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A simple proof of a condition for

cointegration

T. W. Anderson1,∗

Stanford University

Abstract: A simple proof is given for a theorem concerning the first differ-
ence and some linear functions of a cointegrated autoregressive process being
stationary.

1. Introduction

Many macroeconometric models are formulated in terms of autoregressive processes
or autoregressive processes with moving average innovations. The most appropri-
ate process in a given situation may not be stationary, but some linear relations of
the components may be stationary; such a process is called cointegrated. Johansen
(1995) has given alternative conditions for the cointegrated components and first
differences of other components to be stationary. Here we give a proof of one con-
dition that is more straightforward and transparent than what is in the literature.

A p-dimensional m-order autoregressive process {Yt} is defined by

Yt = B1Yt−1 + B2Yt−2 + . . . + BmYt−m + Zt, (1.1)

where the Zt’s are independent unobservable innovations with EZt = 0, EZtZ′
t = Σ,

and EZtY′
t−s = 0, 0 < s. Let

B(λ) = λmIp − λm−1B1 − . . . − Bm, (1.2)

and let the roots of |B(λ)| = 0 be λi, i = 1, . . . , mp. If |λi| < 1, i = 1, . . . , mp,
the process {Yt} may be stationary. If one or more of the roots are 1, the process
is nonstationary, but some order of differencing may yield a stationary process.
When some linear functions of a nonstationary process are stationary, the model
is called cointegrated. We call a process defined by the Equation (1.1) stationary
if it is possible to assign a distribution to (Y−m+1, . . . ,Y−1,Y0) such that (1.1)
generates a process Y−m+1,Y−m+2, . . . that is stationary. Throughout this paper
it is assumed that n of the roots are 1 and the other roots satisfy |λi| < 1, i =
n + 1, . . . , mp.

An “error-correction form” of the autoregressive process is

∆Yt = ΠYt−1 + Π1∆Yt−1 + . . . + Πm−1∆Yt−m+1 + Zt, (1.3)

where ∆Yt = Yt − Yt−1,

Πj = −(Bj+1 + . . . + Bm), j = 1, . . . , m − 1, (1.4)
Π = B1 + B2 + . . . + Bm − Ip. (1.5)

Note that Πj = Πj+1 − Bj+1 and Π = −B(1).
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Suppose the rank of Π is k. Then Π can be written Π = AΓ′, where A and Γ
are p× k matrices of rank k. Let A⊥ and Γ⊥ be p× (p− k) matrices of rank p− k
such that A′

⊥A = 0 and Γ′
⊥Γ = 0. Then a necessary and sufficient condition that

∆Yt and Γ′Yt are stationary is that

rank

[
A′

⊥

(
I −

m−1∑
i=1

Πi

)
Γ⊥

]
= p − k (1.6)

[Theorem 4.2, Johansen (1995)]. The proof of this statement involves an expansion
of B(λ) around λ = 1.

If {Yt} is stationary, it is said to be I(0). If {Yt} is not I(0), but {∆Yt} is
stationary, the process {Yt} is said to be I(1).

Corollary 4.3 of Johansen asserts that if k is the rank of Π and k < p, then the
multiplicity of λ = 1 as a zero of |B(λ)| is equal to p− k if and only if {Yt} is I(1).
The proof of this statement depends on his Theorem 4.2 and its proof.

In this paper the condition is formulated as

Rank Condition. There are n linearly independent solutions to

ω′Π = 0, (1.7)

where n is the multiplicity of λ = 1 as a root of the characteristic equation
|B(λ)| = 0.

Let n independent solutions of (1.7) be assembled into the matrix Ω1 =
(ω1, . . . , ωn); then Ω′

1Π = 0 and the rank of Ω1 is n.

2. First-order case

First we treat the special case of m = 1. Then (1.1) is

Yt = B1Yt−1 + Zt; (2.1)

the error-correction form is

∆Yt = ΠYt−1 + Zt, (2.2)

where Π = B1 − Ip; and B(λ) = λIp − B1.

Theorem 1 (m = 1). Suppose the Rank Condition holds. Then the rank of Π is
k = p − n, and there exists a p × k matrix Ω2 such that

Ω′
2Π = Υ22Ω′

2, (2.3)

Υ22 (k × k) is nonsingular, and Ω = (Ω1,Ω2) is nonsingular. Define

Xt =
[

X1t

X2t

]
=

[
Ω′

1Yt

Ω′
2Yt

]
, Wt =

[
W1t

W2t

]
=

[
Ω′

1Zt

Ω′
2Zt

]
. (2.4)

Then ∆X1t,X2t defines a stationary process.

