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Combining correlated unbiased estimators

of the mean of a normal distribution
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Abstract: There are many applications in which one seeks to combine multi-
ple estimators of the same parameter. If the constituent estimators are unbi-
ased, then the fixed linear combination which is minimum variance unbiased
is well-known, and may be written in terms of the covariance matrix of the
constituent estimators. In general, the covariance matrix is unknown, and one
computes a composite estimate of the unknown parameter with the covari-
ance matrix replaced by its maximum likelihood estimator. The efficiency of
this composite estimator relative to the constituent estimators has been inves-
tigated in the special case for which the constituent estimators are uncorre-
lated. For the general case in which the estimators are normally distributed
and correlated, we give an explicit expression relating the variance of the com-
posite estimator computed using the covariance matrix, and the variance of
the composite estimator computed using the maximum likelihood estimate of
the covariance matrix. This result suggests that the latter composite estima-
tor may be useful in applications in which only a moderate sample size is
available. Details of one such application are presented: combining estimates
of agricultural yield obtained from multiple surveys into a single yield predic-
tion.

1. Introduction

The need to combine estimators from different sources arises in many fields of ap-
plication. In agriculture estimates may come from different experimental stations;
in the medical sciences there may be multi-sites or multiple studies; sample surveys
may contain subsurveys at different locations; several laboratories might assay a
sample of one. Often making a prediction requires the combination of estimators.
The present analysis was motivated by a model to predict agricultural yield. How-
ever, the model is generic, and occurs in a variety of contexts. The specifics of the
application are discussed in Section 5.

It is perhaps surprising that the earliest methods for combining estimators were
nonparametric. Fisher (1932) and Tippett(1931) proposed methods for combining
p-values obtained from independent studies. Fisher was motivated by agriculture
and Tippett by industrial engineering. These methods have been used to combine
the results of independent studies in meta-analysis.

The parametric problem was first posed by Cochran (1937), who was also mo-
tivated by an agricultural problem. For simplicity suppose that we have two esti-
mators T1 and T2 of θ from a N (θ, σ2

1) and N (θ, σ2
2) population, respectively. The
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combined estimator
T = w1T1 + w2T2 (1.1)

with
w1 = σ−2

1 /
(
σ−2

1 + σ−2
2

)
, w2 = σ−2

2 /
(
σ−2

1 + σ−2
2

)
(1.2)

is unbiased and has variance

Var(T ) =
σ2

1σ2
2

σ2
1 + σ2

2

≤ min
(
σ2

1 , σ2
2

)
. (1.3)

Consequently, the combined estimator dominates either single estimator in terms
of having a smaller variance.

In practice the variances are unknown, and estimates σ̂2
1 , σ̂

2
2 independent of

T1, T2, are substituted in w1 and w2, that is,

T ∗ = ŵ1T1 + ŵ2T2. (1.4)

Of course, now the variance of T ∗ is no longer minimum variance, but it is unbiased.
Cochran’s paper was the genesis for a sequence of papers to study the effect of

using estimates of the variances. We briefly describe these in chronological order.
Graybill and Deal (1959) started with the Cochran model and assumed that the
estimators σ̂2

1 and σ̂2
2 are independent and that each arises from a sample of size

larger than 9. Under this condition, they show that T ∗ is uniformly better than
either T1 or T2, where better means smaller variance.

Zacks (1966) starts with the assumption that the ratio ρ = σ2
2/σ2

1 is unknown
but is estimable, and creates an estimator

T (1) = (ρ̂T1 + T2)/(ρ̂ + 1), (1.5)

where ρ̂ is independent of T1 and T2. Then T (1) is unbiased. The efficiency of T (1)

cannot be given in closed form, and Zacks (1966) provides graphs of the efficiency
relative to the estimator T (1) with ρ replacing ρ̂.

Seshadri (1974), motivated by balanced incomplete block (BIB) design consider-
ations, assumes that there is an unbiased estimator b̂ of the ratio b = σ2

1/(σ2
1 +σ2

2),
independent of T1 and T2 . Then the estimator

T (2) = (1 − b̂)T1 + b̂T2 (1.6)

is unbiased, and var T (2 ) ≤ min (var T1, var T2) provided Var b̂ ≤ b2 and Var
(1 − b̂) ≤ (1 − b)2. The key point is that in certain BIB designs there is an intra-
block and inter-block estimator, and also an estimator b̂.

