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On counts of Bernoulli strings and
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permutations
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Abstract: A sequence of independent random variables {X1, X2, . . .} is called
a B−harmonic Bernoulli sequence if P (Xi = 1) = 1 − P (Xi = 0) = 1/(i +
B) i = 1, 2, . . ., with B ≥ 0. For k ≥ 1, the count variable Zk is the number
of occurrences of the k-string (1, 0, . . . , 0︸ ︷︷ ︸

k−1

, 1) in the Bernoulli sequence. . . This

paper gives the joint distribution PB of the count vector Z = (Z1, Z2, . . .) of
strings of all lengths in a B−harmonic Bernoulli sequence. This distribution
can be described as follows. There is random variable V with a Beta(B, 1)
distribution, and given V = v, the conditional distribution of Z is that of
independent Poissons with intensities (1 − v), (1 − v2)/2, (1 − v3)/3, . . ..

Around 1996, Persi Diaconis stated and proved that when B = 0, the
distribution of Z1 is Poisson with intensity 1. Emery gave an alternative proof a
few months later. For the case B = 0, it was also recognized that Z1, Z2, . . . , Zn

are independent Poissons with intensities 1, 1
2
, . . . , 1

n
. Proofs up until this time

made use of hard combinational techniques. A few years later, Joffe et al,
obtained the marginal distribution of Z1 as a Beta-Poisson mixture when B ≥
0. Their proof recognizes an underlying inhomogeneous Markov chain and uses
moment generating functions.

In this note, we give a compact expression for the joint factorial moment of
(Z1, . . . , ZN ) which leads to the joint distribution given above. One might
feel that if Z1 is large, it will exhaust the number of 1’s in the Bernoulli
sequence (X1, X2, . . .) and this in turn would favor smaller values for Z2 and
introduce some negative dependence. We show that, on the contrary, the joint
distribution of Z is positively associated or possesses the FKG property.

1. Introduction and summary

Let {Xi : i ≥ 1} be a sequence of independent Bernoulli random variables with
success probabilities pi = P (Xi = 1) = 1−P (Xi = 0) for i ≥ 1. For integers k ≥ 1,
the sequence (1, 0, . . . , 0︸ ︷︷ ︸

k−1

, 1) will be called a k-string. Such a k-string represents a

wait of length k for an “event” to happen since the last time it happened, or a run
of length k−1 of “non-events.” Let Zk be the count (which may possibly be infinite)
of such k strings in the Bernoulli sequence {X1, X2, . . .}. This paper is concerned

with the joint distribution of the count vector Z
def
= (Z1, Z2, . . .) of all k-strings.

Such problems appear in many areas such as random permutations, rank orders,
genetics, abundance of species, etc.
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Let Yi,k be the indicator variable that a k-string has occurred at time i,

Yi,k = Xi

i+k−1∏
j=1

(1 − Xi+j)Xi+k = I

(
(Xi, Xi+1, . . . , Xi+k) = (1, 0, . . . , 0︸ ︷︷ ︸

k−1

, 1)
)

,

(1)
for i ≥ 1, k ≥ 1, where as usual, an empty product is defined to be equal to 1. A
simple expression for Zk is then given by

Zk =
∞∑

i=1

Yi,k for k ≥ 1. (2)

While Zk is not a sum of independent summands, it can be easily expressed as the
sum of k series, each of which has independent summands. From this observation
and Kolomogorov’s three-series theorem we can state the following remark which
gives a necessary and sufficient condition that the random variable Zk be finite a.s.

Remark 1. The count random variable Zk of k-strings is finite a.s. if and only if
E[Zk] =

∑
i≥q pi

∏k−1
j=1 (1 − pi+j)pi+k < ∞.

In this paper, we will concentrate exclusively on independent Bernoulli se-
quences, with a particular type of “harmonic” sequence for {pi}, which allows for
explicit computations and also, in some cases, connects the count vector (Z1, Z2, . . .)
with the study of rank order statistics and random permutations. In fact, we will
assume that {pi} satisfies

pi(1 − pi+1) = pi+1 or equivalently pi − pi+1 = pipi+1 for n ≥ 1. (3)

We will avoid the case p1 = 0, since then the only solution to (3) is the the trivial
solution pi ≡ 0. We will therefore assume, for the rest of this paper, that p1 =
1/(1 + B), with B ≥ 0, so that from (3)

pi =
1

i + B
for i ≥ 1. (4)

