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outcomes using the weighted likelihood*
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Abstract: Predicting the outcome of a future game between two sports teams
poses a challenging problem of interest to statistical scientists as well as the
general public. To be effective such prediction must exploit special contextual
features of the game. In this paper, we confront three such features and address
the need to: (i) use all relevant sample information; (ii) reflect the home court
advantage. To do so we use the relevance weighted likelihood of Hu and Zidek
(2002). Finally we demonstrate the value of the method by showing how it
could have been used to predict the 1996-1997 NBA Final series results. Our
relevance likelihood-based method proves to be quite accurate.

1. Introduction

This paper demonstrates the use of weighted likelihood (WL) to predict the winner
of 1996-1997 National Basketball Association (NBA) Finals between the Chicago
Bulls and the Utah Jazz. However, as we try to indicate, the WL has much wider
applicability inside as well outside the domain of sports.

Statistical methods have been extensively used in sports (Bennett 1998). Harville
(1977) uses regression analysis to rate high school and college football teams based
on observed score differences. In a later paper (Harville 1980), he develops a method
for forecasting the point spread of NFL games by using similar techniques. In related
papers, Schwertman et al (1996) and Carlin (1996) tackle NCAA basketball. Both
papers (like this one) estimate the probability that team i beats j. They (unlike
us) are based on pre-game information. The first uses a logistic regression analysis
of win - loss records and various functions of seed numbers (that is ranks assigned
to the teams going into a tournament), as a way of incorporating prior knowl-
edge and expert opinion. The second extends earlier unpublished work of Schwert-
man et al (1993) by using other external information such as “...the RPI index,
Sagarin ratings, and so on...” in addition to seed numbers. Like Harville (1980)
and Stern (1992), Carlin uses published point spreads to capture pregame infor-
mation and does a linear regression analysis of observed point spreads on pregame
information. Models derived from that analysis can be used to predict game win-
ners.

Our approach, unlike those described above, does not attempt to take pre-game
information into consideration although it may be possible to do that through the
weights in the WL. That issue remains to be explored. Instead, our goal is to intro-
duce the WL method and show how it can be used. No doubt improvements that
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build on earlier work could enhance the method. However, we do assess our ap-
proach against a logistical method that embraces the celebrated method of Bradley
and Terry (1952) that also underlies the work of Schwertman et al. (1996).

The genesis of our work lies in two statistical problems encountered in sports:
(i) the prediction of the outcome of a future game between two specified sports
teams; (ii) the assessment of the accuracy of this prediction. Since typically these
two teams will not have met more than just a few times in the given season, little
direct information will be available to the forecaster. The consequent small sample
size will make naive predictions inaccurate and the associated prediction intervals
excessively large.

Turning to the NBA Finals, we note that the winner is the team that wins a
best of 7 series (that is, the first team to win four games). To predict that outcome,
one might sequentially determine the prediction probability of a Bulls’ win in each
of a series of successive games. To find that probability, the 1996-1997 season data
would be used. However, the Bulls met the Jazz just twice, providing the only
“direct” information available, in the terminology of Hu and Zidek (1993) and Hu
(1994). However, that small sample cannot generate accurate predictions.

To overcome this data deficiency, observe that the Bulls (like the Jazz) played
82 games in the season (2 with the Jazz and 80 with other teams). The 160 games
these two played against other teams provide “relevant” information, in the Hu-
Zidek terminology.

To use both the “direct” and “relevant” information in some simple yet flexible
way, Hu (1994) proposes the “relevance weighted likelihood”. Hu and Zidek (2002)
extend that likelihood and Wang (2001) further extended it to get the “weighted
likelihood (WL)”, the terminology we use in this paper.

The method of weighted likelihood has been applied to a neurophysiology ex-
periment (Hu and Rosenberger, 2000). In that paper, they find that both bias
and mean square error are significantly reduced by using the weighted likelihood
method. Hu and Zidek (2001) use the WL to predict the number of goals (with pre-
diction intervals) for each of the Vancouver Canucks and Calgary Flames in their
NHL games against each other during the 1996-1997 season. They (Hu and Zidek
2002) show how the WL can be used to construct generalizations of the classical
Shewhart control charts. Their generalization includes the moving average and ex-
ponentially moving average charts and allows for a variety of failure modes when
processes go out of control. This application introduces the weighted likelihood ra-
tio test. In that same paper, they show how the James Stein estimator, including
generalizations, can be found with the WL.

