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Notes on the bias-variance trade-off

phenomenon
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University of Cincinnati

Abstract: The main inequality (Theorem 1) here involves the Hellinger dis-
tance of a statistical model of an observation X, which imposes bounds on the
mean of any estimator in terms of its variance. We use this inequality to explain
some of the bias-variance trade-off phenomena studied in Doss and Sethura-
man (1989) and Liu and Brown (1993). We provide some quantified results
about how the reduction of bias would increase the variance of an estimator.

1. Introduction

In certain estimation problems the following “bias-variance trade-off” phenomenon
might occur: the price of reducing the bias of an etimator T is the dramatic increase
of its variance. For problems exhibiting this property, one shouldn’t apply the bias
reducing procedures blindly. Furthermore, any estimator having good mean square
error performance should be biased, and there is a balance between the bias function
and the variance function. It is desirable to study the scope of this phenomenon
and how the variance and the bias of an estimator affect each other.

Doss and Sethuraman (1989) seem to have been the first to demonstrate the
existence of the long suspected bias-variance trade-off phenomenon. However, this
result requires stringent conditions, such as the nonexistence of unbiased estimators
for the problem and the square integrability of relative densities for the statistical
model, thus severely restricting its applicability.

Liu and Brown (1993) broadened the scope of, and brought a new element, the
singular/regular property of an estimation problem, into the study of the trade-off
phenomenon. Here the focus is on a special aspect of the trade-off phenomenon, the
“nonexistence of informative (i.e. bounded variances) unbiased estimators” prop-
erty, and its connection with the singular/regular property is studied. For singular
estimation problems, the bias-variance trade-off phenomenon is an essential compo-
nent since the “nonexistence of informative unbiased estimators” property always
holds (see Theorem 1 of Liu and Brown (1993)). For regular estimation problems,
however, the connection is not clear. On one hand, due to the effect of a singular
point as a limiting point, the “nonexistence of informative unbiased estimators”
property does occur in some regular estimation problems, even though those prob-
lems may be quadratic-mean-differentiable with Fisher information totally bounded
away from zero. (See Example 2 of Liu and Brown (1993)). On the other hand, there
are many known regular estimation problems having informative unbiased estima-
tors. Therefore, focusing on the singular/regular property alone can’t completely
describe the scope of bias-variance trade-off phenomenon.
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It is intriguing to consider how the results of Liu and Brown (1993) may be
perceived. The impression may be that Theorem 1 of Liu and Brown (1993), the
“nonexistence of informative unbiased estimators” for a singular estimation prob-
lem, seems compatible with the well-known Rao-Cramér inequality. This inequality,
under suitable regularity conditions, provides a lower bound of variances for unbi-
ased estimators in terms of the reciprocal of the Fisher information number. For a
singular point (or, a point with zero Fisher information number), the lower bound
of variances for unbiased estimators becomes infinite; hence it is impossible to have
an informative unbiased estimator (if the regularity conditions of Rao-Cramér in-
equality hold). With this impression, one might be surprised to see Example 4 of
Liu and Brown (1993) which exhibits an unbiased estimator with finite variance at
a singular point. This seems to contradict the Rao-Cramér inequality or Theorem 1
of Liu and Brown (1993). Of course, there is no contradiction here: first, Exam-
ple 4 of Liu and Brown (1993) violates the required regularity conditions for the
Rao-Cramér inequality; second, Theorem 1 of Liu and Brown (1993) only prevents
the possibility of an unbiased estimator having a uniform finite upper bound for
variances in any Hellinger neighborhood of a singular point, and not the possibility
of an unbiased estimator with finite variance at a singular point. Nevertheless, the
possible confusion indicates the need to find a framework in which we can put all the
perception here into a more coherent view. One suggestion is to use an “appropriate
variation” of the Rao-Cramér inequality to understand the bias-variance trade-off
phenomenon. This modification of the Rao-Cramér inequality would place restric-
tions regarding the variances of unbiased estimators on the supremum of variances
in any Hellinger neighborhood of a point, instead of restricting the variance of the
point only. (We believe our results in this paper validate the above suggestion.)

Low (1995), in the context of the functional estimation of finite and infinite
normal populations, studies possible bias-variance trade-off by solving explicitly
constraint optimization problems: imposing a constraint on either the variance or
the square of the bias, then finding the procedure which minimizes the supremum
of the unconstrained performance measure. This approach, due to mathematical
difficulties involved, seems very difficult to carry out for general estimation prob-
lems. However, the investigation of the “bias-variance trade-off” phenomenon in
the framework of the study of quantitative restrictions between bias and variance
is interesting.