We will refer to an independent Bernoulli sequence with {pi} given in (4) as a
B−harmonic Bernoulli sequence. Occasionally, when we wish to emphasize the
dependence on B, we will write Zk,B for the count variable Zk, and ZB for the
count vector Z. From Remark 1,

E[Zk,B] ≤
∑
i≥1

pipi+k

=
∑
i≥1

1
(i + B)(i + k + B)

< ∞,

and thus Zk,B is finite, for all k ≥ 1, a.s.
When the counts (Z1, Z2, . . .) are almost-surely finite, their joint distribution

becomes an object of interest, especially its dependence on the sequence of proba-
bilities {pi}. Around 1996, Persi Diaconis observed that, for 0−harmonic Bernoulli
sequences, the distribution of the count variable Z1 is Poisson with intensity 1.
A few months later [Emery (1996)] gave another proof in an unpublished manu-
script. It is known that the count vector (Z1, . . . , Zk) of a 0−harmonic Bernoulli
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sequence can be thought of the limit of the vector (C1(n), . . . , Ck(n)) of num-
bers of cycles of different orders among permutations of {1, 2, . . . , n}. (More details
are given in the next section.) This fact coupled with the classical results (see
[Arratia et al. (2003)], [Arratia (1992)]) establish that the joint distribution of the
count vector (Z1, Z2, . . . , Zk), from a 0−harmonic Bernoulli sequence, is that of
independent Poissons with intensities (1, 1

2 , . . . , 1
k ), respectively. All these proofs

mentioned are based on combinatorial methods.
[Joffe et al. (2002)] considered general B−harmonic Bernoulli sequences and ob-

tained the moment generating function of of Z1,B by noticing that {(Si, Xi+1), i =
1, 2, . . .} forms an inhomogeneous Markov chain, where Si =

∑i
m=1 XmXm+1. From

this they identified the distribution of Z1 as a Generalized Hypergeometric Factorial
(GHF) law which is more easily stated as a Beta-mixture of Poisson distributions.

In this paper we consider general B−harmonic Bernoulli sequences and obtain
the joint distribution PB of the count vector ZB = (Z1,B, Z2,B, . . .) . With the
addition of another random variable V , the joint distribution QB of (V,ZB) can be
described as follows: the distribution of V is Beta with parameters (B, 1) and the
conditional distribution PB,v of ZB given V = v, is that of independent Poissons
with intensities (1 − v), (1 − v2)/2, (1 − v3)/3, . . .. These results are contained in
Theorem 2.

We also compute the covariance of Zk,B and Zm,B for k ≤ m and note that it
is positive for B > 0 in Corollary 2. We also show that PB has the FKG or the
positive association property in Theorem 3. There are intuitions for both positive
and negative correlations between Zk,B and Zm,B and so this result is perhaps
of interest. A plausible justification for positive correlations arises from the feeling
that more completed k-strings allow one to “start over” more times in the Bernoulli
sequence and so can lead to more strings of length m. Although with the interpre-
tation of Zk,B as the number of cycles of length k among random permutations
of En,B = {1, 2, . . . , n + B} when B ≥ 0 is an integer (see the next section), the
“age-dependent”-cycle count mapping gives perhaps the opposite interpretation.
Namely, with more k-cycles formed, there should be less “room” for m-cycles to
form in En,B , leading to negative association between Zk,B and Zm,B. One may
think, however, for fixed k < m much smaller than n ↑ ∞, that such “boundary”
considerations are negligible and the first explanation is more reasonable given
that the mixture distribution is of Beta type which has interpretations with re-
spect to “reinforcement” dynamics (e.g. Polya urns). On the other hand, since the
asymptotic joint distribution depends on B, we know that the “boundary” is not
completely ignored in the limit, thereby confusing the matter once more. It would
be of interest to have a better understanding of these dependence issues.

Our methods avoid the use of combinatorial techniques. We first show, in Lem-
ma 2, that factorial powers of count variables Zk,B , which are sums of indicator
variables Yi,k (see (2)) can be expressed as simple sums of products of the Yi,k’s. For
B−harmonic Bernoulli sequences, many products of the form Yi,kYj,k vanish and
there are some independence properties among the Yi,k’s; see (6), (7) and (8). These
are exploited in Lemma 1, Lemma 2 and Lemma 3 to obtain the joint factorial
moments of (Z1,B, . . . , Zn,B) in the main theorem (Theorem 1) which is further
simplified in Theorem 2 by recognizing it as the sum of probabilities of inequalities
among independent exponential variables. The joint distribution of (Z1,B, . . . , Zn,B)
can be deduced from this simplified expression for the factorial moments.

