
LASER COOLING AND STOCHASTICS

O.E. BARNDORFF-NIELSEN1 AND F.E. BENTH

MaPhySto1, University of Aarhus

In the statistical analysis of cooling and trapping of atoms by a combination of laser
and magnetic field technology, Aspect, Bardou, Bouchaud and Cohen-Tannoudji (1994)
showed that Levy flights is the key tool. A review of their analysis, from the point of view
of renewal theory and occupation times for stochastic processes, is given here and some
further analysis provided. Brief discussions of two related types of models are also given.

AMS subject classiήcations: 60K05 60J25 60E07 62E20.
Keywords and phrases: Laser cooling, Levy flights, occupation times, renewal theory,
stable processes.

1 Introduction

Cooling and trapping of atoms, by a combination of laser and magnetic
field technology, is a subject area of great current interest in physics. By
directing a number of laser beams towards a chosen point in space and setting
up a suitable magnetic field around the point it is possible to hold a cloud
of atoms largely concentrated in a very small region around the point, as
indicated in Figure 1. The basis of the techniques is the fact that light acts
mechanically on material objects, such as atoms, meaning that it can change
their positions and velocities. Each single atom follows a random trajectory,
but is staying most of the time near the centre of the trapping region; it
moves very little and is therefore 'cold'.

Stochastic considerations have led to a substantially better understand-
ing, and subsequently to a dramatic improvement in efficiency, of the cooling;
see Bardou et al. (1994), Bardou (1995) and Reichel et al. (1995).

Of particular interest are the questions:

(i) how much of the total time of the experiment does the momentum
(vector) of the atom belong to a small neighbourhood of the origin.

(ii) what is the distribution of the momentum given that it belongs to such
a neighbourhood.

1 MaPhySto - Centre for Mathematical Physics and Stochastics, funded by a grant from
the Danish National Research Foundation.
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Figure 1. Experimental setup for laser cooling and trapping.

These and related questions are discussed in considerable detail in a forth-
coming paper by Bardou, Bochaud, Aspect and Cohen-Tannoudji (1999), a
preliminary version of which has kindly been provided to us by Francois Bar-
dou. (See also Bardou and Castin (1998)). We shall refer to their treatment
as the ABBC analysis.

The ABBC analysis led to the heart of the matter but through an ap-
proximate analysis, ab initio. In Sections 4 and 5 we review and extend
that work in the light of the theory of renewals and occupation times for
stochastic processes. In this we draw on well known results of that theory
as expounded, for instance, in Bingham, Goldie and Teugels (1987). Sec-
tion 2 outlines the physical setting in more detail and Section 3 specifies
the resulting stochastic process model for a one-dimensional component of
the momentum vector. Some analogous, but simpler, models that allow of a
fairly detailed analysis are briefly treated in Section 6, and the final Section
7 contains concluding remarks.

2 Laser cooling

The four most prominent cooling techniques, listed in the order they arose
chronologically, are Doppler cooling, Sisyphus cooling, VSCPT (Velocity-
Selective Coherent Population Trapping) and Raman ccoling. Doppler cool-
ing and Sisyphus cooling were capable of bringing the temperature down to
1 μK, approximately, but lower limits are not achievable by these methods
due to a recoil effect. With VSCPT and Raman cooling temperatures of
the order 1 nK are reached. These two methods rely heavily on the effects
of what in the physics literature has become to be known as 'Levy flights',
and which play an important role in many other contexts in physics. In the
language of stochastics the effects are those associated to the properties of
the stable laws (cf. Sections 4 and 5).

For an atom subjected to VSCPT, the quantum mechanical description
of its behaviour is as a wave function φ and it is this function that un-
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dergoes a random trajectory in Hubert space, the stochastic movements
being caused by absorption and emission of photons. In this connection, see
Cohen-Tannoudji, Bardou and Aspect (1992), Castin and M0lmer (1995)
and M0lmer and Castin (1996).