When the sample sizes of the two samples are equal to n, Cohen and Sackrowitz
(1974) discuss estimators of the form

T (3) = α̂1T1 + α̂2T2, (1.7)

where αi are functions of sample variances and are chosen with respect to a squared
error loss function normalized by σ2

1 . They determine the sample size n for which
T (3) is superior to either T1 or T2.

Because the estimators Ti of the mean and s2
i of the variances are location and

scale estimators, Cohen (1974) considers a location-scale family as a more general
construct than the normal family. Again, the combined estimator is

T (4) = b̂1T1 + b̂2T1, b̂1 + b̂2 = 1, (1.8)
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where now b̂2 = cσ̂2
1/(σ̂2

1 + σ̂2
2), c is a suitably chosen constant, and σ̂2

1 and σ̂2
2 are

appropriately chosen estimators.
The extension from combining two estimators to combining k estimators from k

normal populations N (θ, σ2
i ), i = 1, . . . , k, is discussed by Norwood and Hinkelmann

(1977). Here
T (5) = ŵ1T1 + · · · + ŵkTk (1.9)

with ŵi = σ̂−2
i /

∑k
1 σ̂−2

j . They show that var (T (5)) ≤ min {var Ti} if each sample
size is greater than 9, or if some sample size is equal to 9, and the others are greater
than 17.

For the case k = 2 Nair (1980) computes the variance of T ∗ as an infinite series,
as a function of two parameters, σ2

1 and α = n1σ
2
1/n2σ

2
2 . Of course, it is symmetric

and can be restated as a function of σ2
2 and 1/α.

Following the formulation of Cohen and Sackrowitz (1974), Kubokawa (1987)
provides a family of minimax estimators under normalized quadratic loss functions.
Green and Strawderman (1991) also consider quadratic loss and provide a James–
Stein shrinkage estimator. The use of a quadratic loss function is extended to the
multivariate case by Loh (1991), where now we have normal populations N (θ,Σ1)
and N (θ,Σ2). As in the univariate case, there are estimators θ̂1, θ̂2 of the mean
vectors and independent covariance matrix estimators S1, S2, each having a Wishart
distribution. For the loss function

L(θ̂, θ, Σ1, Σ2) = (θ̂ − θ)′(Σ−1
1 + Σ−1

2 )(θ̂ − θ), (1.10)

with Σ1 and Σ2 known the estimator

θ̂ =
(
S−1

1 + S−1
2

)−1(Σ−1
1 θ̂1 + Σ−1

2 θ̂2

)
(1.11)

is shown to be best linear unbiased.
The model that we here consider is that there are k normal populations N (θ, σ2

i ),
i = 1, . . . , k. This model was considered by Halperin (1961) who provided an exten-
sive analysis in which the estimator of θ is a weighted combination of the individual
means,which are permittted to be correlated. For this model Halperin (1961) obtains
the same variance as given in (2.8) below. In the present analysis the estimator of θ
is a weighted combination of any unbiased estimators, and thereby permits some-
what more flexibility. Our derivation makes use of invariance arguments. In a later
paper, Krishnamoorthy and Rohatgi (1990) show that the simple arithmetic mean
is dominated by a shrinkage estimator that takes advantage of the variances.

2. The correlated case

As our starting point suppose that the data available are k unbiased estimators
T1, . . . , Tk of θ. However, the vector T = (T1, . . . , Tk) has covariance matrix Σ,
for which there is a sample covariance matrix S having a Wishart distribution
W(Σ; k, n). Furthermore, S and (T1, . . . Tk) are independent.