Even though the frequency of wait times between 1’s of all orders are finite a.s.,
it is interesting to note that there are infinitely many 1’s in the original Bernoulli
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sequence (since
∑

i≥1 pi =
∑

i≥1 1/(i + B) = ∞). However, the events (i.e. 1’s)
are so sparse that the wait to the first event has infinite mean when B > 0. Let
N = inf{i ≥ 1 : Xi = 1} be the wait to the first event. Then P (N = k) =
B/[(k−1+B)(k+B)] when B > 0, and though P (N < ∞) = 1 we have E[N ] = ∞.
In a similar fashion, when B = 0, X1 = 1 a.s. and the wait for the second event
has infinite expectation. It is also not difficult to see that, no matter the value
of B ≥ 0, the number of 1’s, Nn =

∑n
i=1 Xi, satisfies Nn/ logn → 1 a.s., and

(Nn − log n)/
√

log n
d→ N(0, 1) (cf. Example 4.6, Ch. 2 [Durrett (1995)]).

Finally, a statistician may ask whether the value of B can be consistently esti-
mated from the count vector Z of all k-strings. To say that this can be done is the
same as saying that PB and PB′ are mutually singular for B �= B′. Let MB be the
joint distribution of a B−harmonic Bernoulli sequence {Xi, i = 1, 2, . . .}. We show
in Theorem 4, by use of Kakutani’s criterion, that MB and MB′ are absolutely
continuous with respect to each other for B �= B′. This implies the same for PB

and PB′ , and thus B cannot be consistently estimated from Z.

2. Related areas

Count vectors of k-strings as described above, apart from being objects of in-
trinsic research interest, have concrete interpretations with respect to combina-
torics, genetics, ecology, statistics, and other areas (cf. [Arratia et al. (2003)],
[Johnson et al. (1992)], and [Antzoulakos and Chadjiconstantinidis (2001)] and ref-
erences therein). We will describe some connections to rank orders, record values
and permutations for the case when B ≥ 0 is an integer. In both situations, there
is an embedded sequence of independent Bernoulli r.v.’s with respect to which the
counts of k-strings have various interpretations.

Rank orders and record values. Let {ξn : n ≥ 1} be a sequence of i.i.d. r.v.’s
with common continuous distribution function F . One might think of ξn as the
amount of rainfall or the flood level in the nth year. Let ξ1,n < ξ2,n < · · · < ξnn

be the ordered values of {ξi : 1 ≤ i ≤ n} and define Rn = j if ξn = ξj,n. It is a
well known theorem of Renyi that {Rn : n ≥ 1} are independent and uniformly
distributed on their respected ranges (cf. Example 6.2, Ch. 1 [Durrett (1995)]). Let
{a1, a2, . . .} be a sequence of integers such that 1 ≤ an ≤ n and define Xn = I(Rn =
an). The sequence {Xn, n ≥ 1} is an example of a 0−harmonic Bernoulli sequence,
for any choice of the sequence {a1, a2, . . .}. The sequence {Xn,B = Xn+B, n ≥
1}, n ≥ 1} is an example of a B−harmonic Bernoulli sequence when B ≥ 0 is an
integer.

In the special case an = n for n ≥ 1, the event Xn,B = 1 means that a record,
with respect to the rainfall amounts in the first B years (which were lost or not
properly recorded), was set during the year n + B. In this case, Zk,B is the number
of times records were set after a wait of k − 1 years from a previous record.

Of course, by choosing {an} differently, one can vary the interpretation of Zn,B.

Random permutations. For B ≥ 0 an integer, let En,B = {1, 2, . . . , n + B}. We
now describe the “Feller” algorithm which chooses a permutation π : En,B → En,B

uniformly from the (n+B)! possible permutations (cf. Section 4 [Joffe et al. (2002)],
Chapter 1 of [Arratia et al. (2003)]).

1. Draw the first element uniformly from En,B and call it π(1). If π(1) = 1, a
cycle of length 1 has been completed. If π(1) = j �= 1, make a second draw uniformly
from En,B \ {π(1)} and call it π(π(1)) = π(j). Continue drawing elements naming
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them π(π(j))), π((π(π(j)))), . . . from the remaining numbers until 1 is drawn, at
which point a cycle (of some length) is completed.

2. From the elements left after the first cycle is completed, En,B \ {π(1), . . . , 1},
follow the process in step 1 with the smallest remaining number taking the role of
“1.” Repeat until all elements of En,B are exhausted.