The models to be described and discussed in the following refer mainly to
the Raman method. Under that type of experimental setup we have in mind
here the momentum of the atom is accurately determined, in the sense of
having a narrow probability distribution (centered on zero) and hence, due to
complementarity, the position is only vaguely determined. Correspondingly,
the stochastic processes we shall be discussing in the following sections are
to be conceived as models for the time behaviour of the momentum rather
than the position of the atom. However, this still means (recall the atomic
scales) that with high probability the position will be in a (roughly) spherical
region with a diameter of the order of 1 mm or less (the central region in
Figure 1).

Laser cooling and trapping makes it possible to measure important phys-
ical quantities with unprecedented precision and to study various types of
fundamental questions in particle physics, for instance concerning atom op-
tics, atom interferometry, atomic clocks, and high resolution spectroscopy.
The 1997 Nobel Price in physics was given for research in this area, to
Steven Chu, Claude Cohen-Tannoudji and William D. Phillips. The three
Nobel Prize Lectures, by Chu (1998), Cohen-Tannoudji (1998) and Phillips
(1998), are highly readable and informative. An earlier, less technical and
very illuminating, discussion was given by Aspect and Dalibar (1994).

For the future, the techniques hold much promise for the study of 'pure'
situations, such as systems of a small number of atoms in well-defined states
exhibiting quantum features.

3 Stochastic momentum model

As indicated in Sections 1 and 2, the basic description of the behaviour
of a single atom is in terms of the random 'path' of its wave function φ.
Under Raman cooling (and also under VSCPT) the description can for many
purposes be reduced to the following type of model for the momentum of
the atom, as a function of t.

Let Yt be a Markov jump process with state space RD and transition
law μ(x, άy) for jumps from x to y. The rate function for the waiting times
will be denoted by λ; in other words, letting τ(y) be the generic notation for
a waiting time in state y we have that the law of τ(y) is exponential with
mean λ(y)"1. We write I\4(ί) for the occupation time in a set A up till time
ί, i.e.

ΓA(t) = I lAiXs)άs
Jo
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and Bx(p) will denote the ball in RD with radius p and center x. We shall

refer to i?o(r), for some small r, as the 'trap', this corresponding to the cold

states of the atom. Finally, let At be the random variable that is 0 if the

atom is in the trap at time t and is 1 otherwise, and define qt to be the

conditional probability density of Yt given that At = 0, i.e.

qt(y)=p(ytYt\At = o)

The dimensions D = 1,2 or 3 are those of physical interest, and we shall

mainly consider the one-dimensional case. The key experimental setting is

such that, up to a scaling, which is unimportant in the present context (see

further in Section 4, Footnote 3),

λ(y) = φ Γ for y e β 0 (1)

for some c > 0 and some 7 > 0. The parameter 7 is determined by the

experimental setup2, the case 7 = 2 being of some special interest3. For y

outside the ball BQ(1) various forms of λ(y) are considered. We shall discuss

three model types:

Model type I: For some R > 1 there is a reflecting barrier at the surface

of the ball B0{R)> and λ(y) = c for 1 < \y\ < R.

Model type II: λ(y) = c for all y with 1 < |y|.

Model type III: λ(y) = 1 for 1 < \y\ < R and λ(y) = c{R/\y\γ for

η > 0 and all y with R < \y\.

Furthermore, under model types II and III μ(x, dy) is of the form

2 The reason for the special power form of the intensity function in a neighborhood of
zero comes from physical considerations of the atoms influenced by the laser. In VSCPT
cooling 7 = 2 because an atom which has absorbed a photon is in an unstable, excited
state. Physical reasoning shows that the transmisson rate in this state will be proportional
to the square of the momentum of the atom. This in turn leads to a transmission rate in
the non-coupled, stable state with the same momentum dependency. For Raman cooling,
on the other hand, 7 can be tuned by the experimenter. In this set-up the reasoning goes
via the Fourier transform of light pulses. For example, a Blackman pulse gives 7 = 4,
while for a rectangular pulse 7 = 2. See Aspect et al. (1988) and (1989) for more detailed
physical explanations.

3In some instances, however, a more realistic specification of λ inside the ball BQ(1) is
as

for co > 0 but very small. We shall not consider this possibility further here, but take it
up in connection with the discrete model formulation in Subsection 6.1
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Figure 2. Shape of X(y) in model type I with 7 = 2.

for some function φ, which in the one-dimensional case may be taken as

Φ( ) = δ~ll[-δ/2,δ/2]( )

for some positive δ < 1; that is, for D = 1 the jump sizes are uniformly
distributed between — δ/2 and J/24. For model type I this form is modified
near the reflecting barrier, in a natural fashion. (For model type I, only the
behaviour within the ball BQ(R) is studied.)