When Σ is known, the linear estimator

θ̂ = w1T1 + · · · + wkTk, w1 + · · · + wk = 1, (2.1)

with wi, i = 1, . . . , k, fixed is unbiased. Let w = (w1, . . . , wk)′ and e = (1, . . . , 1)′.
For the choice

w′ =
(
e′Σ−1)/(e′Σ−1e

)
, (2.2)
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θ̂ is also minimum variance unbiased. Furthermore,

Var(θ̂) =
e′Σ−1[E(T − θe)′(T − θe)]Σ−1e

(e′Σ−1e)2
=

1
e′Σ−1e

. (2.3)

That Var(θ̂) is minimum variance follows from the Cauchy–Schwartz inequality:(
w′Σw

)(
e′Σ−1e

)
≥

(
w′e

)2 = 1 (2.4)

with equality if and only if (2.2) holds. Also,(
e′Σ−1e

)−1 ≤ min
{
σ2

1 , . . . , σ2
k

}
, (2.5)

which follows from (2.4) with w ≡ ei = (0, . . . , 0, 1, 0, . . . , 0)′.
When Σ is unknown it is estimated by S, and we consider the candidate esti-

mator
θ̃ =

(
e′S−1T

)
/
(
e′S−1e

)
. (2.6)

The estimator θ̃ is unbiased and has variance

Var(θ̃) = ESET
e′S−1[(T − θe)′(T − θe)]S−1e

(e′S−1e)2

= ES
e′S−1ΣS−1e

(e′S−1e)2
. (2.7)

In the next section we provide a proof of the basic result:

Var(θ̃) =
(

n − 1
n − k

)
Var(θ̂). (2.8)

3. Proof of the main result

The Wishart density of S is

f(S) = C(k, n) | Σ |−n/2| S |
(n−k−1)

2 exp
(
−1

2
tr Σ−1S

)
, S > 0, (3.1)

where

C(k, n) =

{
2

nk
2 π

k(k−1)
4

k∏
i=1

Γ
(

n − i + 1
2

)}−1

,

and Σ > 0 (that is, Σ is positive definite).
Let Y = Σ− 1

2 SΣ− 1
2 , so that the density of Y is

f(Y ) = C(k, n) | Y |
(n−k−1)

2 exp
(
−1

2
tr Y

)
, Y > 0. (3.2)

With b = Σ− 1
2 e

Var(θ̃) = E
[

b′Y −2b

(b′Y −1b)2

]
. (3.3)

Because the density (3.2) is orthogonally invariant, that is, L(G′Y G) = L(Y )
for any orthogonal matrix G, a judicious choice of G allows one to put (3.3) in a
more convenient form. Let e1 = (1, 0, . . . , 0)′, and choose G so that the first row



222 T. Keller and I. Olkin

of G is b′/
√

b′b and the remaining k − 1 rows of G complete an orthonormal basis
for G. Then, by construction, Gb =

√
b′b e1. Consequently, with Z = G′Y G, (3.3)

becomes

Var(θ̃) = E
[

e′1Z
−2e1

(e′1Z−1e1)2

]
1
b′b

.

Note that b′b = e′Σ−1e, and recall that V ar(θ̂) = e′Σ−1e, so that

Var(θ̃) = E
[

e′1Z
−2e1

(e′1Z−1e1)2

]
Var(θ̂) (3.4)

Remark. For any vector a of unit length, and a positive definite matrix B, a′B2a ≥
(a′Ba)2. Hence (3.4) demonstrates that V ar(θ̃) ≥ V ar(θ̂) under the hypothesis that
S and T = (T1, . . . , Tk)′ are independent, but with no distributional assumptions
on S or T .

Now the task of proving the theorem is reduced to computing the expectation
on the right side of equation (3.4). Towards that end, partition the k × k matrix Z
and its inverse as

Z =
(

z11 z′1
z1 Z22

)
, Z−1 =

(
z̃11 z̃′1
z̃1 Z̃22

)
,

where Z22 and Z̃22 are both (k − 1) × (k − 1).
In what follows we make use of well-known relationships between the blocks of

Z and Z−1. (See, for instance, Anderson, 2003.) Employing these relationships, and
that (I −uu′)−1 = I + uu′

1−u′u the expression inside the expectation brackets in (3.4)
can be written as:

e′1Z
−2e1

(e′1Z−1e1)2
=

z̃2
11 + z̃′1z̃1

z̃2
11

= 1 + z11 u′Z−1
22 u, (3.5)

where u = Z
−1/2
22 z1/

√
z11; then (3.4) becomes:

Var(θ̃) =
[
1 + E(z11 u′Z−1

22 u)
]
Var(θ̂). (3.6)