When B = 0, n such Feller draws produces a random permutation, π : En,0 →
En,0. However, when B > 0, in n such Feller draws, π : En,B → En,B is only
injective, and there may be the possibility that no cycle of any length is completed.

Let now {I(n)
i : 1 ≤ i ≤ n} be the indicators of when a cycle is completed at

the ith drawing in n Feller draws from En,B. It is not difficult to see that {I(n)
i }

are independent Bernoulli random variables with P (I(n)
i = 1) = 1/(n + B − i + 1),

since at time i, independent of the past, there is exactly one choice among the
remaining n +B − i + 1 members left in En,B to complete the cycle (to paraphrase
Example 5.4, Ch. 1 [Durrett (1995)]).

For 1 ≤ k ≤ n, let D
(n)
k,B be the number of cycles of length k in the first n Feller

draws from En,B. It is easy to see that

D
(n)
k,B

p→ Zk,B for k ≥ 1

and we give a quick proof below.
Indeed, since a cycle of length k is finished on the mth draw, for m ≥ k + 1,

exactly when I
(n)
m−k(1− I

(n)
m−k+1) · · · (1− I

(n)
m−1)Im = 1, and also since the first cycle

is a k-cycle exactly when (1 − I
(n)
1 )(1 − I

(n)
2 ) · · · (1 − I

(n)
k−1)I

(n)
k = 1, we have

D
(n)
k,B = (1−I

(n)
1 )(1−I

(n)
2 ) · · · (1−I

(n)
k−1)I

(n)
k +

n−k∑
i=1

I
(n)
i (1−I

(n)
i+1) · · · (1−I

(n)
i+k−1)I

(n)
i+k.

Let {Xi : i ≥ 1} be independent Bernoulli random variables defined on a common
space with P (Xi = 1) = 1/(i + B), so that Xi = I

(n)
n−i+1 in law for 1 ≤ i ≤ n. We

can then write D
(n)
k,B equivalently in distribution as

D
(n)
k,B

d=
n−k∑
i=1

Xi(1 − Xi+1) · · · (1 − Xi+k−1)Xi+k + Xn−k+1

n∏
j=n−k+2

(1 − Xj).

As limn→∞ Xn−k+1(1 − Xn−k+2) · · · (1 − Xn) = 0 in probability, we have

D
(n)
k,B

p→
∑
i≥1

Xi(1 − Xi+1) · · · (1 − Xi+k−1)Xi+k = Zk,B . (5)

We see from this construction, that Zk,B represents the asymptotic number of
“young” or “age-dependent” k-cycle numbers, that is, those formed in the first n
Feller draws from sets of size n + B.

3. Preliminary lemmas

We will use the following standard definition of the factorial power of order r of an
integer a:

a[r] =




a(a − 1) · · · (a − r + 1) when a, r ≥ 1
1 when r = 0
0 when a = 0.
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Equation (2) gives a representation for the count variable Zk of k-strings as
a series of dependent summands Yi,k, defined in (1) in terms of the B−harmonic
Bernoulli sequence {Xi, i ≥ 1}. The summands {Yi,k, i ≥ 1} are indicator variables
with the following useful properties

Y 2
i,k = Yi,k, Yi,kYi,k′ = 0 if k �= k′, Yi,kYi′,k′ = 0 for i + 1 ≤ i′ < i + k, (6)

Yi,k and Yi+k+j,m are independent for j ≥ 1, (7)

E(Yi,k) = 1
(i+k−1+B)(i+k+B) , and

E(Yi,kYi+k,m) = 1
(i+k−1+B)(i+k+m−1+B)(i+k+m+B) .

}
(8)

These properties allow us to give simplified expressions for products of factorial
powers of the count vector (Z1, . . . , Zn) in terms of {Yi,k}.

The following lemma gives a representation for the factorial power of a sum of
arbitrary indicator variables.

Lemma 1. Let (I1, I2, . . .) be indicator variables, and let Z =
∑

i≥1 Ii be their sum.
Then for integers r ≥ 1, the factorial powers of Z have the following representation:

Z [r] =
∑

i1,...,ir
distinct

Ii1Ii2 · · · Iir = r!
∑

1≤i1<...<ir

Ii1Ii2 · · · Iir . (9)

Proof. The proof is by induction. For r = 1, the identity in (9) is obvious. Now
assume that the same identity holds for r − 1, with r ≥ 2. Write

Z [r] = (Z − (r − 1)) · Z [r−1]

= (Z − (r − 1)) ·
∑

i1,...,ir−1
distinct

Ii1 · · · Iir−1 .