A particularly important class of applications arise in estimating parameters
that are interrelated, leading to natural relationships among the associated pop-
ulations and inducing transfers of information from their associated samples. Van
Eeden and Zidek (2002) show how such interrelations may be exploited through
the WL when the means of two normal populations with known variances are or-
dered. The analogous problem when the mean difference is bounded is treated in
Van Eeden and Zidek (2000). Finally, we would mention an application to disease
mapping in Wang (2001).

In Section 2, we apply the WL in the NBA forecasting application above by
taking advantage of special features of sports data. The maximum WL estimator
(MWLE) is developed for predicting the result of a future game. The mean square
error of this MWLE is given. Moreover, we construct approximate confidence in-
tervals using the asymptotic theory for the MWLE given by Hu (1997).
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In Section 3, we apply the method developed in Section 2 to predict the 1996—
1997 NBA playoff results, specifically for games involving the Chicago Bulls and
the Utah Jazz. Our predictions agree quite well with the actual outcomes.

To validate that positive performance assessment, in Section 3 we consider the
playoff games played by the Bulls against each of three other teams, the Miami Heat,
the Atlanta Hawks, and the New York Knicks. Similarly, playoff games between
the Heat and Knicks are considered. These additional predictions are also in good
agreement with the actual game outcomes.

Many other approaches can be taken in our application. In Section 4, our method
is shown to compare favorably with a “purpose built” competitor, an extension of
the Bradley Terry model (Bradley and Terry 1952). Moreover, it proves to have
all the flexibility and much of the simplicity of its classical predecessor proposed
by Fisher. Thus, we are able to recommend it as a practical alternative to its
competitors for the application considered.

2. Sports data and the WL
2.1. Contextual features

Usually in sports, the outcome of any one game derives from the combined efforts
of two teams that have seldom played each other before. Yet these games yield the
only direct sample information available about the relative strength of these two
teams. At the same time, each of these teams will have played many games against
other teams thereby generating relevant (although not direct) sample information.
The predictive probability of a win in the next game between these two teams,
should combine both kinds of information.

In some sports, the home team has a great advantage (see Section 3) that must
be accounted for when the data are analyzed (although in their application, Hu
and Zidek (2002) ignored that advantage). Finally, the outcome of any one game
will depend on both the offensive and defensive capabilities of the teams involved.
Satisfactory prediction of future games requires that we combine information about
the offense and defense of the two teams involved in any specific game.

2.2. The weighted likelihood

To develop a statistical model for the analysis of sports data, one should recognize
the distinctive contextual features described in the last subsection. Let Y4 (h) be
a Bernoulli random variable that is 1 if team, A, wins against team B when B is at
home. Similarly, let Y4 p(r) be a random variable that is 1 or 0 according as team A
wins against team B when team B is at home. Note that Yag(h) =1—Yga(r). As
an approximation, assume the time series of Y’s for different games and team pairs
are independent in this paper. Clearly, a more sophisticated approach like that of
Hu, Rosenberger, and Zidek (2000) would allow dependent game outcomes.

Suppose the {Yap(h)} and {Yap(r)} have probability density functions
f(y,pap(h)) and f(y,pap(r)) respectively. To predict the game result, (Yap(h),
Ypa(r)) or (Yap(r),Ysa(h)), we have to estimate the parameters pag(h) and
pap(r).

To create the weights required in implementing the WL, we choose the same
weight in the likelihood factor corresponding to each of the games A played against
teams other than B, irrespective of the opponent. From Hu and Zidek (2002), we
may use the weighted likelihood method to estimate the parameters pap(h) and
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pap(r). The log weighted likelihood of p4p(h) thus becomes

kap

> log f(yan(h).pas(h)) +aas(h) > log f (yacs(h),pas(h))

= A(B)

+ Bas(h) Z log f(y(ay(h), pas(h)), (1)

(A)B

where k4p is the number of games that A against B at home; A(p) denotes the
sum over all games that A played against teams other than B in the league with
A at home and y4(p)(h) the corresponding binary game outcomes; Z( A)p is the
sum over all games that B played against teams other than A when B is away
and y(a)p(h) the corresponding outcomes. Let PUWLE (L) be the corresponding
maximum weighted likelihood estimate (MWLE) of pap(h). The MWLE of pap(r)
can be defined in a similar way.

