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A simple proof of a condition for
cointegration

T. W. Anderson'*
Stanford University

Abstract: A simple proof is given for a theorem concerning the first differ-
ence and some linear functions of a cointegrated autoregressive process being
stationary.

1. Introduction

Many macroeconometric models are formulated in terms of autoregressive processes
or autoregressive processes with moving average innovations. The most appropri-
ate process in a given situation may not be stationary, but some linear relations of
the components may be stationary; such a process is called cointegrated. Johansen
(1995) has given alternative conditions for the cointegrated components and first
differences of other components to be stationary. Here we give a proof of one con-
dition that is more straightforward and transparent than what is in the literature.
A p-dimensional m-order autoregressive process {Y} is defined by

Y;=B1Y,\1+BY; o+...+B,,)Yi_ + Zy, (1.1)

where the Z;’s are independent unobservable innovations with £Z; = 0, £Z,Z; = X,
and £Z,Y,_,=0,0 < s. Let

t—s
B(\) = A", - \""'B; —... - B,,, (1.2)

and let the roots of |[B(A\)] = 0 be A;; ¢ = 1,...,mp. If |N;| < 1,4 =1,...,mp,
the process {Y;} may be stationary. If one or more of the roots are 1, the process
is nonstationary, but some order of differencing may yield a stationary process.
When some linear functions of a nonstationary process are stationary, the model
is called cointegrated. We call a process defined by the Equation (1.1) stationary
if it is possible to assign a distribution to (Y_pm+1,..., Y—1,Yo) such that (1.1)

generates a process Y _,, 41, Y —m+2, ... that is stationary. Throughout this paper
it is assumed that n of the roots are 1 and the other roots satisfy |\;| < 1, i =
n+1,...,mp.
An “error-correction form” of the autoregressive process is
AYt == HYt,1 + HlAthl + ...+ HmflAthnH,l + Zt, (13)
where AYt = Yt - thlv
Hj = —(Bj+1—|—...—|—Bm), j:l,...,m—l, (14

~ —

II = B;+Bx+...+B,, —I,. (1.5
Note that Hj = Hj+1 — Bj+1 and IT = —B(l)
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Suppose the rank of IT is k. Then IT can be written IT = AT, where A and T
are p X k matrices of rank k. Let A and T'j be p x (p — k) matrices of rank p — k
such that A/, A =0 and I, T' = 0. Then a necessary and sufficient condition that
AY, and I'"Y, are stationary is that

m—1
rank [A’L (I -y HZ) T,

i=1

=p—k (1.6)

[Theorem 4.2, Johansen (1995)]. The proof of this statement involves an expansion
of B(\A) around A = 1.

If {Y,} is stationary, it is said to be I(0). If {Y:} is not I(0), but {AY,} is
stationary, the process {Y:} is said to be I(1).

Corollary 4.3 of Johansen asserts that if k is the rank of IT and k < p, then the
multiplicity of A =1 as a zero of |B()\)| is equal to p— k if and only if {Y;} is I(1).
The proof of this statement depends on his Theorem 4.2 and its proof.

In this paper the condition is formulated as

Rank Condition. There are n linearly independent solutions to
W'II =0, (1.7)

where n is the multiplicity of A\ = 1 as a root of the characteristic equation

IB(\)| = 0.

Let n independent solutions of (1.7) be assembled into the matrix €; =
(W1,...,wy); then Q{TI = 0 and the rank of £ is n.

2. First-order case
First we treat the special case of m = 1. Then (1.1) is

Y, =B.Y: 1+ Ze; (2.1)
the error-correction form is

AY, =11Y;_ 1 + Z4, (2.2)
where IT = By — I,; and B(\) = A\, — B;.

Theorem 1 (m = 1). Suppose the Rank Condition holds. Then the rank of II is
k =p—mn, and there exists a p X k matriz s such that

QLI1 = Y9025, (2.3)

Yoo (k X k) is nonsingular, and Q = (21, Q) is nonsingular. Define

Xy ][ 9YY W ][ 917
Xt_{xgt]_[nth Cowe= W =g ] e

Then AXys, Xo¢ defines a stationary process.