Since Ij is 0 − 1 valued, I2
j = Ij for all j, and we have

Z
∑

i1,...,ir−1
distinct

Ii1 · · · Iir−1 =
[ ∑

ir

Iir

][ ∑
i1,...,ir−1

distinct

Ii1 · · · Iir−1

]

= (r − 1)
∑

i1,...,ir−1
distinct

Ii1 · · · Iir−1 +
∑

i1,...,ir
distinct

Ii1 · · · Iir−1Iir .

Thus
Z [r] =

∑
i1,...,ir
distinct

Ii1 · · · Iir .

This establishes the identity in (1) for r and completes the proof of Lemma 1.

Lemma 1 can be used to obtain expressions of products of factorial powers of
count vectors in a routine way. Lemma 2 will improve on this and give an alternative
expression for such a product, by exploiting property (6) of {Yi,k}. To state this
result we will need the following notation.

Let k1, k2, . . . , kn be distinct integers and let r1, r2, . . . , rn be (not necessarily
distinct) integers all of which are greater than or equal to 1. Let R0 = 0, Rm =∑n

1 rj , m = 1, · · · , n and let An = {λl}Rn

l=1 = {k1, . . . , k1︸ ︷︷ ︸
r1

, k2, . . . , k2︸ ︷︷ ︸
r2

, . . . , kn, . . . , kn︸ ︷︷ ︸
rn

}.
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Let SAn be the Rn! permutations of An, though there are only
(

Rn

r1,r2,···,rn

)
distinct

permutations. Finally, for π ∈ SAn , let

Sm(π) =
m∑

j=1

πj for 1 ≤ m ≤ Rn. (10)

Lemma 2. For n ≥ 1, let k1, . . . , kn ≥ 1 be distinct integers and r1, . . . , rn ≥ 1 be
(not necessarily distinct) integers. Then,

Z
[r1]
k1

· · ·Z [rn]
kn

=
∑

π∈SAn

∑
1≤i1<···<iRn

Yi1,π1Yi2,π2 · · ·YiRn ,πRn
. (11)

Proof. From Lemma 1 and (6), we get

Z
[r1]
k1

· · ·Z [rn]
kn

=
n∏

j=1

∑
iRj−1+1,···,iRj

distinct

YiRj−1+1,kj · · ·YiRj
,kj

=
∑

i1,···,iRn
distinct

Yi1,k1 · · ·YiR1 ,k1 · · · · · ·YiRn−1+1,kn · · ·YiRn ,kn

=
∑

π∈SAn

∑
1≤i1<···<iRn

Yi1,π1Yi2,π2 · · ·YiRn ,πRn
.

This completes the proof of Lemma 2.

For a vector of integers k = (k1, k2, . . .) with kn ≥ 1 for all n, define Km =∑m
j=1 kj to be the partial sums, k(r, s) = (kr, kr+1, . . . , ks) to be the segment from

r to s. For 1 ≤ m ≤ n and r ≥ 1, define

C(r : k(m, n)) =
∑

r≤im<im+1<···<in

Yim,kmYim+1,km+1 · · ·Yin,kn .

The following is a key lemma which gives two identities useful for the calculation
of factorial moments of the count vector (Z1,B, . . . , Zk,B).

Lemma 3. For integers r, n ≥ 1 and vectors k the following two identities hold:

E[Yr,k1C(r + 1; k(2, n + 1)] =
n+1∏
m=1

1
r − 1 + Km + B

−
n+1∏
m=1

1
r + Km + B

, (12)

and

E[C(r; k(1, n)] =
n∏

m=1

1
r − 1 + Km + B

. (13)

Proof. The proof is by simultaneous induction for both (12) and (13) on n, the
number of Yi,k factors in C(r : k(l, m)) where m − l + 1 = n. Throughout, we will
rely heavily on the properties (6),(7) and (8) of {Yi,k}.