In this paper, we observe that the “nonexistence of informative unbiased esti-
mators” phenomenon and the “bias-variance trade-off” phenomenon exemplify the
mutual restrictions between mean functions and variance functions of estimators.
These restrictions are described in our main inequality, Theorem 1. We are able to
use this inequality to study, for finite sample cases, the “bias-variance trade-off”
phenomenon and the “nonexistence of informative unbiased estimators” phenom-
enon for singular as well as regular estimation problems. A simple application of
Theorem 1, Corollary 1, induces a sufficient condition for the “nonexistence of
informative unbiased estimators” phenomenon. Corollary 1 is applicable to singu-
lar problems, (e.g. it implies Theorem 1 of Liu and Brown (1993)), as well as to
regular problems (e.g. Example 2 of Section 4). Additional applications, such as
Theorem 2 and Theorem 3, shed further light on the trade-off phenomenon by giv-
ing some quantified results. These results not only imply (and extend) Theorem 1
and Theorem 3 of Liu and Brown (1993), they also provide a general lower bound
for constraint minimax performance. (See Corollary 3 and related comments.) We
may summarize the idea conveyed by these results as: if the estimator we consider
has variance less than the smallest possible variances for any unbiased estimators,
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then the range of the bias function is at least comparable to a fixed proportion of
the range of the parameter function to be estimated.

We address the influence of a singular point as a limiting (parameter) point in
Theorem 4. Although this is not a direct consequence of Theorem 1, the format of
Theorem 1 facilitates results like Theorem 4.

We state our results in Section 2 and prove them in Section 3. In Section 4 we
explain the meaning of Example 2 and Example 4 of Liu and Brown (1993) in our
approach to the “bias-variance trade-off” phenomenon. We also argue that examples
like Example 4 of Liu and Brown (1993) validate our version of the “mean-variance
restriction,” in which the restrictions imposing on the bias function of an estimator
by its variance function are on the difference of biases at two points instead of
the bias function at a point. Example 1 of Section 4, which has been considered
by Low (1995) (and maybe others also), shows that our lower bound for minimax
performance, Corollary 3, is sharp. The last example, Example 2, shows that the
“nonexistence of informative unbiased estimator” phenomenon may occur even if
the parameter space does not have any limiting point (with respect to Hellinger
distance.)

2. Statements of results

We shall consider the following estimation problem. Let X be a random variable,
which takes values in a measure space (Ω, µ), with distribution from a family of
probability measures F = {Pθ : θ ∈ Θ}. Furthermore, it is assumed that every Pθ

in F is dominated by the measure µ, and if Pθ1 = Pθ2 , then θ1 = θ2. For θ ∈ Θ,
we denote the Radon-Nikodym derivative of Pθ with respect to the σ−measure µ
as fθ = dPθ/dµ. For θ1, θ2 ∈ Θ, let

ρ(θ1, θ2) :=
{∫

Ω

[
fθ1(x)1/2 − fθ2(x)1/2

]2
µ(dx)

}1/2

(2.1)

denote the Hellinger distance between θ1 and θ2, on Θ, induced by the statistical
model F = {Pθ : θ ∈ Θ}. Suppose (V, ‖ · ‖) is a pseudo-normed linear space,
and q : Θ �→ V is a function. We shall estimate q(θ) based on an observation X .
The estimators T : Ω �→ V we consider are well-behaved functions (satisfying the
required measurability conditions) so that, for θ ∈ Θ

ψT (θ) :=
∫

Ω

fθ(x)T (x)µ(dx) (2.2)

is meaningful and belongs to V, and v∗T (θ) :=
∫
Ω

fθ(x)‖T (x)‖2µ(dx) is meaningful.
We also adopt the following notaitons:

βT (θ) := Eθ

(
T (x) − q(θ)

)
, (2.3)

the bias function of T ;

γT (θ) :=
{
Eθ‖T (X)− q(θ)‖2

}1/2
(2.4)

the mean square risk function of T ; and, for Θ0 ⊂ Θ,

MT (Θ0) := sup
{
Eθ‖(T (X)− q(θ)‖2 : θ ∈ Θ0

}
. (2.5)