Proof. Let Q) = (I,,Q5,) and IT" = (IT}, IT5), where I3 is k x p. (The rows of
and the columns of IT can be ordered so that €2;; is nonsingular and can be set
as I,.) Then the Rank Condition is

11,

0= QI = (I, Q) [ o

} =11 + Q5 I, (2.5)
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which implies ITT; = —9/211_.[2 and

-
II = [ I}fl ]Hg. (2.6)
Define Qo = IT) (p x k) and
—Q -
AR o)
k k

Then (2.3) is satisfied. Note that Yao (k x k) is nonsingular, that is, of rank k,
because if Y55 were singular there would exist a k-vector v such that v/ Y9y = 0
and then 4'II; would be another left-sided eigenvector of IT associated with the
root 0, but that would imply more than n linearly independent vectors satisfying
w'II = 0 and hence more than n zeros of |B(\)| at A = 1, which is contrary to
assumption. Note that (2.6) is a factorization IT = AT with T = I,.

The matrix €2 satisfies

0% —Q! 0 0 o4
/ _ 1 21 _ 1 _ /
Qn = {92“ I }ng{o TQQHQ,Q]TQ, (2.8)
QOB = Q(II+1) = { Ig ‘1922 Q' =vqQ. (2.9)

where Wos = Yoy + Ij. Let IIy = (ITa1,II99). Then  is nonsingular because

I, 0
—Qy I

I, H%l

_ /
Q9 H/22 - |T22| 7é 0. (2'10)

|ﬂ|=\

‘ L, I

Hence (2.4) is a nonsingular linear transformation.
The transformed process X; satisfies the autoregressive model

X, = ¥X; ,+W, (2.11)
AX, = YX, ,+ W, (2.12)
where
v_oB@)t=|" O (2.13)
B ! 0 Wy ’
has eigenvalues \;, i = 1,...,p, and Woy has eigenvalues \;, t =n+1,...,p, and
YT =" —1I,. From (2.11) to (2.13) we obtain
AX 1y . 0 0 AXy g n Wy,
Xt B 0 Py Xat-1 Wy,
Wi
= 2.14
{ WorXo -1+ Wy ] (2:14)

as generating the process (AX/,,XJ5,) . Since the eigenvalues of the coefficient ma-
trix in (2.14) are 0 of multiplicity n and A;, i = n+1, ..., p, the process (AX/,, X5%,)’
is a stationary process. o

The transformation X, = Q'Y is a change of coordinates such that the first
n coordinates of X, define a random walk, which is an I(1) process. The other k
coordinates define a stationary process. Thus {X;} is an I(1) process; that is, AX;
is an 1(0) process. The process Y; = (2') 71X, is a mixture of an I(1) and an I(0)
process.
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3. General case

Theorem 2. When the Rank Condition holds,

{ r?;;t } (3.1)

defines a stationary process.

Proof. For arbitrary m the models (1.1) and (1.3) can be written in “stacked” form
as

Y, =BiY, 1 +Z (3.2)
and
AYt == Hthl + Zt, (33)
where
Y, Z, B; B Bn-1 Bm
Y, 1 0 I, o ... 0 0
?t = Yt_2 ;zt = 0 7E1 = 0 Ip 0 0 ’ (3 4)
Y mi1 0 0 o ... I, 0

and II = By — I,.p. [See Anderson (1971), Section 5.3, for example.] Let E(A) =
AL, — B;. Then [B()\)| = |B()\)|. We shall prove Theorem 2 by using Theorem 1
with Y, replaced by {Q.

Suppose that there are n linearly independent solutions to &'TI = 0. Let these

~/

~1 ~/
solutions be assembled into the n x mp matrix 27 = (Q44,...,,,7). Then

0 = QI

~/ ~/ ~/ ~/ ~/
= [Q1(B1 —1,) + Qqy, 291B2 — Qg + Q4. -,

~/ ~/ ~ ~/ ~
QB =Q, 0+ Q0 B =2, (35)
This equation implies
~/ ~/ ~/
Q. = QB =-0,1L, ., (3.6)
~/ ~/ ~/ ~/
mej,l = Qlle,_j—FQmijJrl = _Qllﬂm—j—la j = 1,...,’[71—17 (37)
~/ ~/ ~/
0 = 2,(B1—1I,)+Qy =Qy,IL (3.8)
It follows that o,
Q=9 [L,, —I,...,—1II,,_1]. (3.9)

Lemma. There is a pm X n matriz Q of rank n such that ﬁ;ﬁ = 0 if and only

if there is a p X n matriz ﬁn of rank n such that ﬁ,ul_[ =0.