We will now establish (12) for n = 1. Notice that

E
[
Yr,k1C(r + 1; k(2, 2))

]
=

∑
i≥r+1

E[Yr,k1Yi,k2 ] =
∑

i≥r+k1

E[Yr,k1Yi,k2 ]
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= E[Yr,k1Yr+k1,k2 ] +
∑

i≥r+k1+1

E[Yr,k1 ]E[Yi,k2 ]

=
1

(r + k1 − 1 + B)(r + K2 − 1 + B)(r + K2 + B)

+
1

(r + k1 − 1 + B)(r + k1 + B)

∑
i≥r+k1+1

1
(i + k2 − 1 + B)(i + k2 + B)

=
1

(r + k1 − 1 + B)(r + K2 − 1 + B)(r + K2 + B)

+
1

(r + k1 − 1 + B)(r + k1 + B)(r + K2 + B)

=
1

(r − 1 + k1 + B)(r − 1 + K2 + b)
− 1

(r + k1 + B)(r + K2 + B)
.

This establishes (12) for n = 1.
Next,

E
[
C(r; k(1, 1))

]
=

∑
i1≥r

E[Yi,k1 ] =
∑
i≥r

1
(i + k1 − 1 + B)(i + k1 + B)

=
∑
i≥r

[
1

(i + k1 − 1 + B)
− 1

(i + k1 + B)

]

=
1

r − 1 + k1 + B

which establishes (13) for n = 1.
For the induction step, let N ≥ 2 and assume that (12) and (13) hold for

n = N − 1. We first establish (13) for n = N by using the validity of (12) for
n = N − 1 as follows:

E
[
C(r; k(1, N))

]
= E

[ ∑
r≤i1<···<iN

Yi1,k1 · · ·YiN ,kN

]

= E

[ ∑
r≤i

Yi,k1

[ ∑
i+1≤i2<···<iN

Yi2,k2 · · ·YiN ,kN

]]

=
∑
r≤i

[ N∏
m=1

1
i + Km − 1 + B

−
N+1∏
m=1

1
i + Km + B

]

=
N∏

m=1

1
r + Km − 1 + B

.

To finish the induction we now proceed to establish (12) for n = N , assuming
that (12) holds for n = N − 1 and (13) holds for n = N . Notice that

E[Yr,k1C(r + 1; k(2, N + 1))] = E[Yr,k1C(r + k1; k(2, N + 1))]
= E[Yr,k1Yr+k1,k2C(r + K2; k(3, N + 1))]

+ E[Yr,k1 ]E[C(r + k1 + 1; k(2, N + 1))].

By conditioning on Xr+k1 and noting that many terms vanish when Xr+k1 = 0,
the first term above simplifies as follows:
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E[Yr,k1Yr+k1,k2C(r + K2; k(3, N + 1))]
= E[Yr,k1E[Yr+k1,k2C(r + K2; k(3, N + 1))|Xr, . . . , Xr+k1 ]]
= E[Yr,k1E[Yr+k1,k2C(r + K2; k(3, N + 1))|Xr+k1 ]]
= E[E[Yr,k1 |Xr+k1 ]E[Yr+k1,k2C(r + K2; k(3, N + 1))|Xr+k1 ]]
= E[Yr,k1 |Xr+k1 = 1]

· E[Yr+k1,k2C(r + K2; k(3, N + 1))|Xr+k1 = 1]P (Xr+k1 = 1)
= E[Yr,k1 |Xr+k1 = 1]E[Yr+k1,k2C(r + K2; k(3, N + 1))].

The assumption that (12) and (13) hold for n = N − 1 yields

E[Yr,k1C(r + 1; k(2, N + 1))]
= E[Yr,k1 |Xr+k1 = 1]E[Yr+k1,k2C(r + K2; k(3, N + 1))]

+ E[Yr,k1 ]E[C(r + k1 + 1; k(2, N + 1))]

=
1

r + k1 − 1 + B

[ N+1∏
m=2

1
r + Km − 1 + B

−
N+1∏
m=2

1
r + Km + B

]

+
1

(r + k1 − 1 + B)(r + k1 + B)

N+1∏
m=2

1
r + Km + B

=
1

r + k1 − 1 + B

[ N+1∏
m=2

1
r + Km − 1 + B

−
N+1∏
m=2

1
r + Km + B

]

+
1

r + k1 − 1 + B

N+1∏
m=2

1
r + Km + B

−
N+1∏
m=1

1
r + Km + B

=
N+1∏
m=1

1
r + Km − 1 + B

−
N+1∏
m=1

1
r + Km + B

.

This establishes (12) for n = N and completes the proof of the lemma.

4. Main results and corollaries

Consider a B−harmonic Bernoulli sequence and the corresponding count vector ZB.
For non-negative integers s1, s2, . . . , sn, define

µB(s1, . . . , sn) = E(Z [s1]
1,BZ

[s2]
2,B · · ·Z [sn]

n,B).