The starting point of our study is the following inequality:
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Theorem 1. For θ, θ0 ∈ Θ, if ρ(θ, θ0) > 0, then[
γT (θ) + γT (θ0)

]
ρ(θ, θ0)

≥
∥∥∥∥(

βT (θ) − βT (θ0)
)

+
(

1 − 1
2
ρ2(θ, θ0)

)(
q(θ) − q(θ0)

)∥∥∥∥
≥

∣∣∣∣∥∥βT (θ) − βT (θ0)
∥∥ −

(
1 − 1

2
ρ2(θ, θ0)

)∥∥q(θ) − q(θ0)
∥∥∣∣∣∣. (2.6)

An easy consequence of (2.6) is:

Corollary 1. Suppose Θ1 is a non-empty subset of Θ − {θ0}, then

2 sup
{
γT (θ) : θ ∈ Θ1 ∪ {θ0}

}
+ sup

{
‖βT (θ) − βT (θ0)‖

ρ(θ, θ0)
: θ ∈ Θ1

}

≥ sup
{[

1 − 1
2
ρ2(θ, θ0)

]
‖q(θ) − q(θ0)‖

ρ(θ, θ0)
: θ ∈ Θ1

}
. (2.7)

Let us denote the value of the right-hand side of (2.7) as Qq(θ0; Θ1). We point
out that the quantity Qq(θ0; Θ1) does not depend on the estimator T . It is easy to
see that Qq(θ0; Θ1) = ∞ is a sufficient condition for the “nonexistence of informa-
tive unbiased estimators” phenomenon. There are two ways to make Qq(θ0; Θ1) =
∞: either infθ∈Θ ρ(θ, θ0) > 0 with supθ∈Θ1

[1 − 1
2ρ2(θ, θ0)]‖q(θ) − q(θ0)‖ = ∞ or

infθ∈Θ1 ρ(θ, θ0) = 0 with lim supρ(θ,θ0)→0,θ∈Θ1

‖q(θ)−q(θ0)‖
ρ(θ,θ0)

= ∞. See Example 2 of
Section 4 for the first case and Examples 1 and 3 of Liu and Brown (1993) for the
second case.

In the following, we focus on the case that θ0 is a limit point of Θ1 with respect
to ρ−distance. Note that we may replace Qq(θ0; Θ1) in the right-hand side of (2.7)
by an easily computable lower bound lim supρ(θ,θ0)→0,θ∈Θ1

‖q(θ)−q(θ0)‖
ρ(θ,θ0)

.
For the convenience of our discussion let us introduce:

Definition 1 (Hellinger Information). Suppose Θ1 ⊂ Θ and θ0 is a non-isolated
point of Θ1 with respect to ρ−metric on Θ. The Hellinger Information of θ0 about
the q(·)−estimation problem and the (sub-)parameter space Θ1 is defined as

Jq(θ0; Θ1) := 4

[
lim sup

ρ(θ,θ0)→0+,θ∈Θ1

‖q(θ) − q(θ0)‖
ρ(θ, θ0)

]−2

. (2.8)

For the development of this notation and its relationship to Fisher Information,
see Chen (1995). We mention here that this notation is related to “sensitivity”
proposed by Pitman (1978). Also, it is equivalent to the “Geometric Information”
in Donoho and Liu (1987), and, in terms of Hellinger modulus (see Liu and Brown
(1993) (2.9) and (2.2)), it is (limε→0+

b(ε)
ε )−2. When Jq(θ0; Θ) = 0 (resp. > 0), we

say that the q(·)−estimation problem is singular (resp. regular) at point θ0.
With the notation of Hellinger Information, an easy corollary of Theorem 1 is:

Corollary 2. Suppose θ0 is an accumulation point of Θ0 ⊂ Θ. Then, for J =
Jq(θ0; Θ0)

2 [MT (Θ0)]
1/2 + sup

{
‖βT (θ) − βT (θ0)‖

ρ(θ, θ0)
: θ ∈ Θ0, θ 	= θ0

}
≥ 2√

J
, (2.9)
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or, equivalently,

sup
{
‖βT (θ) − βT (θ0)‖

ρ(θ, θ0)
: θ ∈ Θ0, θ 	= θ0

}
≥ 2√

J

[
1 −

(
MT (Θ0)J

)1/2
]
. (2.10)

A trivial implication of (2.10) is: if MT (Θ0) < 1/Jq(θ0; Θ0), then T is not
unbiased on Θ0. Moreover, (2.10) puts a restriction on the bias function βT (θ)
of T . We shall state this restriction more explicitly in the next theorem.