We adopt the approximate Akaike criterion (Akaike, 1977, Akaike, 1985, and
Hu and Zidek, 2002) to select the weights aap(h) and G4 (h) by minimizing with
respect to both,

E(pan(h) —pan(h))®. (2)

The resulting optima will, however, depend on the unknown p’s being estimated. To
address this problem we can use ‘plug - in’ estimators obtained in any reasonable
way, for these p’s, to obtain &4p(h) and [A?AB(h) from Equation (). One possible
way of doing this is demonstrated in Section 3.

In most applications, we need confidence intervals (or the equivalent) for the
parameters. The impossibility of finding exact confidence intervals based on the
MWLE leads us to use approximate ones based on the asymptotic normality of the
MWLE (see Theorem 5 of Hu, 1997). We obtain such a 95% confidence interval for
pap(h) as

PYMWEE (R) — bias s — 1.967/var ap, pAYEP (h) + bias ap + 1.967/var ap } (3)

Here bias ap and varap are the estimators of the bias and variance given in The-
orem 5 of Hu (1997). With those estimates pap(h) and ppa(r), we can find the
predictive probabilities of winning, losing and drawing the game (along with their
approximate confidence intervals) when a game is played at the home of Team A.

3. Predicting the NBA playoff results

In this section, we turn to the problem of predicting the outcomes of NBA playoff
games. Our analysis concerns the 1996-1997 season.

The home team advantage is significant in the NBA. We tested the null-hypothesis
of no home team advantage against the alternative of a home team advantage and
found a p-value of about 10~7 suggesting the need to separate home and away
games.

To describe our application, let Yap(h) ~ Bernoulli(pap(h)) be independently
distributed random variables representing a “win” or “loss” by team A in any one
game played against team B while A is at home. We first estimate the predictive
probabilities pap(h) and ppa(h) where ‘A’ and ‘B’ denote respectively the Chicago
Bulls and the Utah Jazz, two top NBA teams.

The use of the weighted likelihood seems especially appealing here given the
paucity of “direct” information about the relative strengths of A and B. In fact,
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the Jazz played only one game in Chicago. The classical likelihood leaves no chance
of finding reasonable parameter estimates. In contrast, the MWLE brings in infor-
mation from games each of these teams played against others in the NBA. That is,
the MWLE uses the information in the “relevant sample” in addition to that in the
“direct sample”.

We find the MWLE of psap(h) (from the weighted likelihood () to be

puy "E(h) = gap(h) +aap(h)(Jas)(h) — gap(h))
+ Bas(h)(Yayp(h) — Jas(h)), (4)

where §4p(h) denotes the fraction of wins for A in the k45 (h) games played against
B during the season with A at home. The §4(p)(h) represents the corresponding
fraction of wins for A in the k4 p)(h) games played against teams other than B
with A at home.

By using the approximate Akaike criterion with a reasonable estimate pap(h)
(described below), an optimal weight may be estimated by

_ Vap(h)[Viays(h) + (ays(h) = pap(h))(@ays(h) —Gas)(h))]

éap(h) C+D (5)
and
Ban(h) = Vap(h)[Va)(h) + (?]A(B)(hé_—’_ﬁ;B(h))(gA(B)(h) — yay(h))] (6)
where
_ pa(W(A —pag(h))
VAB(h) - kAB (h) ’
~ Yaw(W) (L = ga (b))
Va)(h) = ko () :
_ Yys()(1 = gayp(h))
Viayp(h) = Foon(h) ,
C = Vap(h)[Viays(h) + Vagsy(h) + (G s(h) — Gacs) ()]
and

D = Vaum(h)(Hash) - ﬁAB(h))Q + Viays(h) (Jacs) (k) — ﬁAB(h))2

+ Vas) (h)Viay(h).
The corresponding mean square error of the MWLE may be estimated by
MSEywre = [Gas(h)(Gacs () — o452 (h))

+ Bap(h)(Fay(h) — ﬁ%}ngE(h))]Q
Ya)(R)(1 = gacs(h))

+ dAB(h) kA(B) (h)
s Yas(h)(1 = gys(h))
+ ﬁAB(h) k(A)B(h)