The following theorem gives an explicit form for the factorial moments of this count
vector which will be used to identify its joint distribution.

Theorem 1. Let ZB be the count vector arising from a B−harmonic Bernoulli
sequence {Xi}. Let k1, . . . , kn be distinct integers and let r1, . . . , rn be not necessarily
distinct integers, all greater than or equal to 1. Recall the notations Rm, An,SAn

and Sm(π) from just before (10). Then

E
[
Z

[r1]
k1,BZ

[r2]
k2,B · · ·Z [rn]

kn,B

]
=

∑
π∈SAn

Rn∏
m=1

1
Sm(π) + B

(14)
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Proof. From Lemmas 2 and 3, using the notation in (10),

E
[
Z

[r1]
k1,BZ

[r2]
k2,B · · ·Z [rn]

kn,B

]
= E

[ ∑
π∈SAn

∑
1≤i1<···<iRn

Yi1,π1Yi2,π2 · · ·YiRn ,πRn

]

= E

[ ∑
π∈SAn

C(1; π(1, Rn))
]

=
∑

π∈SAn

Rn∏
m=1

1
Sm(π) + B

.

This completes the proof of the theorem.

The next theorem, which is the main result of this paper, gives the factorial
moments of (Z1,B, · · · , ZN,B) for B−harmonic Bernoulli sequences and deduces the
structure of the joint distribution of ZB.

Theorem 2. For non-negative integers s1, . . . , sN ,

µB(s1, . . . , sN ) =
∫ 1

0

BvB−1
N∏

j=1

(
(1 − vj)

j

)sj

. (15)

This implies that the joint distribution PB of ZB has the following structure: there
is random variable V and the joint distribution QB of (V,ZB) can be described as
follows: V has a Beta(B, 1) distribution (which is the point mass at 0 when B = 0)
and given V = v, the conditional distribution PB,v of (Z1,B, Z2,B, . . .) is that of
independent Poissons with intensities 1 − v, 1−v2

2 , . . . respectively.

Proof. First, let B > 0 as the case B = 0 is analogous or can be obtained by
taking the limit B ↓ 0. Second, to establish (15), we can assume that some sm > 0
for some m. In fact, let (sk1 , . . . , skn) be the vector formed from the non-zeros in
(s1, s2, . . . , sN ), and let Rn, An, SAn and Sm(π) for π ∈ SAn be as defined near (10).
Let also W0, W1, W2, . . . , WRn be independent exponential r.v.’s with failure rates

B, λ1, . . . , λRn

def
= B, k1, . . . , k1︸ ︷︷ ︸

r1

, . . . , kn, . . . , kn︸ ︷︷ ︸
rn

, respectively. Then, for any π ∈ SAn

Rn∏
m=1

πm

Sm(π) + B
=

Rn∏
m=1

λπm

Sm(π) + B
= P (WπRn

< WπRn−1 < · · · < Wπ1 < W0).

(16)
From Theorem 1 and (16), we conclude

( N∏
j=1

jsj

)
· µB(s1, . . . , sN ) =

( n∏
j=1

(kj)
skj

)
· EB(Z [sk1 ]

k1,B · · ·Z [skn ]
kn,B)

=
∑

π∈SAn

Rn∏
m=1

πm

Sm(π) + B

=
∑

π∈SAn

P (WπRn
< · · · < Wπ1 < W0)

= P (max(W1, . . . , WRn) < W0)
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=
∫ ∞

0

Be−By
n∏

j=1

(1 − e−kjy)skj dy

=
∫ 1

0

BvB−1
N∏

j=1

(1 − vj)sj dv

=
( N∏

j=1

jsj

)
·
∫ 1

0

BvB−1
N∏

j=1

E(Z [sj ]
j,v )dv

where, for each v, Z1,v, Z2,v, . . . are independent Poisson random variables with
means (1 − v), (1 − v2)/2, . . ., respectively. This establishes the structure of PB as
desired.

Remark 2. We now indicate an alternate argument to obtain Theorem 2. Consider
the factorial moment generating function

φB(t1, . . . , tn)
def
=

∑
r1,...,rn≥0

µB(r1, . . . , rn)
t1

r1 . . . tn
rn

r1! . . . rn!
.