For investigations in physics, model type I is the most important and we
shall mainly consider this. Furthermore, for simplicity, we largely restrict
attention to the one-dimensional case, i.e. D = 1.

4 The ABBC analysis

As already indicated, in the ABBC approach one considers, in momentum
space, a small ball Bo(r) - the trap - centred at 0 and with radius r.

Let τi, T2,... and fi, T2,... denote the successive sojourn times in and out
of the trap, respectively, the T -S constituting an i.i.d. sequence and likewise
for the fi-s. It is assumed that with sufficient accuracy one can think of
these two sequences as being independent. The degree of accuracy of the
implied approximation depends on the size of δ.

It is furthermore argued that provided r « δ/2 one can, to good ap-
proximation, assume that when the atom jumps into the trap from outside,
the attained momentum y will be uniformly distributed in Bo(r). Letting
λ(y) denote the rate of the exponential waiting time distribution in mo-
mentum state y one therefore has that the r̂ -s follow the distribution with
density

= \B0(r)\-1 ί λ(y)
JBo(r)

4In the units chosen here, δ is of the order of h\k\ where h is Planck's constant and k
is the optical wave-vector.
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where |i?o(r)l *s the volume of BQ(Γ) and r is a generic random variable
having the same distribution as the Tj-s. Let α = D/j, then

for some constant α. Thus, provided α < 2, the law of the Tf-s belongs to
the domain of attraction of a positive α-stable distribution with a scaling
constant b depending on α. We denote the distribution function of this
positive α-stable law5 by Sα(x;b). In particular, if 7 = 2 and D = 1, then
α = 1/2 and

p(x\τ) = -r-ι

Ί{-,r2x)χ-*l2

where 7(α, x) is the incomplete gamma function

sa-le~sdsη{a,x) = I
Jo

Hence the r̂ -s are in the domain of attraction of the ^-stable law with scaling

constant b = 2~3r~2.

As regards what happens outside the trap, it is argued that under model

type I the τ;-s belong to the domain of attraction of the normal law, while

under type II the domain of attraction is again that of a ^-stable law with

some scaling constant 6, as is indeed plausible in view of well-known proba-

bilistic results. Under model type III, the distribution of the fj-s is argued

to belong to the domain of attraction of a ^-stable law when 77 is chosen

equal to 2.

In the calculations below we will frequently refer to the distributions

of T{ and T{ as being α-stable and ά-stable respectively, where ά < α and

ά, α G (0,1). In model type II we have α = ά while under model type III,

ά < α. Mathematically, the most interesting cases are α = ά = 1/2 (model

type II) and α = 1/2, ά = 1/4 (model type III).

4.1 Occupation times

We consider here the time spent by the atom in the trap between 0 and t.
Model type I: Let τu\ denote the longest of the periods spent in the trap

before time t. For t -> 00, Tφ is of the order of t (cf. a well-known property
of the stable laws) and hence, in particular, ΓBo^(t)/t —> 1.

Model type II: In this case

where b and b are the scaling constants of r and f, respectively.

Model type III: In this model ά < α and hence TBo^(t)/t -> 0.
5In a standard notation (see, e.g., Samorodnitsky and Taqqu (1994)) this law is denoted

Sa(b,β,μ) with β = 1 and μ = 0.
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4.2 The 'sprinkling distributions'

To obtain more precise information on the distribution of the momentum
Yt at time t the authors derive the 'sprinkling distributions' SR and SE In
the traditional probabilistic terminology and assuming that the atom starts
outside the trap, SR and SE are, in fact, the renewal measures corresponding
to the sequences {fi + ... + n + f*} and {fi + n + ... + τi + τ;}, respectively.
Denoting the corresponding renewal densities by UR and UE we have

2 = 1

and

uR{t)=p(t\τ)+ I uE{t-x)p(x\τ)άx
Jo

The Laplace transforms of ΪXE(£) and u#(t) are

and

r
Jo

r
Jo
/o

respectively, where L{^ \ χ\ is the Laplace transform of the random variable
χat0.