Theorem 2. Suppose θ0 is an accumulation point of Θ0 ⊂ Θ, and M is a positive
number such that M < [Jq(θ0; Θ0)]−1. Let dM := 1−(MJq(θ0; Θ0))1/2. Suppose that
T is an estimator with Eθ‖T (X)−q(θ)‖2 ≤ M for all θ ∈ Θ0. Then, for any λ > 0,
there exist θλ ∈ Θ0, not dependent on T , such that 0 < ρ(θλ, θ0) ≤ (2λdM )1/2,
‖q(θλ) − q(θ0)‖ > 0, and∥∥βT (θλ) − βT (θ0)

∥∥ ≥ (1 − λ)dM ·
∥∥q(θλ) − q(θ0)

∥∥. (2.11)

Applying Theorem 2, it is easy to obtain a lower bound for constrained minimax
performance.

Corollary 3. Let θ0 be an accumulation point of Θ, J = Jq(θ0; Θ) > 0. Let M
and τ be positive numbers, and

B(M ; τ) := inf
T

sup
θ

{
‖βT (θ) − βT (θ0)‖2

}
where θ is over ‖q(θ) − q(θ0)‖ ≤ τ and T is over Eθ‖T (X)− q(θ)‖2 ≤ M . Then

B(M ; τ) ≥
{[

1 − (MJ)1/2
]
∧ 0

}2

τ2. (2.12)

In the restriction normal mean case (see Example 1), the lower bound (2.12) is
sharp.

Now, let us turn to the case in which θ0 is a singular point, i.e., Jq(θ0; Θ0) = 0.
From (2.9) or (2.10), we have either MT (Θ0) = ∞ or sup{ ‖βT (θ)−βT (θ0)‖

ρ(θ,θ0)
: θ ∈

Θ0, θ 	= θ0} = ∞. This implies the non-existence of an informative unbiased
estimator for such Θ0. Therefore, Theorem 1 of Liu and Brown (1993) is a weaker
version of Corollary 2.

From Theorem 2 (or Corollary 3), it is easy to see that there exists no se-
quence of asymptotically unbiased estimators (based on the same finite number of
observations) that would have uniformly bounded variance in any small Hellinger
neighborhood of a singular point θ0. Hence, Theorem 2 above implies Theorem 3 of
Liu and Brown (1993). For singular estimation problems, those estimators achieving
good mean square error performance must balance bias and variance, and (2.11)
gives a quantitative result about its bias function βT (θ). Furthermore, we are able
to describe the “rate” of ‖βT (θ) − βT (θ0)‖ as follows.

Theorem 3. Suppose Jq(θ0; Θ0) = 0. Let Θ1 = {θ1, θ2, . . .} ⊂ Θ0 − {θ0} be a slow
sequence of θ0 in the sense that limj→∞ ρ(θj , θ0) = 0 and limj→∞

‖q(θj)−q(θ0)‖
ρ(θj ,θ0)

= ∞.
If T is an estimator with sup{Eθj‖T (X)− q(θj)‖2 : j = 0, 1, 2, . . .} < ∞, then

lim
j→∞

‖βT (θj) − βT (θ0)‖
‖q(θj) − q(θ0)‖

= 1. (2.13)
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One of the important observations of Liu and Brown (1993) is that the bias-
variance trade-off phenomenon might occur on a set Θ1 due to the effect of a
singular point θ0 as a limit point of Θ1. The next result states it more explic-
itly.

Theorem 4. Suppose V is a subspace of d−dimensional Euclidean space Rd with
the usual Euclidean norm ‖ · ‖. Let θ0 be a singular point, Θ1 = {θ1, . . .} ⊂
Θ − {θ0} be a slow sequence of θ0 and T be an unbiased estimator on Θ1. Then,
sup{Eθ‖T (X)− q(θ)‖2 : θ ∈ Θ1} = ∞.

3. Proofs

Theorem 1 is a simple application of the following inequality.