The density of Z has the form (3.2), which can be written as

f(Z22, z11, u)

= C(k, n)|Z22|
(n−k)

2 exp
(
−1

2
trZ22

)
z

n
2 −1
11 exp

(
−1

2
z11

)
(1 − u′u)

(n−k−1)
2 . (3.7)

Again, using orthogonal invariance, the expectation in (3.6) is

E
[
z11u

′Z−1
22 u

]
= C(k, n)I1I2I3, (3.8)

where

I1 =
∫ ∞

0

z
n
2 +1
11 exp

(
−1

2
z11

)
dz11 = Γ

(
n + 2

2

)
2

n+2
2 ,

I2 =
∫

u′u<1

u′u(1 − u′u)
n−k−1

2 du = (k − 1)π
k−1
2 Γ

(
n − k + 1

2

)
/2Γ

(
n + 2

2

)
,

I3 =
∫

Z22>0

(
e′1Z

−1
22 e

)
| Z22 |

n−k
2 exp

(
−1

2
trZ22

)
dZ22.
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The integral I2 can be evaluated using polar coordinates; it is also a Dirichlet
Integral of Type-I. (See Sobel, Uppuluri and Frankowski, 1977). To simplify notation
in I3 let Q = Z22, so that Q is a (k−1)×(k−1) matrix having a Wishart distributon
W(I; k−1, n). Then I3 = E(Q−1)11/C(k−1, n). But this expectation is known (see
e.g. Kshirsagar, 1978, p. 72) so that

I3 =
[
(n − k)2

n
2 π

k−1
2 Γ

(
n − k + 1

2

)]−1

. (3.9)

Combining these results we obtain

Var(θ̃) = (1 + I1I2I3)Var(θ̂) =
n − 1
n − k

Var(θ̂). (3.10)

4. Discussion of efficiency for k = 2 and n = N − 1

The result that Var (θ̃) = n−1
n−k Var (θ̂) coincides with what intuition suggests:

when k = 1, Var (θ̃) = Var (θ̂); when k > 1, Var (θ̃) > Var (θ̂), and for all k,
limN→ ∞ Var (θ̃) = Var (θ̂). But the result gives more precise information that
helps one to assess the efficiency of the Graybill-Deal estimator for a given sample
size.

Consider the case k = 2, N = n−1. If, without loss of generality, we take σ11 =
min {σ11, σ22}, then Var (θ̃) ≤ min (σ11, σ22) when

1
N − 3

≤ (σ11 − σ12)2

σ11σ22 − σ2
12

. (4.1)

In the special case for which cov (T1, T2) = 0, (4.1) is 1/(N − 3) ≤ σ11/σ22 ≤ 1,
which implies that Var(θ̃) < min (σ11, σ22) for all N ≥ 5. Note that this does not
contradict the previously quoted result of Graybill and Deal (1959); their hypothesis
allows N1 and N2, the sample sizes for the respective constituent estimators, to be
unequal; whereas the current theorem was derived under the assumption that N1 =
N2 = N . When T1 and T2 are uncorrelated, there are corresponding sample sizes
N1 and N2 used in estimating the variances. However, when the T ’s are correlated,
the covariance matrix is estimated from a single sample of size N .

Writing σ11 = α2σ22, 0 ≤ α ≤ 1, and denoting the correlation between T1 and
T2 by ρ, (4.1) can be written as

1
N − 3

≤ (α − ρ)2

1 − ρ2
. (4.2)

Then it is apparent that if one varies the parameters α and ρ so that α − ρ → 0,
the sample size N necessary for (4.2) to hold increases without bound. But this
also is intuitive: α − ρ → 0 is equivalent to θ̂ → T1. Given a rough initial estimate
for the parameters α and ρ, one may use (4.2) to obtain some idea whether the
Graybill-Deal estimator dominates the better of the two constituent estimators for
a given sample size.

Taking the special case σ11 = σ22, (4.2) becomes
1

N − 3
≤ 1 − ρ

1 + ρ
.