Now consider model type I. Then τ+τ belongs to the domain of attraction
of a positive α-stable law with scale parameter b and, as the authors show
and as follows also from results of Dynkin and Lamperti (see further in
Section 5), we then have

UB(t),UR(t) ^

for t —ϊ oo. In model type II f belongs to the domain of attraction of a
positive α-stable law with scale parameter b. Thus,

(6 + o)Γ(α)

when t -> oo. Under model type III, f belongs to the ά-stable domain,
where ά < α. Hence,

«E(t),«ϋ(t) x ^

6Γ(α)

when t —>• oo.



Laser Cooling and Stochastics 57

4.3 Trapping probabilities

Next the authors discuss the probability of finding an atom in the trap. We
give here a similar derivation of this probability: Let Q(t) = Pτ{At = 0},
i.e. be the probability of finding the atom in the trap Bo(r) at time t. We
have

(1) Q(t) = G(t) + / p{x\h + n)Q(t - x)dx
Jo

where

G(t)= f p{xtf)Pr{r >t-x}dx
Jo

Relation (1) is a renewal equation, which has the solution

(2) Q(t) = [ G(t- x)uE{x) dx
Jo

= I Uβ(t — x) p{u t f) Pr{r > x — u}dudx
Jo Jo

The Laplace transform of Q(t) takes the form

In order to study the asymptotics of Q(t) we need to distinguish between

the different model types. First, consider model type I. Since f has finite

expectation and r belongs to the domain of attraction of an α-stable law

with scale 6,

Γ e'etQ{t) dt ~ θ~ι - E{f}
./o

when θ ->> 0. Hence, when t —> oc, Q(t) ~ 1. In model type II both f
and r have distributions in the domain of attraction of an α-stable law with
α E (0,1) and scale parameter b and 6, respectively. We have, for small 0,

Π
Jo 6 + 6

which implies

Q(t) ~ Λ-
6 + 6

when t -> oo. Finally, for model type III r and f have distributions in

the domain of an α-stable and an ά-stable distribution, respectively, where

ά < α and ά, α E (0,1). In this case, the small θ behaviour will be

e-θtQ{t)dtf
Jo

o b
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which gives the large time asymptotics

b I ί - ( Ω " ά )

Note that formally for ά = α this expression becomes Q(t) ~ 6/6, which

differs from the correct results as given for model type II.

4.4 Momentum distribution

Finally the authors discuss the distribution of the momentum at time t inside

the trap. We have,

= (2r)~ι / V φ ί fi + τ2 + . . . + h) Pr{r(y) >t-x}dx

rt

= (2r)~ι / Pr{τ(y) > t - x}uR{x) dx
Jo

= (2r)-λ f e-^-χ^^uR(x)dx
Jo

= {2r)~ι /
Jo

tt

tu) du t

The asymptotics for p(y, 0 X Yt, At) is easily studied in terms of the asymp-
totics of uR:

uR(x) - cχ- ( 1 " ά )

where ά = α in model types I and II and ά = ά in model type III. Fur-
thermore, c = (6Γ(α))~1 and c = ((6 + 6)Γ(α))~1 in model types I and II,
respectively, and c = (6Γ(ά))~1 in model type III. Hence, for t —> oo,

(3) p(v,0tYt,At)~±g&

where

f ^^u7*-1 du(x)= f
Jo

Our main interest lies in the large time behaviour of qt{y)' First, notice
that

qt(y) = P(y ί Yt\At = 0) = Q-\t)p{y, 0 \ Yu At)



Laser Cooling and Stochastics 59

Hence, we can give the asymptotic results for qt(y) under the three different
model types appealing to the asymptotics for Q(t) derived in the subsection
above: Under model type I

(4) qt(y)^(2rbT(α)r1-Gα(tλ(y))tα, t -+ oo

For model type II,

(5) ^

and, finally, for model type III,

( 6 ) qt{y)

It follows that through rescaling by the transformation u = βty, where βt is
defined by tλ(β^1) = 1, one obtains a limit law for u (conditional on At = 0)
in all three cases.