(1= aap(h) — Ban(n)? AL LE(hL(jB?;f)%gVLE(h))
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The 95% confidence interval of p 4 (h) based on the MWLE would be: [pY¥WEF (h)—
bias ap(h) — 1.96\/var ap (h), P EE (R) + bias ap(h) + 1.96\/var ag(h)], where

bias ap(h) = |6ap () (Gas)(h) — DAY E(h) + Bas(h) @y (h) — pYE 2 (h))|
and

Ya) ()1 = gacs(h))

U&TAB(h) = (541243(]1) kA(B)(h)
- YayB(h)(1 —geays(h))
+ Bap(h) ks (h)

+ (1 —aap(h) — BAB(h))2ﬁ%ngE(haq(jB_(f)%gVLE(m)

We now describe how we found the plug-in estimates, the optimal weights, the
win probabilities and the corresponding confidence intervals by considering the
Bulls against the Jazz while the Bulls are at home.

During the regular season, the Bulls played 41 games at home. One game was
against the Jazz and the Bulls won this game. So kap = 1 and Yap = 1. The
Bulls played 40 games against teams other than the Jazz and won 38 of these
games. Thus, kyp) = 40 and YA(B) = 0.95. The Jazz played 40 (k4yp = 40)
games against teams other than the Bulls on road and won 26 of these games.
Y(A)B =1—26/40 = 0.35. For this case, the plug-in estimate,

kapYap +kamYas + kaysY 1+38+14 53
pan(h) = ABYAB AB)YA(B) WBYA)B _ + 38 + =29 _ 06543
/fAB-i-kA(B)-i-k(A)B 1440+ 40 81

The corresponding values in equation (5) and (6) can be calculated by us-
ing above results. And the values are: Vap(h) = 0.2262, Vy(g)(h) = 0.0011875,
Viays(h) = 0.0056875, C' = 0.082987 and D = 0.000637. Subsistute these values
into equation (5) and (6), we get the optimal weights:

dap(h) =0.50925, and [ap(h) = 0.4831.

The MWLE in () is then
PUYEE (R) = 0.66.

The corresponding mean square error, bias and variance of this MWLE are
MSEMWLE = 0.0016537 biAasAB(h) =0.002 and U&T‘AB(h) = 0.001648.

The 95% confidence interval of p4p(h) based on this MWLE is then [0.58,0.74].

The above MWLE is based on the games with all teams that the Bulls played at
home or the Jazz played on the road. Each game has the same weight in the weighted
likelihood. This seems unreasonable because some of the teams are significantly
weaker than others. Now we only use the teams (10 teams in 1996/97 season) which
won at least 50 games in the season. By using the games with these 10 teams, we
calculate the win probabilities as well as the confidence intervals, which is denoted
by MWLE1.

Before the 1996-1997 finals between the Bulls and the Jazz, both teams had
played the first and second round as well as the conference finals. This additional
information is used in constructing MWLE2.
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Table 1: The Bulls predictive win probabilities (with mean square error) and confi-
dence intervals based on MWLE, MWLE1 and MWLE2 for a future game between
the Bulls and the Jazz during the 1996-1997 season.

MWLE MWLE1 MWLE2

At Chicago | 0.66 (0.002) | 0.77 (0.007) | 0.75 (0.004)
95% C.I. | [0.58,0.74] | [0.60,0.94] | [0.62,0.89]
At Utah | 0.40 (0.002) | 0.36 (0.008) | 0.34 (0.004)
95% C.I. | [0.32,0.48] | [0.16,0.55] | [0.21,0.47]

Table 2: The predictive probabilities of a Bulls’ win against the Jazz together with
confidence intervals for MWLE, MWLE1 and MWLE2 in the 1996-1997 Final.