Thus the Rank Condition on the mp-dimensional Y, in terms of IT is equivalent
to the Rank Condition on Y}, where IT is defined by (1.5).
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It follows from Theorem 1 applied to (3.2) that the rank of I is k = mp —n.
Let

(Bl - Ip)n B2~n R Bm—1~n Bm~n
~ (Bl — Ip).k Bor ... Bno1x Bank
II= l Iy ] = L -1 0 0 ) (3.10)
IT; : : : :
0 0 I, -1,

where IL,, has n rows and ( ).,, denotes the first n rows of () and (). denotes the

last k rows of (). The pm X k matrix Qy = H{,; satisfies
QLTI = Yo, (3.11)

Yoo is nonsingular, and Q = (ﬁl,ﬁg) is nonsingular. Define f(t = ﬁl?t and
W, = ﬁlit. Then X; = (X}, X},)’ satisfies

Xu = Xl,t—l + Wlt; (3.12)
Xot = ¥pXoy 1+ Wa, (3.13)
where the eigenvalues of \ilgg are \;, i =n+1,...,mp,
B1—IL)xY:+Bor Y1+ ...+ B Yiomi
- )~ Y —-Y:i
th = QQYt = . ’ (314)
Yt7m+2 - therl
and
(B1 —1I,).s Wy
W,
W, = 0,7, = 0 . (3.15)
0

Thus {Xlt} is an I(1) process of dimension n and {th} is an I(0) process of
dimension k. B

Now we want to transform {X;} so that k¥ = p — n coordinates constitute the
cointegrated part of {Y:} and the other coordinates are components of AYy,...,
AY¢_mt1. In terms of Yy (3.12) can be written

m oy . m oy N
> QAY 1 =9y, (AYt - Zﬂj_lAYt_j_H) =Q,,Z; =Wy, (3.16)

j=1 j=2
Let
[ L, —ILg ... —IL,_1p
N o I .. 0
M = . . . , (3.17)
L0 0 I,
[ HkYt kat
~ — AY, - N W,
V2t == MXQt == : 5 UQt = MWQt = . . (318)
AtherQ 0
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Here I1.;, denotes the last k rows of II defined by (1.5); that is, IL.;, = II5 in (2.6).
Let ® = MWysM 1. Then Vo, satisfies

Vo = OV, + Uy, (3.19)
The eigenvalues of © are Ai, i =n+1,...,mp. Hence \7% defines a stationary
process. In fact
{/Qt - Z (:jsfjg’tfs. (320)
s=0

Since the last m — 2 blocks of Uy, are 0’s, the last m — 2 blocks of (3.19) are
identities. The first k + p rows of (3.19) define a stationary process for I1..Y,
and AY,. O O

Discussion. The process {Y:} is cointegrated of rank k, and ILy is the cointe-
grating matrix.

The orthogonality conditions of A and I'; are equivalent to A, II = 0 and
IIT; = 0. Hence, A | consists of p — k left-sided characteristic vectors of IT cor-
responding to the characteristic root of 0 and I';} consists of p — k right-sided
characteristic vectors corresponding to the root of 0. The matrix " corresponds to
Q, =11,

4. Inference

The model (1.3) has the form of regression
Yy = A Xy + ApXoy + Zy, (4.1)

where A; is of rank k. The maximum likelihood estimator of A; under normal-
ity of Z; is the reduced rank regression estimator introduced by Anderson (1951).
Johansen (1988), (1995) also derived the estimator for (1.3) and gives some asymp-
totic theory suitable for the cointegrated model. Anderson (2000), (2001), (2002)
has given more details of the asymptotic theory.
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