5 Further analysis

We now return to the two first themes of Section 4 in order to discuss these
further in the light of existing probabilistic results on occupation times and
renewal theory.

5.1 Occupation times

Let us first consider the general momentum model introduced in Section 3.
From Ethier and Kurtz (1986), p.162, we know that Yt is a time-homogeneous
Markov process with generator given by

(7) Λf(x) = λ(x) [ (f{x) - f(y)) μ{x, dy)

The domain of A is the space of real-valued measurable functions on RD

which are integrable with respect to the measure μ(x,dy).
Assume λ( ) > 0 is bounded, and denote λ := sup3/λ(y). Introduce a

modification of the transition probabilities μ in the following manner:

(8) μ{x, A) = (1 ^- ) δA(x) + ~^-μ{x, A)

Let {xk} be the Markov chain with transition law μ. According to Ethier and

Kurtz (1986), Yt has the same finite dimensional probability distributions

as the process Xt := xpt, where Pt is a Poisson process with intensity λ
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independent of {xk}- The transition probabilites for Xt are easily derived

to be

(9) Pr{X t + ί € AI Xt = x} = e λ s V ^ - P φ n G Λ | z 0 = x}

Our main object of interest is relative occupation times for Yt. Denote

the occupation time in a Borel set A given that YQ — x by

(10) Γ*A(t)= f
Jo

The relative occupation time in question for laser cooling is

We consider the occupation time distribution of Yt by exploiting the
equivalence between the processes Xt and Yt: Let A E B(RD). For n E No
define

(12) NA(n) = #{XieA:0<i<n}

i.e. NA{TI) is the number of visits to the set A of the Markov chain {xi} up
till time n. Denote the number of jumps of Xt between 0 and t by Nt and
define

(13) NA(t) := NA(Nt) = # {Xi E A : 0 < i < Nt}

With these objects at hand, we can start to calculate an expression for
the (defective) probability density of the occupation time of Yt in a set
A. For s < ί, let px°(s f Γ^(ί)) be the (defective) probability density of
TA(t) at s when YQ = XQ £ A. If NA(t) = fc we know that X s has spent A;
exponentially distributed time periods in the set A on the time interval [0, ί].
These exponential waiting times are independent with intensity λ, and the
sum of k periods will thus be gamma distributed with parameters k and λ.
Hence,

(14) p^tΓΛίt^p^
J f e = l

where g(s; fc, λ) = ΛrsSk~1e~Xs^ is the density of the gamma distribution. A

straightforward calculation with conditional probabilities shows that

OO

px°(k t NA(t)) = 5>*°(fc t NA(n))p(n % Nt)
n=k

n=k
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since Nt is Possion distributed with intensity λ. Thus

(15) p*{s X ΓΛ(t)) = e~
71=0

ni
71=0

n = 0

ra=l k = l V y

Hence, we see that the problem of calculating the occupation time of Yt is
reduced to finding the occupation time in A for the chain {#&}.

We now consider the asymptotics for the occupation time, in the frame-
work provided by Takacs (1959): Assume we have a stochastic process which
enters states A and B alternately. The states A and B are disjoint subsets
of the state space of the process, and their union constitutes the whole
state space. The sequences of the successive sojourn times spent in the two
states are assumed to be independent positive random variables. Under some
asymptotic assumptions for the sums of the sojourn times in the two states,
Takacs (1959) provides explicit asymptotic results for the total sojourn time
in state B (or A) during the time interval (0, ί). His results are directly
applicable to the laser cooling framework. We consider this in further detail:

Let state B — BQ(Γ) where r « 1 and, as in the Section above, {r̂ }
denotes the sequence of sojourn times in 5, while the sojourn times in state
A = Bc are denoted {f̂ }. As we saw in Section 4, the r̂ -s will belong to the
domain of attraction of a positive stable distribution of index α and scale
parameter 6. I.e.,

(16) lim Pr j ^ ^ < x) = Sα(x; b)

Concerning the shape of the distribution of the fj-s, this will depend on
the choice of model. In model type I, the fi-s will belong to the domain of
attraction of the normal distribution:

(17)
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where σ2 is the variance of the generic variable τ with the same distribution
as the fi-s. Φ(x) is the standard normal distribution. In model type II, the
f̂ -s belong to the domain of attraction of a stable law of index α with scale
parameter b:

lim Pr { ̂ =f^ <x\ = Sα(x;(18) lim Pr { ̂ =f^ <x\ = Sα(x; b)

Finally, for model type III, the sojourn times in the 'hot' state are in the

domain of attraction of a stable law Sά(x] b)

(19) lim Pr ( & ^ <x) = Sά(x; b)
n-*oo

The conditions (16) and (17-19) are exactly what is needed in order to
state the following result by Takacs (1959):

Theorem 5.1 The asymptotics ofTβQ^(t) is given by

(20) lim P r { Γ B o ( r l ^ ~ Mjt <s} = Qjis), j = 1,2,3

where.

Model type I. m\ = α, M\ = 1 and M\ = E{τ}. Qι(s) is the distribution

of —x"1/2 where χ is distributed as 5Q(s;6).

Model type II. rri2 = \, M2 = 0 and M<ι = 1. Q2{s) is the distribution of

x/{ζ + x) where ζ is distributed as Sa(sm, b) and χ as Sa(s; 6).

Model type III. 777,3 = OL/OL, M3 = 0 and M3 = 1. Q$(s) is the distribution
of χζ~ιl2 where ζ is distributed as Sά(s b) and χ as Sa(sm,b).

5.2 The 'sprinkling' distribution

Again, let {n}™ and {ri}™ be independent random variables denoting the
sojourn times in the 'hot' and 'cold' states respectively. Let F(t) and F(t)
be the distribution functions of T{ and f{ respectively, where we assume the
tail behaviour

(21) 1 - F{t)

and

(22) 1 - P{t)

for positive constants 6, b and α. Note that in the case of model type II we
have α = 1/2, i(t) — 1, the constants b and b being the scale parameters of
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the stable distribution. For convenience, we denote the distribution function
of σ := τ+τ by Fσ. Further, f and r are generic random variables distributed
as Ti and T{. Introduce the two renewal processes

(23) Mt = max {A; | h + n + f2 + ... + τk < t}

(24) Mt = max {k \ fi + n + f2 + ... + fk + τk < t]

By convention, we let Mt = 0 and Mt = 0 if the sets of A 's to maximize are
empty. Define the process

Mt Mt

(25) St =

The processes Mt and Mt decide the state of the cooling process. To see
this, introduce the times R\ = fi, E\ = τ\ + ri, R2 = n + τi + f2, E2 =
fi + τi + T2 + T2, The £7£-s denote the exzί times, i.e. the times when the
process exits the cooling state. On the other hand, the Ri-s are the times
the atom returns to the cooling state. It is easy to see that if Mt — ̂  and
Mt = n — 1, then t E [Rn, J5n), while if Mt = n and Mt = n, t G [En, i?n+i).
Thus, Mt is either equal to or one less than Mt. In the former case the process
St is in the hot state (i.e. the waiting time to next change is distributed
as fra), while in the latter St is in the cooled state (i.e. waiting time to
next change is distributed according to τn+i). In the previously introduced
notation, At = 0 if and only if Mt = Mt + 1 while At — 1 if and only if
Mt = Mt.

We consider the asymptotic behaviour of the residual time Rt := t —
St when we are in the 'cool' state, i.e. when At = 0. Motivated by the
Dynkin-Lamperti theorem (see Bingham et al. (1987), p.361), it is natural
to consider Rt/t and show that this has a limiting distribution. We adopt the
argument in Bingham et al. (1987), p.361, to our case of two independent
sequences of waiting times: Let u < v and w, v G [0,1]. We have that
ut <Rt< vt and At = 0 if and only if for some n G No and y E [1 — v, 1 — it],

= ty

and τ n + i > ί(l — y). Summing over n and integrating over y we get

(26) Pr{ i i < Rt/t <v,At = 0}=[ U (1 - F(t{l - y))) {F * Uσ){tdy)

Jl-υ

where Uσ(t) is the renewal measure associated to σ. Observe that F *Uσ =
C/β, the 'sprinkling' distribution with density UR(t). The right hand side of
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(26) can be written

'"" (1 - F(t(l - „))) UR(tdy) = ΓU l~f{t{l
l-v Jl-υ l ~ *

Uσ{t) uσ(t)