The denominator of the last factor in (14), SRn(π) + B, is the same for all values
of π and equals

∑n
1 rjkj + B. Hence, we have the recurrence relation

µB(r1, . . . , rn) =
n∑
1

rjµB(r1, . . . , rj − 1, . . . , rn)

which in turn leads to the partial differential equation
n∑

j=1

jtj
∂φB

∂tj
= (

n∑
1

tj − B)φB + B. (17)

Also, the marginal factorial moment generating function φj,B(tj) of Zj,B satisfies
jtj∂φj,B(tj)/∂tj = (tj − B)φj,B(tj) + B with the boundary condition φj,B(0) = 1.
Its unique solution is φj,B(tj) =

∫ 1

0 BvB−1 exp{tj(1 − vj)/j}BvB−1dv. Then, the
boundary conditions for the equation in (17) are φB(0, . . . , 0, tj , 0, . . . , 0) = φj,B(tj)
for 1 ≤ j ≤ n. It can be checked that equation (17) has a unique solution, namely

φB(t1, . . . , tn) =
∫ 1

0

BvB−1 exp
{ n∑

j=1

tj
j

(1 − vj)
}

dv,

which immediately gives the description of the joint distribution of ZB in Theo-
rem 2.

We now give some corollaries of the main theorems. The first gives marginal
factorial moments of the count Zk,B.

Corollary 1. For a B−harmonic Bernoulli sequence,

E(Z [r]
k,B) =

r!
(k + B)(2k + B) · · · (rk + B)

Proof. From Theorem 2,

E(Z [r]
k,B) =

∫ 1

0

BvB−1

(
1 − vk

k

)r

=
r!

(k + B)(2k + B) · · · (rk + B)
.
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The second corollary computes the covariance between Zk1,B and Zk2,B.

Corollary 2.

cov(Zk1,B, Zk2,B) =
B

(k1 + B)(k2 + B)(k1 + k2 + B)
.

Proof. From (14) in Theorem 1, we have

E(Zk1,B)E(Zk2,B) =
1

(k1 + B)(k2 + B)

E(Zk1,BZk2,B) =
1

(k1 + B)(k1 + k2 + B)
+

1
(k2 + B)(k1 + k2 + B)

=
1

(k1 + B)(k2 + B)
+

B

(k1 + B)(k2 + B)(k1 + k2 + B)

This shows that Zk1,B and Zk2,B are positively correlated and

cov(Zk1,B, Zk2,B) =
B

(k1 + B)(k2 + B)(k1 + k2 + B)
.

The FKG or positive association property of PB is now established.

Theorem 3. The joint distribution PB of Z possesses the FKG property.

Proof. Let f, g be a bounded functions on R∞ which are coordinate-wise increasing
and are supported on a finite number of coordinates. We need to show that∫

f(Z)g(Z))dPB ≥
∫

f(Z)dPB

∫
g(Z)dPB . (18)

It is well known that distributions on the real line and products of measures on the
real line possess the FKG property [Liggett (1985)]. Since the Poisson distribution
is stochastically increasing in its intensity parameter, the product measure Pv,B

(cf. Theorem 2) is stochastically decreasing in v. This means that for any bounded
increasing function f ,

∫
f(z)dPv,B is decreasing in v. Thus

∫
f(Z)g(Z)dPB =

∫ 1

0

BvB−1

∫
f(Z)g(Z)dPv,B dv

≥
∫ 1

0

BvB−1

∫
f(Z)dPv,B

∫
g(Z)dPv,B dv

since Pv,B is a product measure

≥
∫ 1

0

BvB−1

∫
f(Z)dPv,Bdv ·

∫ 1

0

BvB−1

∫
g(Z)dPv,B dv

since
∫

f(Z)dPv,B ,

∫
g(Z)dPv,B , decreases in v

= EB(f(Z))EB(g(Z)).

This completes the proof of this theorem.

Finally, in the introduction, we stated that the parameter B cannot be estimated
from Z. This is a consequence of the fact below.
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Theorem 4. Let MB be the joint distribution of the B−harmonic Bernoulli se-
quence {Xi}. Then for 0 ≤ B < B′, the measures MB and MB′ are absolutely
continuous with respect to one another.

Proof. Since MB, MB′ are product measures, we compute the Kakutani dichotomy
criterion

∏
k≥1

[
1√

(k + B)(k + B′)
+

√
1 − 1

k + B

√
1 − 1

k + B′

]
=

∏
k≥1

(
1− 1

k2
(1+o(1))

)
> 0.

Thus for B �= B′, MB << MB′ . This also implies that PB = MBZ−1 << PB′ =
MB′Z−1. This proves this theorem.
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