Proof. Let Ω′
1 = (In,Ω′

21) and Π′ = (Π′
1,Π

′
2), where Π2 is k× p. (The rows of Ω1

and the columns of Π can be ordered so that Ω11 is nonsingular and can be set
as In.) Then the Rank Condition is

0 = Ω′
1Π =

(
In,Ω′

21

) [
Π1

Π2

]
= Π1 + Ω′

21Π2, (2.5)
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which implies Π1 = −Ω′
21Π2 and

Π =
[

−Ω′
21

Ik

]
Π2. (2.6)

Define Ω2 = Π′
2 (p × k) and

Υ22 = Π2

[
−Ω′

21

Ik

]
= Ω′

2

[
−Ω′

21

Ik

]
. (2.7)

Then (2.3) is satisfied. Note that Υ22 (k × k) is nonsingular, that is, of rank k,
because if Υ22 were singular there would exist a k-vector γ such that γ ′Υ22 = 0
and then γ ′Π2 would be another left-sided eigenvector of Π associated with the
root 0, but that would imply more than n linearly independent vectors satisfying
ω′Π = 0 and hence more than n zeros of |B(λ)| at λ = 1, which is contrary to
assumption. Note that (2.6) is a factorization Π = AΓ′ with Γ′ = Π2.

The matrix Ω satisfies

Ω′Π =
[

Ω′
1

Ω′
2

] [
−Ω′

21

Ik

]
Π2 =

[
0 0
0 Υ22

] [
Ω′

1

Ω′
2

]
= ΥΩ′, (2.8)

Ω′B = Ω′(Π + I) =
[

In 0
0 Ψ22

]
Ω′ = ΨΩ′. (2.9)

where Ψ22 = Υ22 + Ik. Let Π2 = (Π21,Π22). Then Ω is nonsingular because

|Ω| =
∣∣∣∣ In 0
−Ω21 Ik

∣∣∣∣ ∣∣∣∣ In Π′
21

Ω21 Π′
22

∣∣∣∣ =
∣∣∣∣ In Π′

21

0 Υ′
22

∣∣∣∣ = |Υ′
22| �= 0. (2.10)

Hence (2.4) is a nonsingular linear transformation.
The transformed process Xt satisfies the autoregressive model

Xt = ΨXt−1 + Wt, (2.11)
∆Xt = ΥXt−1 + Wt, (2.12)

where

Ψ = Ω′B1(Ω′)−1 =
[

In 0
0 Ψ22

]
(2.13)

has eigenvalues λi, i = 1, . . . , p, and Ψ22 has eigenvalues λi, i = n + 1, . . . , p, and
Υ = Ψ − Ip. From (2.11) to (2.13) we obtain[

∆X1t

X2t

]
=

[
0 0
0 Ψ22

] [
∆X1,t−1

X2,t−1

]
+

[
W1t

W2t

]
=

[
W1t

Ψ22X2,t−1 + W2t

]
(2.14)

as generating the process (∆X′
1t,X

′
2t)

′. Since the eigenvalues of the coefficient ma-
trix in (2.14) are 0 of multiplicity n and λi, i = n+1, . . . , p, the process (∆X′

1t,X
′
2t)

′

is a stationary process.

The transformation Xt = Ω′Yt is a change of coordinates such that the first
n coordinates of Xt define a random walk, which is an I(1) process. The other k
coordinates define a stationary process. Thus {Xt} is an I(1) process; that is, ∆Xt

is an I(0) process. The process Yt = (Ω′)−1Xt is a mixture of an I(1) and an I(0)
process.
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3. General case

Theorem 2. When the Rank Condition holds,[
∆Yt

Π2Yt

]
(3.1)

defines a stationary process.

Proof. For arbitrary m the models (1.1) and (1.3) can be written in “stacked” form
as

Ỹt = B̃1Ỹt−1 + Z̃t (3.2)

and
∆Ỹt = Π̃Ỹt−1 + Z̃t, (3.3)

where

Ỹt =


Yt

Yt−1

Yt−2

...
Yt−m+1

 , Z̃t =


Zt

0
0
...
0

 , B̃1 =


B1 B2 . . . Bm−1 Bm

Ip 0 . . . 0 0
0 Ip . . . 0 0
...

...
...

...
0 0 . . . Ip 0

 , (3.4)

and Π̃ = B̃1 − Imp. [See Anderson (1971), Section 5.3, for example.] Let B̃(λ) =
λImp − B̃1. Then |B(λ)| = |B̃(λ)|. We shall prove Theorem 2 by using Theorem 1
with Yt replaced by Ỹt.

Suppose that there are n linearly independent solutions to ω̃′Π̃ = 0. Let these
solutions be assembled into the n × mp matrix Ω̃

′
1 = (Ω̃

′
11, . . . , Ω̃

′
m1). Then

0 = Ω̃
′
1Π̃

=
[
Ω̃

′
11(B1 − Ip) + Ω̃

′
21, Ω̃

′
11B2 − Ω̃

′
21 + Ω̃

′
31, . . . ,

Ω̃
′
11Bm−1 − Ω̃

′
m−1,1 + Ω̃

′
m1, Ω̃

′
11Bm − Ω̃

′
m1

]
. (3.5)

This equation implies

Ω̃
′
m1 = Ω̃

′
11Bm = −Ω̃

′
11Πm−1, (3.6)

Ω̃
′
m−j,1 = Ω̃

′
11Bm−j + Ω̃

′
m−j+1 = −Ω̃

′
11Πm−j−1, j = 1, . . . , m − 1, (3.7)

0 = Ω̃
′
11(B1 − Ip) + Ω̃

′
21 = Ω̃

′
11Π. (3.8)

It follows that
Ω̃

′
1 = Ω̃

′
11[Ip,−Π1, . . . ,−Πm−1]. (3.9)

Lemma. There is a pm × n matrix Ω̃1 of rank n such that Ω̃
′
1Π̃ = 0 if and only

if there is a p × n matrix Ω̃11 of rank n such that Ω̃
′
11Π = 0.