From Feller (1971), p. 271, we have

when t —> oo, and by Tauberian theory this yields

when t -ϊ oo. Hence, for t —> oo,

Uσ(t)
implying

Finally,

In conclusion, we get

U(l-F(t(l-y)))UR(tdy)-+ f * — -
, Jl-υ (1 - y)Ω6H

b sinπo; fυ

y~

Similar calculations can be worked through for the case when At = 1. Hence,
we have the following version of the Dynkin-Lamperti Theorem in the case
of two independent sequences {TJ} and {fi}:

Theorem 5.2 Assume F and F have tail behaviour as in (21) and (22).
Then the normalized residual time Rt/t := 1 — St/t when we are in the 'cooΓ
state has a limiting distribution

Km Pv{Rt/t e (u,v),At = 0} = - ^ f ga(y)dy
t-*00 b + b Ju
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and, when we are in the 'hot' state,

lim Pτ{Rt/t G (u,v),At = 1} = - \ Γ ga(v)dy
t^°° b + b Ju

where

π

6 Some analogous models

The approach considered in Sections 4 and 5 is based on certain approxima-
tions in relation to the basic model for the momentum, specified in Section 3.
While these approximations appear highly plausible, any precise assessment
of their accuracy is not available at present.

In this section we briefly discuss two model types that can be considered
as alternative approximations to the momentum model and that allow fairly
detailed analysis. The first is purely discrete and the other is of the diffusion
type.

6.1 Discrete circular models

Let x(t) be a semi-Markov process with a finite state space S consisting of
771 + 1 points that we may view as positioned equidistantly around a circle.
We talk of x(t) as the position of the atom at time ί, and one of the points in
5, denoted 0, will be considered as the 'trap'. We index the other points in
S as i — ±1,.. . , ±k if m = 2k and as i = ±1,.. ., ±fe, k + 1 if m = 2k + 1. Let
qi denote the density of the waiting time distribution at site i and suppose
that q-i = qi, i = 1,..., fc. Furthermore, we let σo be the recurrence time to
i = 0, i.e. the time it takes for the atom, having just left 0, to return to the
trap, and ξo will denote the mean value of σo

For brevity we shall consider here only the case m = 2 and we write q
for q\. More general settings and more detailed analyses will be discussed in
a forthcoming paper. Also, we assume that the transitions between states
follow the symmetric random walk pattern, i.e. transition can take place
only to one of the two neighbouring sites on the circle, with equal probaility
\. Finally, suppose the process starts at site i = 1 and we let Γo(ί) =
JQ 1{0}(Z(S)) ds. The distribution of Γo(t) then has an atom of size Pr{σo >
t} at 0 while at u > 0 the probability density of ΓQ(£) is

p(«tΓ0(ί)) =

(27) +Q0(«) f > w ( t - u \
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where

/•OO

Qo(u) = / qo(v)dυ
Ju

We can mimic the ABBC treatment of model type I with CQ = 0 by

letting qo and q be the densities of a stable law of index \ and a negative

exponential law with parameter λ, while the case where CQ > 0 may be

mimicked by instead letting go be the density of the negative exponential

distribution with a parameter λo < λ. In the latter case,

and

(Zo) p [t $ σoj = Λe

It follows that (27) may be rewritten as

(29) p(u t Γ0(t)) - Λ(t - w,ti) + Ro{t - u,u)

where Ro(t — w, ιx) tends to 0 at an exponential rate as t -> oc and

= (ξo + μ)S(t-u,u)

with μ = λ"1 and

S(t-u,u) = Σ/P*ι/(t-utσo)q*o

i

2
OO

x[ [2

i/)! (λou)

2
OO
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The last factor is a special case of Kummerer's function6 M(α, c, z) defined
fore ^ 0 , - 1 , -2, ...by

(30) M(α,c,s)=Γ(c)M(α,c,s)

and

(31)
- l ) 5!