Lemma 1. For points η1, η2 ∈ V; θ1, θ2 ∈ Θ with ρ(θ1, θ2) > 0, we have

{
Eθ1

∥∥T (X) − η1

∥∥2
}1/2

+
{
Eθ2

∥∥T (X)− η2

∥∥2
}1/2

≥
∥∥∥∥ψT (θ1) − ψT (θ2) −

1
2
ρ2(θ1, θ2)(η1 − η2)

∥∥∥∥/
ρ(θ1, θ2). (3.1)

Proof. Without loss of generality, we assume that Eθi‖T (X)−ηi‖2 < ∞ for i = 1, 2.
Define αi(x) = fθi(x)1/2(T (x) − ηi) for i = 1, 2, and β(x) = fθ1(x)1/2 − fθ2(x)1/2.
Then ∫

Ω

β(x)
[
α1(x) + α2(x)

]
µ(dx)

=
∫

Ω

[
fθ1(x)

(
T (x) − η1

)
− fθ2(x)

(
T (x) − η2

)
+

[
fθ1(x)fθ2(x)

]1/2(η1 − η2)
]
µ(dx)

= Eθ1

(
T (X)− η1

)
− Eθ2

(
T (X)− η2

)
+

∫
Ω

[
fθ1(x)fθ2(x)

]1/2
µ(dx)(η1 − η2)

=
(
ψT (θ1) − η1

)
−

(
ψT (θ2) − η2

)
+

[
1 − 1

2
ρ2(θ1, θ2)

]
(η1 − η2)

=
(
ψT (θ1) − ψT (θ2)

)
− 1

2
ρ2(θ1, θ2)(η1 − η2). (3.2)

On the other hand, by the triangle inequality and the Cauchy–Schwarz inequal-
ity, ∥∥∥∥

∫
Ω

β(x)
[
α1(x) + α2(x)

]
µ(dx)

∥∥∥∥
≤

2∑
i=1

∥∥∥∥
∫

Ω

β(x)αi(x)µ(dx)
∥∥∥∥

≤
2∑

i=1

∫
Ω

|β(x)|
∥∥αi(x)

∥∥µ(dx)
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≤
2∑

i=1

[∫
Ω

β2(x)µ(dx)
]1/2

·
[∫

Ω

∥∥αi(x)
∥∥2

µ(dx)
]1/2

= ρ(θ1, θ2)
2∑

i=1

[
Eθi

∥∥T (X)− ηi

∥∥2
]1/2

. (3.3)

Combining (3.2) and (3.3), we obtain (3.1).

Proof of Theorem 1. Applying Lemma 1, we have[
γT (θ) + γT (θ0)

]
ρ(θ, θ0)

≥
∥∥∥∥ψT (θ) − ψT (θ0) −

1
2
ρ2(θ, θ0)

(
q(θ) − q(θ0)

)∥∥∥∥
=

∥∥∥∥βT (θ) − βT (θ0) +
(

1 − 1
2
ρ2(θ, θ0)

)(
q(θ) − q(θ0)

)∥∥∥∥, (3.4)

this proves the first inequality of (2.6).
Applying the triangle inequality and the fact that 1− 1

2ρ2(θ, θ0) ≥ 0, we obtain
the second inequality of (2.6).

Proof of Corollary 1. Notice that (2.6) implies

2 max
(
γT (θ), γT (θ0)

)
+

‖βT (θ) − βT (θ0)‖
ρ(θ, θ0)

≥
[
1 − 1

2
ρ2(θ, θ0)

]
‖q(θ) − q(θ0)‖

ρ(θ, θ0)
. (3.5)

Letting θ vary over Θ1 in inequality (3.5), we obtain (2.7).

Proof of Corollary 2. It is easy to prove that

Qq(θ0; Θ0) ≥ lim sup
ρ(θ,θ0)→0,θ∈Θ0

‖q(θ) − q(θ0)‖
ρ(θ, θ0)

=
[
1
4
Jq(θ0; Θ0)

]−1/2

. (3.6)

This, together with Corollary 1, proves (2.9).

Proof of Theorem 2. We use J to replace Jq(θ0; Θ0) in this proof.
Applying Theorem 1 and the condition γT (θ) + γT (θ0) ≤ 2M1/2, we have, for

all θ ∈ Θ0, that

‖βT (θ) − βT (θ0)‖
ρ(θ, θ0)

≥
[
1 − 1

2
ρ2(θ, θ0)

]
‖q(θ) − q(θ0)‖

ρ(θ, θ0)
− 2M1/2 (3.7)

and

‖βT (θ) − βT (θ0)‖
‖q(θ) − q(θ0)‖

≥ 1 − 1
2
ρ2(θ, θ0) − 2M1/2 ·

[
‖q(θ) − q(θ0)‖

ρ(θ, θ0)

]−1

. (3.8)
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For ε > 0, let Θ0(ε) := {θ : q(θ) 	= q(θ0), 0 < ρ(θ, θ0) ≤ ε} ∩ Θ0. By (3.8), for
ε = (2λdM )1/2, we have

sup
θ∈Θ0(ε)

‖βT (θ) − βT (θ0)‖
‖q(θ) − q(θ0)‖

≥ 1 − 1
2
ε2 − 2M1/2 ·

(
1
4
J

)1/2

= (1 − λ)dM . (3.9)

This proves Theorem 2.