Thus the Rank Condition on the mp-dimensional Ỹt in terms of Π̃ is equivalent
to the Rank Condition on Yt, where Π is defined by (1.5).
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It follows from Theorem 1 applied to (3.2) that the rank of Π̃ is k̃ = mp − n.
Let

Π̃ =

[
Π̃·n
Π̃·k̃

]
=


(B1 − Ip)·n B2·n . . . Bm−1·n Bm·n
(B1 − Ip)·k B2·k . . . Bm−1·k Bm·k

Ip −Ip 0 0
...

...
...

...
0 0 Ip −Ip

 , (3.10)

where Π̃·n has n rows and ( )·n denotes the first n rows of ( ) and ( )·k denotes the
last k rows of ( ). The pm × k̃ matrix Ω̃2 = Π̃

′
·k̃ satisfies

Ω̃
′
2Π̃ = Υ̃22Ω̃

′
2, (3.11)

Υ̃22 is nonsingular, and Ω̃ = (Ω̃1, Ω̃2) is nonsingular. Define X̃t = Ω̃
′
Ỹt and

W̃t = Ω̃
′
Z̃t. Then X̃t = (X̃′

1t, X̃
′
2t)′ satisfies

X̃1t = X̃1,t−1 + W̃1t, (3.12)

X̃2t = Ψ̃22X̃2,t−1 + W̃2t, (3.13)

where the eigenvalues of Ψ̃22 are λi, i = n + 1, . . . , mp,

X̃2t = Ω̃
′
2Ỹt =


(B1 − Ip)·kYt + B2·kYt−1 + . . . + Bm·kYt−m+1

Yt − Yt−1

...
Yt−m+2 − Yt−m+1

 , (3.14)

and

W̃2t = Ω̃
′
2Z̃t =


(B1 − Ip)·kWt

Wt

0
...
0

 . (3.15)

Thus {X̃1t} is an I(1) process of dimension n and {X̃2t} is an I(0) process of
dimension k̃.

Now we want to transform {X̃t} so that k = p − n coordinates constitute the
cointegrated part of {Yt} and the other coordinates are components of ∆Yt, . . . ,
∆Yt−m+1. In terms of Yt (3.12) can be written

m∑
j=1

Ω̃
′
j1∆Yt−j+1 = Ω̃

′
11

(
∆Yt −

m∑
j=2

Πj−1∆Yt−j+1

)
= Ω̃

′
11Zt = W̃1t. (3.16)

Let

M̃ =


Ik −Π1·k . . . −Πm−1·k
0 Ip . . . 0
...

...
...

0 0 . . . Ip

 , (3.17)

Ṽ2t = M̃X̃2t =


Π·kYt

∆Yt

...
∆Yt−m+2

 , Ũ2t = M̃W2t =


Π·kWt

Wt

...
0

 . (3.18)
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Here Π·k denotes the last k rows of Π defined by (1.5); that is, Π·k = Π2 in (2.6).
Let Θ̃ = M̃Ψ̃22M̃−1. Then Ṽ2t satisfies

Ṽ2t = Θ̃Ṽ2,t−1 + Ũ2t. (3.19)

The eigenvalues of Θ̃ are λi, i = n + 1, . . . , mp. Hence Ṽ2t defines a stationary
process. In fact

Ṽ2t =
∞∑

s=0

Θ̃sŨ2,t−s. (3.20)

Since the last m − 2 blocks of Ũ2t are 0’s, the last m − 2 blocks of (3.19) are
identities. The first k + p rows of (3.19) define a stationary process for Π·kYt

and ∆Yt.

Discussion. The process {Yt} is cointegrated of rank k, and Π·k is the cointe-
grating matrix.

The orthogonality conditions of A⊥ and Γ⊥ are equivalent to A⊥Π = 0 and
ΠΓ⊥ = 0. Hence, A⊥ consists of p − k left-sided characteristic vectors of Π cor-
responding to the characteristic root of 0 and Γ⊥ consists of p − k right-sided
characteristic vectors corresponding to the root of 0. The matrix Γ corresponds to
Ω2 = Π′

2.

4. Inference

The model (1.3) has the form of regression

Yt = A1X1t + A2X2t + Zt, (4.1)

where A1 is of rank k. The maximum likelihood estimator of A1 under normal-
ity of Zt is the reduced rank regression estimator introduced by Anderson (1951).
Johansen (1988), (1995) also derived the estimator for (1.3) and gives some asymp-
totic theory suitable for the cointegrated model. Anderson (2000), (2001), (2002)
has given more details of the asymptotic theory.
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