By formulae (9.03), (9.04) and Subsection 10.4 in Olver (1974; Chapter
7) we have, for z real and tending to oo,

(32) M(α,c,z)~z

α-Cez/T(α)

provided neither α nor 1 + α — c is a negative integer or 0. Consequently, for
t —> oo we have

where /Q is the Bessel function

2 IA\8

w-tψ
s=0

Hence, since for z real and tending to oo

I0(z) ~ (2π)-1/

we find

All in all we therefore have

(33)

for t —> oo.
6 This function is also referred to as a degenerate hypergeometric function (cf. Grads-

theyn and Ryzhik (1965; p. 1058) who use the notation Φ(α,c;z) instead of M(α,c,z)).
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6.2 A diffusion model

We introduce a diffusion model for the atomic momentum which is a geomet-

ric Brownian motion in a neighbourhood of zero and a reflected Brownian

motion elsewhere. The process will be reflected at R and -R (for R > 1).

Consider the diffusion

(34)

where

(35) λ(x) = x α l ( _ M

The diffusion process is symmetric around 0 and converges to zero a.s. when
t —> oo. By construction, the invariant measure of Xt is X~ι(x). This model
for the laser cooling and trapping process does not take jumps into account.
Observe that when x E (0,1] the first passage time for Xt to 1 will have heavy
tails. Indeed, since X* = xexp(Bt — t/2), the first passage time to 1 will
be the same in distribution as the first passage time to zero of a Brownian
motion with drift —1/2 starting at In a:. Hence, as is well known, the tail of
the distribution will go like 6ί~3/2.

We consider the occupation time for Xt in [—1,1]. It is sufficient to
consider only positive values of x since the process is symmetric around zero
and its paths will never cross the axis. Let,

:= Γ
Jo

)ds

The Laplace transform z(x) = /0°°exp(—αtf)E[exp(—βΓx(t))] dt is a piece-
wise C2-solution to

x2z"(x)=2(a + β)z(x)-l, a; 6(0,1)

z"{x) = 2az(x) - 1, x 6 (1, R)

with boundary condition

z'(R) = 0

(cf. Karatzas and Shreve (1991)). The solution is: For x 6 (0,1],

Z(x) = —: 7̂- * , v

α(α + /3) (1 + V 1 + 8(α + /?)) cosh((iϊ -

.
• exp(- lnx (1 + y/l + 8(α + β))) +
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and for x £ (I,i2]

-/? 1 cosh((i? - x)y/2α) 1
Z^X' " α(α + /?) ' t - 2v^sinh((ii-i)V2^) ' cosh((Λ-l)\/2α) + α

(l+v/l+8(α+^)) coBh((Λ-l)v^S)

We can invert these transforms with respect to α:

Theorem 6.1 For x E (1,-R] we have,

./o

(36)

71=0

and for x G (0,1],

n=0

(37) { Ί } ί n + 1 )

where

(38) , ( ^ ) = r
}

2 J ^/2π(ί - s)

(39) feΛ±(ί) = ^(- l) n {pχ<β( ) ±PX<Λ( ) * P K H ( ) } ( ) *Pi<«( )(*)
n=0

(40) Pχ(t;/ί) = |e- ' w e- t / 8 pi l l l x < o(t/4)

and px<iι(t) is the density for the first passage time in R for a Brownian
motion starting at x < R.

We note that it is possible to invert these transforms with respect to
β. In a forthcoming paper we will do this and investigate the asymptotic
properties of the distributions.

7 Concluding remarks

We hope in the future to address some of the following points.
The ultimate aim would be to give a detailed probabilistic treatment of

the path properties of the jump process of the wave function ψ, which is
a stochastic process in an infinite dimensional Hubert space whose precise
properties are determined by quantum mechanics (cf. Section 2).
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A less ambitious aim is to analyze the basic momentum model (outlined
in Section 3) more directly, that is without the type of initial approximation
that lie in treating the successive sojourns in and out of the trap as if they
were independent. In particular, it seems of some considerable interest (in
dimensions D = 1,2,3) to obtain more accurate information about: (i)
the momentum distribution in the trap (ii) the effect of having the size of
the jumps (which is of the order of δ in the notation we have adopted)
comparable to the size of the trap (iii) the relation between time behaviour
and ensemble behaviour.

Several of these points seem quite challenging, but we realize that the
interest in them may be largely mathematical rather than motivated by
essential physical questions.

Acknowledgements. We are greatly indebted to Francois Bardou, Svend
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