss the connection with parameter-based factorizations and the
implications for the analysis of mixtures of discrete and continuous variables.

3 Some properties and a further example

We first give another example of a factorization that is asymptotically only
first-order valid.

Ezample 6. Azzalini’s (1983) first-order factorization of a recursive like-
lihood can be written in a condensed notation as

L1(0;y1) Lo (0591, 2) - - « Lrjr—1(65 Yrs Yr—1) - - - Lnjn—1(65 Yy Yn—1)

(7) ><l—”—”1'|'r—1,...,1(0; Yrs y(r_l))/Lﬂ'r—l(e; Yrs y"‘—l)a

where y™™1) = (y1,...,y,—1). The final term can be written in the more
enlightening form, in an even more condensed notation,

(8) OL, ;o -1/ (Lrpr—1Lr—a,. 1jr-1)-

We may compare this with Besag’s (1977) pseudo-likelihood in which the
conditioning in the first factor is on all other values, this often being more
appropriate for spatial as contrasted with temporal processes.

We now factorize the likelihood corresponding to the two lines of (7).
If and only if the series is a first-order Markov process the second factor
is identically one. For some non-Markov processes the first factor contains
enough dependence on the full vector 6 to allow estimation from it alone. In
general, however, the condition for second-order asymptotic validity is not
satisfied.

To verify first-order asymptotic validity we have to check that

(9) E(VlL)=0
and for second-order validity that
(10) E(VLVTHL) + E(VVTL) = 0.

Here l; = l;(¢1;Y), the gradient operator, V, is with respect to ¢; and
expectations are evaluated under the model as originally specified.

A parameter-based factorization satisfies both conditions.

It is easily checked that Examples 5 and 6 satisfy the first condition but
the second only in degenerate cases.

In both these examples the evaluation of the asymptotic variance of &1 is
equivalent to finding the variance under one model of a maximum likelihood
estimate calculated under a different model (Cox, 1961) leading to the so-
called sandwich estimate (Royall, 1986).

Study of higher-order asymptotics associated with these factorizations
will not be attempted here. It would, for example, be possible to define
asymptotic third-order validity as the satisfying of standard identities for
log likelihood derivatives of up to order three.
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4 Combination of information

Suppose that we have a factorization into ¢ factors each second-order asymp-
totically valid. If the factorization is also parameter-based, separate infer-
ence about component parameters can proceed directly. In general, however,
there will be common component parameters and combination of information
from different factors is required. As always, where merging distinct sources
of information mutual consistency should be checked, at least informally.

Once separate maximum likelihood estimates and their associated ob-
served information matrices have been found, noniterative combination by
generalized least squares is possible without loss of asymptotic efficiency, i.e.
with an error Op(1/n), where n is a notional sample size. To see this we
reparameterize in terms of components of the original p x 1 parameter vector
6. Let A;(s=1,...,q) be a p; X p matrix specifying which components of 0
are estimated by the components of bs, ie. asymptotically

(11) E(s) = Asb;

each row of A; will contain a single one and p — 1 zeros.

Then if j; is the observed information matrix associated with L, the
log likelihood functions are equivalent to quadratic forms centred on the
maximum likelihood points and the system is equivalent asymptotically to

a least squares estimation problem with data (¢1,...,¢,) and with
é1 Ay

(12) Bl . |=] . |o
) \4

and covariance matrix the block diagonal matrix
diag(j1,. .. ,Jq) "
so that the estimate
6 = (S475:A) 7 (24T 5ad)
with
cov(f) = (AT j,4,)7!

differs by O,(n~!) from the maximum likelihood estimate 6.
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5 A missing value problem

Consider two binary variables (Y7, Ys2) each taking values 0,1 and with
(13) m; = P(Y1 =14,Y2 = j).

It is convenient to think of the variables as defining the rows and columns
of a 2 x 2 table and to write

(14) Ai=P(Y;=1)

for the marginal probabilities. Suppose that the parameter of interest is the
log odds ratio

(15) ¥ = log{(m11m00)/(710701) };

we suppose that the parameters m;; are expressed implicitly in terms of
(A1, A2, ).

Now suppose that there are three types of observation, complete obser-
vations on the pair (Y7,Y2), observations in which only Y; is observed and
observations in which only Y, is observed. We suppose that component
observations are missing completely at random so that the same set of m;;
prevail throughout.

The issue for discussion is: do the observations with missing components
contribute information about 1?7 This is not the same as, although indirectly
related to, the much-discussed question of conditioning on the margins of a
2 x 2 table.

The full log likelihood can be written

(16) Ir =112)(%, A1, A2) + 1) (A1) + {2y (A2),
corresponding to the three types of data. Now direct calculation shows that
Pr # Pz

the latter being the log cross-product ratio from the full data, i.e. on the
complete contingency table. We show, however, that

(17) br —Puz) = Op(n™"),

so that any information from the incomplete data is asymptotically negligi-
ble.

We prove this, essentially without detailed calculation, by appeal to the
asymptotic quadratic form of the three log likelihoods, essentially of the form

nQu2)(Paz) — ¥, Maz) — M1, Ao 12) — Aa; D)) +
(18) nQ (A1) — 21)iTay) + nQ)(Ra) — AasT2)),
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where n is a notional total sample size, and the standardized covariance
matrices I' can be regarded as known for asymptotic inference. They can
be obtained theoretically or derived via the observed information matrices.
The estimation problem is thus formally equivalent to a generalized least
squares problem with observational vector

(Pa2), M(2)> Aaqizy M1, Aaga))

coming from the three likelihood factors. The asymptotic covariance matrix
is in fact diagonal except for the element

(19) cov(A1(12), Aa(1z)) = (€% — D)A1da/n1a),

where n(19) is the number of complete observations.

The position of the zeros in the asymptotic covariance matrix is such that
on applying the method of generalized least squares that to this order the
maximum likelihood estimate of 7 is 1Z'(12) but that for the other parameters,
and therefore for any parametric function other than 9 itself, combination
of information from the factors is needed. Note in particular that except
when 9 = 0 efficient estimation of say A; is not obtained merely by pooling
all information on Y7.

The asymptotics involved in this are essentially that the three sample
sizes all increase at the same rate. It can be shown, however, that even if
the numbers of incomplete observations increase much more rapidly than
the number of complete observations the asymptotic efficiency of 1;(12) is
retained.

We shall not consider possible generalizations, for example to higher
dimensional contingency tables.

6 Discussion

Likelihood plays a central role in all formal approaches to parametric analy-
sis. Correspondingly maximum likelihood occupies a central role in asymp-
totic theory. The notion that it may be beneficial, or indeed in some cases
essential, to use some form of likelihood different from that based directly on
the distribution of the full data stems from Bartlett (1937). Conditional and
marginal likelihood were studied explicitly by Kalbfleisch and Sprott (1970)
and a generalization, partial likelihood by Cox (1975). Quasi-likelihood
was introduced by Wedderbrun (1974) and some optimality properties were
shown by McCullagh (1983); see Example 5. Some other important papers
are referred to in the text. Numerous variants have been proposed many
based on marginalizing or conditioning with respect to well-chosen statistics
or using inefficient estimates of some components while retaining asymptotic
efficiency for the components of interest. The incorporation of all these into
a systematic theory would be welcome.
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