Proof of Corollary 3. Let dM := 1 − (MJ)1/2. For the case dM ≤ 0, we use the
trivial inequality B(M ; τ) ≥ 0 and for the case dM > 0, we use Theorem 2 to obtain
B(M ; τ) ≥ (dMτ)2. This proves (2.12).

Proof of Theorem 3. Let M be a positive number such that Eθj‖T (X)− q(θj)‖2 ≤
M2 for j = 0, 1, 2, . . .. Then, by (2.6),

2M ≥ ‖q(θj) − q(θ0)‖
ρ(θj , θ0)

∣∣∣∣‖βT (θj) − βT (θ0)‖
‖q(θj) − q(θ0)‖

−
(

1 − 1
2
ρ2(θj , θ0)

)∣∣∣∣ . (3.10)

Hence,

1 + ρ2(θj , θ0)/2 − 2M
[∥∥q(θj) − q(θ0)

∥∥/ρ(θj, θ0)
]−1

≤
∥∥β(θj) − β(θ0)

∥∥/
∥∥q(θj) − q(θ0)

∥∥
≤ 1 + ρ2(θj , θ0)/2 + 2M

[∥∥q(θj) − q(θ0)
∥∥/ρ(θj , θ0)

]−1
. (3.11)

Let j → ∞, we have the desired (2.13).

In order to prove Theorem 4, we need the following lemma.

Lemma 2. Suppose V is a subspace of d-dimensional Euclidean space Rd with the
usual Euclidean norm ‖ · ‖. Let Θ1 = {θ1, . . .} ⊂ Θ − {θ0} be a sequence with limit
point θ0 and limj→∞ q(θj) = q(θ0). Then, for any estimator T ,

Eθ0

∥∥T (X) − q(θ0)
∥∥2 ≤ MT (Θ1). (3.12)

Proof. (3.12) is automatically true if MT (Θ1) = ∞. Let us consider the case that
MT (Θ1) < ∞. Since limj→∞ ρ(θj , θ0) = 0 as j → ∞, the distribution of T under
θ = θj converges to the distribution of T under θ = θ0. Let us write

T = (T1, T2, . . . , Td),
q(θ) =

(
q1(θ), q2(θ), . . . , qd(θ)

)
,

ψT (θ) = EθT (X) =
(
ψ1(θ), ψ2(θ), . . . , ψd(θ)

)
, and

νT (θ) =
(
varθ(T1), varθ(T2), . . . , varθ(Td)

)
.

Notice that

Eθ

∥∥T (X)− q(θ)
∥∥2

= Eθ

∥∥T (X) − ψT (θ)
∥∥2 +

∥∥ψT (θ) − q(θ)
∥∥2

=
d∑

i=1

varθ(Ti) +
d∑

i=1

(
ψi(θ) − qi(θ)

)2
, (3.13)
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and, since MT (Θ1) < ∞,

lim
j→∞

ψi(θj) = ψi(θ0) for i = 1, 2, . . . , d. (3.14)

By Problem 4.4.9, page 150 of Bickel and Doksum (1977), we have

lim inf
j

varθj(Ti) ≥ varθ0(Ti) for i = 1, 2, . . . , d. (3.15)

With the assumption limj→∞ q(θj) = q(θ0), and (3.13) ∼ (3.15), we have

lim inf
j

Eθj

∥∥T (X)− q(θj)
∥∥2 ≥ Eθ0

∥∥T (X) − q(θ0)
∥∥2

. (3.16)

This proves (3.12).