Game # Game 4 Game 5 Game 6 Game 7 | Total 90+%* C.I.
MWLE Bulls” Win 0.07 0.11 0.21 0.21 0.61 [0.43,0.77]
Jazz Win 0.04 0.13 0.11 0.11 0.39 [0.23,0.56]
MWLE1 | Bulls’ Win 0.07 0.11 0.27 0.26 0.71 [0.30,0.95]
Jazz Win 0.02 0.11 0.08 0.08 0.29 [0.05,0.70]
MWLE2 | Bulls’ Win 0.07 0.10 0.26 0.26 0.69 [0.37,0.92]
Jazz Win 0.02 0.12 0.09 0.08 0.31 [0.08,0.63]

We now use MWLE, MWLE1 and MWLE2 to predict the 1996-1997 Finals
between the Bulls and Jazz. We report the point estimates of the probabilities, the
mean square errors and the confidence intervals of p4p(h) in Table 1

Based on the probabilities and the confidence intervals of Table 1, we can find
the probabilities with which the Bulls (and the Jazz) will win the Finals in four, five,
six and seven games. Also we can calculate the total win probabilities for the Bulls
against the Jazz based on their home and away win probabilities given by each of
the three estimation methods. Confidence intervals for these win probabilities may
be obtained as well. In Table 2 where the results are reported, and in the tables that
follow, that interval is obtained for any pair of teams say A and B from the 95%
asymptotic intervals for A’s home- and A’s away-win-against-B probabilities. Since
those intervals are stochastically dependent, we use a Bonferonni argument and
obtain an asymptotic interval of confidence at least 90%. In obtaining that interval,
we rely on the heuristically obvious fact that the overall win probability must be a
monotonically increasing function of the home and away win probabilities.

Table 1 indicates general agreement between MWLE1 and MWLE2. But MWLE
gives a much smaller estimator of a Chicago win at home. Both MWLE1 and
MWLE2 predict that the Bulls would win the Finals with high probability. Also
MWLE1 and MWLE2 predict the Bulls will win at Game 6. These predictions agree
with the actual result: the Bulls won the Finals in six games.

To explore the performance of our method further, we have also calculated
prediction probabilities for other pairs of teams, the Bulls vs. the Miami Heat, the
Atlanta Hawks, the New York Knicks as well as the Miami Heat against the Knicks.
The detailed results are not reported in this paper.
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For the Bulls against the Miami Heat, both MWLE1 and MWLE2 also predict
that most probably the Bulls will win at Game 5. That prediction proved to be cor-
rect in the playoff. When the Bulls play the Atlanta Hawks, MWLE1 and MWLE2
also predict a Bulls’ win at game 5 with the highest probabilities (0.43 and 0.40).
[In the playoffs the Bulls did win at game 5.

Our analysis shows that a Heat - Knicks game will be close. MWLE and MWLE1
predict that the Heat have a slight advantage in the playoffs, while MWLE2 favors
the Knicks slightly. In fact, the Heat won at game 7. However, an accident occurred
in that series leading to a suspension of several New York players in games 6 and 7.
Undoubtedly this influenced the outcome.

Overall, MWLE is more conservative in that its predictions are closer to 0.5
than the other methods. This is because MWLE uses some not-so-relevant infor-
mation from games involving weak teams. When the Bulls and the Jazz play weak
teams each wins. Thus, these data will tend to increase both of their success rates.
However, since they both enjoy that benefit, the relevant difference in their esti-
mated strengths will diminish, making the MWLE tend toward 0.5. MWLE1 and
MWLE2 agree with each other, the latter giving slightly more precise predictions
(as measured by the length of the associated predictive intervals in Table 1) because
it incorporates the playoff games.

The Bulls and the Knicks did not meet in the playoffs. However, MWLE1 and
MWLE2 predict a hypothetical Bulls’ win with probabilities 0.75 and 0.78 had they
met. Both predict a hypothetical Bulls’ win for the series at game 5.

4. Concluding remarks

The method in this paper provides guidelines for the development of a prediction
strategy. Its implementation, more specifically the construction of weights entails
the incorporation of any special features that may obtain when the game is played.
For example, one might need to incorporate the knowledge that certain key players
cannot play in that game. [This last consideration did arise in the playoff between
the Miami Heat and the New York Knicks.]

The need for the incorporation of such features was reaffirmed by an unpublished
analysis carried out in the summer of 1998 by Farouk Nathoo. In that analysis, he
twice simulated the entire 1997/1998 season based on the previous year’s results.
In his report he compared the simulation results with the actual results. Among
other things he found the fraction of wins for each of the 29 NBA teams and for
example we include the results for the Atlantic Division and give these results in
Table 3.

We see in this example that the simulated winning percentages are in reasonable
agreement with the actual results except in the case of the Nets, the Knicks and
the Celtics. Given the severity of the challenge of predicting the outcomes of all
games over an entire year, we find our results encouraging.