This form of equation (4.1) implies that the sample size for (4.1) to hold increases
without bound as ρ → 1. Once again, this is intuitive: to say ρ is close to 1 means
the estimator T2 provides essentially the same information about θ as the estimator
T1, and hence the composite estimator cannot be expected to provide much more
information than that provided by T1 alone.
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5. An agricultural application: Forecasting yield

The National Agricultural Statistics Service (NASS), an agency of the USDA, makes
monthly pre-harvest yield forecasts for the major US agricultural commodities at
several geographic levels. In the final analysis, the official forecast of yield announced
to the public is necessarily the result of a mixed process of both objective scientific
technique and subjective expert judgment. Nevertheless, subjective expert judge-
ment is most effective when it has an objective estimate of yield with which to
commence its operation. Given an historical data series for the most important es-
timators of yield, and the corresponding published final yield, one can estimate the
covariance structure and biases for those estimators. These are then the basis for
computing a composite estimate of yield. The question of how best to use historical
data to estimate the biases in the constituent estimators of yield is important in
itself. In order to avoid a long digression, we pick up the discussion of the applica-
tion at the point where a ‘bias correction’ has already been applied to the historical
data; hence only the problem of estimating the covariance matrix remains.

Table 1 presents the predicted yield based on a biological yield model (T1) and
the predicted yield based on a survey of producer expectations (T2). These data
have been masked for security considerations. Make the following assumptions:

(1) The true yield βi for year i is the yield published by NASS (Table 2) at the
end of the growing season.

(2) T1 and T2 are independent.

(3) The covariance matrix is essentially constant over time.

Under these assumptions the maximum likelihood estimator for the covariance ma-
trix based on the data in Table 1 is:

Table 1: Predicted yields (weight per area) of commodity Z for state X in month Y .

Year Survey of biological yield

1 88.0 87.5
2 82.5 80.0
3 83.0 86.5
4 73.5 79.0
5 79.0 84.5
6 82.0 83.5
7 83.0 79.8
8 80.8 84.0
9 81.0 83.0
10 79.0 79.0
11 64.0 76.0
12 80.5 83.8
13 83.0 87.0
14 81.5 78.5
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S =
(

9.50 2.19
2.19 15.30

)
,

and the vector of weights for the linear combination of T1 and T2 which is the
Graybill-Deal estimator of yield is w′ = (0.642, 0.358).

A word about the operational implementation of these ideas is in order. It
is unreasonable to expect that the assumptions underlying the estimate of the
covariance matrix hold for all time; hence, in practice, one envisions that yield data
from a ‘moving window’ of N past years would be used to estimate the vector of
coefficients, w, used to compute the composite estimate of yield for the current
year. This concept has been tested by a cross-validation scheme in which each of
N +1 years is sequentially treated as the ‘current’ year, and the remaining N years
are treated as the ‘past’, where N +1 is the length of the relevant data series which
is available; but, for the sake of a simple exposition, the calculations presented in
Table 2 are based on all 14 years of data at once, the results of the cross-validation
shceme being very similar.

Looking at Table 2, one notes that the root mean square error for the compos-
ite estimator was less than that of either constituent estimator of yield, and only
slightly larger than the root mean square error for the yield forecast produced by
the panel of commodity experts. Given that this panel was privy to a great many
sources of information relevant to setting yield, in addition to the constituent es-
timators of yield, this is a remarkable result. One cannot hope to replace expert
judgement with statistical methodology; nevertheless, these results demonstrate

Table 2:

Year Composite Panel of Final Published
Estimate (θ̂) Experts Yield (θ)

1 87.8 89.5 87.8
2 81.5 82.5 87.3
3 84.2 85.8 85.3
4 75.3 76.3 76.8
5 81.3 83.3 78.3
6 82.5 83.8 89.0
7 81.8 85.0 82.5
8 81.8 81.3 84.0
9 81.7 81.8 82.3
10 79.0 81.0 80.8
11 68.3 67.5 68.3
12 81.6 83.0 83.0
13 84.4 85.0 85.0
14 80.4 82.0 81.8

Root Mean Square Error:
Farmer Reported Yield 3.06
Biological Yield Model 3.92
Composite Estimator 2.68
Panel of Experts 2.58
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that the techniques of composite estimation can provide a useful starting point for
the overall process of setting a yield forecast.

Acknowledgement

The authors are grateful to Brian Cullis for many helpful comments and insights
relating to the paper by Halperin (1961), and to the referee for helpful suggestions.