Proof of Theorem 4. First, if limj→∞ q(θj) = ∞, then it is easy to prove that
sup{Eθ‖T (X) − q(θ)‖2 : θ ∈ Θ1} = ∞. Next, if limj→∞ q(θj) exists, we simply
change the definition of q(θ0) to be equal to limj→∞ q(θj). Under this new definition
of q, θ0 is still a singular point and Θ1 is still a slow sequence of θ0. If MT (Θ1) < ∞,
then (3.12) implies MT (Θ1 ∪ {θ0}) = MT (Θ1) < ∞ and (2.9) implies 2[MT (θ1 ∪
{θ0})] = ∞, a contradiction. This proves MT (Θ1) = ∞.

4. Comments and examples

Example 2 of Liu and Brown (1993) shows that the “nonexistence of informative
unbiased estimators” phenomenon might occur in a quadratic-mean-differentiable
(QMD) problem with Fisher Information totally bounded away from zero. This
statement is true if we replace the term “Fisher Information” by “Hellinger Infor-
mation” since it is well-known that Fisher Information and Hellinger Information
are equal in QMD problems. Due to the fact that the Hellinger Information number
J(θ) is not necessarily continuous with respect to the Hellinger distance ρ(θ; θ0),
the condition that Fisher Information (or Hellinger Information) be totally bounded
away from zero does not exclude the possibility of a singular point as a limiting
point. If such a singular limiting point exists, by Theorem 4, the “nonexistence of
informative unbiased estimators” phenomenon could occur.

Example 4 of Liu and Brown (1994) exhibits an unbiased estimator with finite
variance at a singular point. The spirit of this example does not contradict the im-
pression left by the “mean-variance restriction” described in Theorem 1 or Corollary
1. Obviously, one can modify an estimator so as to obtain an unbiased estimator
at any predescribed point. The requirement that an estimator have finite variance
at a predescribed point does not pose any conflict because the “mean-variance re-
striction” (Theorem 1) places a lower bound on the sum of variances at two points,
instead of on variances at each point. Further, one could even view this example
as a validation of the form of “mean-variance restriction” (Theorem 1), in which
the restriction imposed by sums of variances (or, rather, sums of root mean-square
risks) is on the difference of the bias function (βT (θ)− βT (θ0)) and not on the bias
function (βT (θ0)) itself.

The following example shows that in the bounded normal case, the lower bound
of Corollary 3 is sharp. This example has been considered by Low (1995).

Example 1. If X ∼ N(θ, σ2) and q(θ) = θ, then J = Jq(θ0; Θ) = 1
σ2 for any open

interval Θ which contains θ0. By (2.9),

B(M ; τ) ≥
{[

1 − M1/2 · σ−1
]
∧ 0

}2
τ2. (4.1)
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Let TM be the affine procedure studied in Low (1995), (2.4),

TM (X) =
(
M1/2 · σ−1 ∧ 1

)
(X − θ0) + θ0. (4.2)

It is easy to show that Eθ‖TM (X) − θ‖2 ≤ M ∧ σ2 and that

sup
{∥∥βTM (θ) − βTM (θ0)

∥∥2 : |θ − θ0| ≤ τ
}

=
{[

1 − M1/2 · σ−1
]
∧ 0

}2
τ2.

This, together with (2.12) proves

B(M ; τ) =
{[

1 − M1/2 · σ−1
]
∧ 0

}2
τ2. (4.3)

If we compare B(M ; τ) with β2(ν, σ, τ) in (2.1) and (2.3) of Low (1995), we
find that B(M ; τ) = β2(M, σ, τ) in the above Example 2. It is interesting to point
out that Low’s argument to obtain a lower bound on β2(ν, σ, τ) is an application
of the Rao-Cramér Inequality. This approach, if extended to a general case, would
require conditions to guarantee the differentiability of the bias function of T . Our
method, which is based on Theorem 1, does not require the differentiability of the
bias function of T .

Finally, let us exhibit an example of the “nonexistence of informative unbiased
estimator” phenomenon for discrete Θ without any limiting point with respect to
ρ-distance.

Example 2. Let X ∼ Poisson (θ) with θ ∈ N = {1, 2, 3, . . .}, and r > 1. Suppose
we want to estimate q(θ) = erθ. The square of Hellinger distance is

ρ2(θ, 1) = 2 − 2
∞∑

x=0

{
e−θ · θx

x!
· e−1 · 1x

x!

}1/2

= 2 − 2 exp
{
−1

2

(√
θ − 1

)2
}

.

It is easy to verify that [1 − 1
2ρ2(θ, 1)]‖q(θ) − q(1)‖/ρ(θ, 1) → ∞ for θ → ∞.

According to Corollary 1, there exists no informative unbiased estimator for q(θ).
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