The WL method can be applied in other sports such as baseball, hockey (see
Hu and Zidek 2002), soccer. In this paper, we chose the same weight for all teams.
This seems unreasonable in some cases and there we may be able to use the rank
of the teams to get better weights. This is another topic for the future.

Finally, we would note the abundance of alternative approaches, Bayesian
(Berger, 1985) and non-Bayesian that could be used in this context. Some specific
methods were discribed in the Introduction, We intend to compare our approach
with some of these in future work. Here, we restricted our comparisons to an ex-
tension of one of the non - Bayesian approaches based on that of Bradley and
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Table 3: The percentage of wins in the actual and two simulated 1997/1998 sea-
son for the NBA’s Atlantic Division based on the WL win probability estimators
obtained at the end of the previous season.

Win % : Win % Win % :
Team Actual Simulation 1 Simulation 2
Heat 67 66 59
Nets 52 35 38
Knicks 52 65 66
Wizards 51 52 54
Magic 50 54 48
Celtics 44 20 26
Sixers 38 27 35

Terry (1952) to estimate the probabilities of a Bulls’ win for both home and away
games against the Jazz. (We found the corresponding probabilities for the remain-
ing teams as well but do not report them here.) With these probabilities we could
then compute the termination probabilities analogous to those in Table 2.

To be more precise, we fitted a logistic model using the software R with the
response variable being 1 or 0 according as the outcome of any game during the
season was a visitor or home victory. We used dummy variables to represent visitor
and home teams in each game throughout the season. Thus for example, Bulls = 1
and Supersonics = 1, all other dummies being 0, would mean those two teams
were playing for that particular game, the visitors being the Bulls. For each of
the factors, “visitor” and “home” we represented by the dummies in this way, we
arbitrarily chose the 76ers’ as the baseline team. Thus, in effect, the fitted intercept,
suitably transformed, provides an estimate of the likelihood of a “1” in the purely
hypothetical situation where the 76ers’ played themselves at home as the visitors.
The coefficients for the remaining dummies represent the deviations from the 76ers’
performance for each of the other teams depending on whether they were playing
at home or away.

The results differed somewhat from those obtained by the MWLE2 WL method.
To be specific we found the probability of a Bulls’ win at home to be 0.76 as
compared with the 0.75 seen in Table 1 while the corresponding probabilities for
the Jazz were 0.71 and 0.66 respectively. These differences became more pronounced
when we computed the probabilities corresponding to Table 2. We see a comparison
of the results in Table 4.

In Table 4, we see that the Bradley—Terry extension points to a Bulls’ victory
on Game 7 while the MWLE2 is ambivalent between games 6 and 7. Obviously
a more extensive comparison would be needed to assess the relative performance
of the methods. But considering the large number of parameters needed by the
logistic model, these very preliminary results make the weighted likelihood model
more desirable for forecasting the outcomes of NBA playoff games.

However, we would not expect our method to do as well as it did above, when
competing in particular contexts with purpose built methods. Instead, we see its
value deriving from its relative ease of use and its broad domain of applicability,
features it shares with the classical likelihood itself. That is, we see it as a valuable
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Table 4: The predictive probabilities of a Bulls’ win against the Jazz for both the
MWLE2 and Bradley-Terry (logistic) based methods in the 1996-1997 Final.

Game # | Game 4 Game 5 Game6 Game 7
MWLE2 Bulls’ Win 0.07 0.10 0.26 0.26
Jazz Win 0.02 0.12 0.09 0.08
Bradley—Terry | Bulls’ Win 0.05 0.08 0.25 0.28
Jazz Win 0.03 0.14 0.09 0.09

tool in the statistical toolbox. In this paper, we have tried to demonstrate its value
from that perspective.

In particular, although in this manuscript we have used only binary outcome
information about team wins or losses, the theory can be extended to incorporate
more complex outcome information such as the scores, for example. In that case,
we could have defined the Y4p(h) to be the score of team A against team B when
team A is at home and so on.

The referee pointed to another direction for future work when he or she noticed
that “the weighted likelihood method to estimate the probability of A beating B
(at home) uses information about B at A, C at A, and B at C. It seems logical to
use information concerning A at B.” We agree. However, we have not been able to
do that yet since we do not know how to relate pag(h) and pap(r) through the
WLE.
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