References

[1] Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis,
3rd edition. John Wiley and Sons, New York. MR1990662

[2] Cochran, W. G. (1937). Problems arising in the analysis of a series of similar
experiments, Supplement to the Journal of the Royal Statistical Society 4 102–
118.

[3] Cohen, A. (1976). Combining estimates of location, Journal of the American
Statistical Association 71 172–175. MR426258

[4] Cohen, A. and Sackrowitz, H. B. (1974). On estimating the common mean of
two normal distributions. Annals of Statistics 2 1274–1282. MR365851

[5] Fisher, R. A. (1932). Statistical methods for research workers (4th ed.) Oliver
and Boyd, London.

[6] Graybill, F. A. and Deal, R. B. (1959). Combining unbiased estimators, Bio-
metrics 15 543–550. MR107925

[7] Green, E. J. and Strawderman, W. E. (1991). A James–Stein type estimator for
combining unbiased and possibly biased estimators, Journal of the American
Statistical Association 86 1001–1006. MR1146348

[8] Halperin, M. (1961). Almost linearly-optimum combination of unbiased esti-
mates. Journal of the American Statistical Association 56 36–43. MR141181

[9] Krishnamoorthy, K. and Rohatgi, V. K. (1990). Unbiased estimation of the
common mean of a multivariate normal distribution. Communications in Sta-
tistics – Theory and Methods 19 (5) 1803–1810. MR1075503

[10] Kshirsagar, A. (1978). Multivariate Analysis, Marcel Dekker, Inc., New York.
MR343478

[11] Kubokawa, T. (1987). Admissible minimax estimation of a common mean of
two normal populations. Annals of Statistics, 15 1245–1256. MR902256

[12] Loh, W.-L. (1991). Estimating the common mean of two multivariate normal
distributions, Annals of Statistics, 19 297–313. MR1091852

[13] Nair, K. A. (1980) Variance and distribution of the Graybill-Deal estimator of
the common mean of two normal populations, Annals of Statistics 8 212–216.
MR557567

[14] Norwood, T. E. and Hinkelmann, K. Jr. (1977). Estimating the common mean
of several normal populations, Annals of Statistics 5 1047–1050. MR448679

[15] Raj, D. (1998). Sampling Theory, McGraw-Hill, New York. MR230440

http://www.ams.org/mathscinet-getitem?mr=1990662
http://www.ams.org/mathscinet-getitem?mr=426258
http://www.ams.org/mathscinet-getitem?mr=365851
http://www.ams.org/mathscinet-getitem?mr=107925
http://www.ams.org/mathscinet-getitem?mr=1146348
http://www.ams.org/mathscinet-getitem?mr=141181
http://www.ams.org/mathscinet-getitem?mr=1075503
http://www.ams.org/mathscinet-getitem?mr=343478
http://www.ams.org/mathscinet-getitem?mr=902256
http://www.ams.org/mathscinet-getitem?mr=1091852
http://www.ams.org/mathscinet-getitem?mr=557567
http://www.ams.org/mathscinet-getitem?mr=448679
http://www.ams.org/mathscinet-getitem?mr=230440


Combining correlated unbiased estimators 227

[16] Seshadri, V. (1963). Constructing uniformly better estimators. Journal of the
American Statistical Association 58 172–175. MR145628

[17] Sobel, M., Uppuluri, R., and Frankowski, K. (1977). Selected tables in math-
ematical statistics, Vol. 4: Dirichlet Distribution – Type 1, American Mathe-
matical Society, Providence, Rhode Island. MR423747

[18] Tippett, L. H. C. (1931). The method of statistics. Williams and Norgate,
London.

[19] Zacks, S. (1966). Unbiased estimation of the common mean of two normal
distributions based on small samples of equal size, Journal of the American
Statistical Association 61 467–476. MR207100

http://www.ams.org/mathscinet-getitem?mr=145628
http://www.ams.org/mathscinet-getitem?mr=423747
http://www.ams.org/mathscinet-getitem?mr=207100

	Introduction
	The correlated case
	Proof of the main result
	Discussion of efficiency for k=2 and n=N-1
	An agricultural application: Forecasting yield

