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Abstract: Self-similar stochastic processes are used for stochastic modeling
whenever it is expected that long range dependence may be present in the
phenomenon under consideration. After discussing some basic concepts of self-
similar processes and fractional Brownian motion, we review some recent work
on parametric and nonparametric inference for estimation of parameters for
linear systems of stochastic differential equations driven by a fractional Brown-
ian motion.

1. Introduction

“Asymptotic Distributions in Some Nonregular Statistical Problems” was the topic
of my Ph.D. Dissertation prepared under the guidance of Prof. Herman Rubin at
Michigan State University in 1966. One of the nonregular problems studied in the
dissertation was the problem of estimation of the location of cusp of a continuous
density. The approach adapted was to study the limiting distribution if any of
the log-likelihood ratio process and then obtain the asymptotic properies of the
maximum likelihood estimator. It turned out that the limiting process is a special
type of a nonstationary gaussian process. The name fractional Brownian motion was
not in vogue in those years and the limiting process is nothing but a functional shift
of a fractional Brownian motion. Details of these results are given in Prakasa Rao
(1966) and Prakasa Rao (1968). The other nonregular problems discussed in the
dissertation dealt with inference under order restrictions where in it was shown that,
for the existence of the limiting distribution if any for the nonparametric maximum
likelihood density estimators under order restrictions such as unimodality of the
density function or monotonicity of the failure rate function, one needs to scale the
estimator by the cube root of n, the sample size rather than the square root of n
as in the classical parametric inference (cf. Prakasa Rao (1969, 1970). These type
of asymptotics are presently known as cube root asymptotics in the literature. It
gives me a great pleasure to contribute this paper to the festschrift in honour of
my “guruvu” Prof. Herman Rubin.

A short review of some properties of self-similar processes is given in the Sec-
tion 2. Stochastic differential equations driven by a fractional Brownian motion
(fBm) are introduced in the Section 3. Asymptotic properties of the maximum
likelihood estimators and the Bayes estimators for parameters involed in linear
stochastic differential equations driven by a fBm with a known Hurst index are
reviewed in the Section 4. Methods for statistical inference such as the maxi-
mum likelihood estimation and the sequential maximum likelihood estimation are
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discussed for the special case of the fractional Ornstein-Uhlenbeck type process
and some new results on the method of minimum L1-norm estimation are pre-
sented in the Section 5. Identification or nonparametric estimation of the “drift”
function for linear stochastic systems driven by a fBm are studied in the Sec-
tion 6.

2. Self-similar processes

Long range dependence phenomenon is said to occur in a stationary time series
{Xn, n ≥ 0} if the Cov(X0, Xn) of the time series tends to zero as n → ∞ and yet
the condition

∞∑
n=0

|Cov(X0, Xn)| = ∞ (2.1)

holds. In other words the covariance between X0 and Xn tends to zero but so
slowly that their sums diverge. This phenonmenon was first observed by hydrologist
Hurst (1951) on projects involving the design of reservoirs along the Nile river (cf.
Montanari (2003)) and by others in hydrological time series. It was recently observed
that a similar phenomenon occurs in problems connected with traffic patterns of
packet flows in high speed data net works such as the internet (cf. Willinger et al.
(2003) and Norros (2003)). Long range dependence is also related to the concept of
self-similarity for a stochastic process in that the increments of a self-similar process
with stationary increments exhibit long range dependence. Long range dependence
pattern is also observed in macroeconomics and finance (cf. Henry and Zafforoni
(2003)). A recent monograph by Doukhan et al. (2003) discusses the theory and
applications of long range dependence.

A real-valued stochastic process Z = {Z(t),−∞ < t < ∞} is said to be self-
similar with index H > 0 if for any a > 0,

L({Z(at),−∞ < t < ∞}) = L({aHZ(t),−∞ < t < ∞}) (2.2)

where L denotes the class of all finite dimensional distributions and the equality
indicates the equality of the finite dimensional distributions of the process on the
right side of the equation (2.2) with the corresponding finite dimensional distrib-
utions of the process on the left side of the equation (2.2). The index H is called
the scaling exponent or the fractal index or the Hurst parameter of the process. If
H is the scaling exponent of a self-similar process Z, then the process Z is called
H-self similar process or H-ss process for short. It can be checked that a nonde-
generate H-ss process cannot be a stationary process. In fact if {Z(t), t > 0} is a
H-ss process, then the process

Y (t) = e−tHZ(et),−∞ < t < ∞ (2.3)

is a stationary process. Conversely if Y = {Y (t),−∞ < t < ∞} is a stationary
process, then Z = {tHY (log t), t > 0} is a H-ss process.

Suppose Z = {Z(t),−∞ < t < ∞} is a H-ss process with finite variance and
stationary increments, that is,

L(Z(t + h) − Z(t)) = L(Z(t) − Z(0)),−∞ < t, h < ∞. (2.4)

Then the following properties hold:
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(i) Z(0) = 0 a.s;

(ii) If H �= 1, then E(Z(t)) = 0,−∞ < t < ∞;

(iii) L(Z(−t)) = L(−Z(t));

(iv)E(Z2(t)) = |t|2HE(Z2(1));

(v)The covariance function ΓH(t, s) of the process Z is given by

ΓH(t, s) =
1
2
{|t|2H + |s|2H − |t − s|2H}. (2.5)

(vi)The self-similarity parameter, also called the scaling exponent or fractal index
H , is less than or equal to one.

(vii) If H = 1, then Z(t) = tZ(1) a.s. for −∞ < t < ∞.

(viii) Let 0 < H ≤ 1. Then the function

RH(s, t) = {|t|2H + |s|2H − |t − s|2H} (2.6)

is nonnegative definite. For proofs of the above properties, see Taqqu (2003).

A gaussian process H-ss process WH = {WH(t),−∞ < t < ∞} with stationary
increments and with fractal index 0 < H < 1 is called a fractional Brownian motion
(fBm). It is said to be standard if V ar(WH(1)) = 1. For any 0 < H < 1, there exists
a version of the fBm for which the sample paths are continuous with probability
one but are not differentiable even in the L2-sense. The continuity of the sample
paths follows from the Kolmogorov’s continuity condition and the fact that

E|WH(t2) − WH(t1)|α = E|WH(1)|α|t2 − t1|αH (2.7)

from the property that the fBm is a H-ss process with stationary increments. We
can choose α such that αH > 1 to satisfy the Kolmogorov’s continuity condition.
Further more

E|W
H(t2) − WH(T1)

t2 − t1
|2 = E[WH(1)

2
]|t2 − t1|2H−2 (2.8)

and the last term tends to infinity as t2 → t1 since H < 1. Hence the paths of the
fBm are not L2-differentiable. It is interesting to note that the fractional Brownian
motion reduces to the Brownian motion or the Wiener process for the case when
H = 1

2 .
As was mentioned above, self-similar processes have been used for stochastic

modeling in such diverse areas as hydrology, geophysics, medicine, genetics and
financial economics and more recently in modeling internet traffic patterns. Recent
additional applications are given in Buldyrev et al. (1993), Ossandik et al. (1994),
Percival and Guttorp (1994) and Peng et al.(1992, 1995a,b). It is important to
estimate the constant H for modeling purposes. This problem has been considered
by Azais (1990), Geweke and Porter-Hudak (1983), Taylor and Taylor (1991), Beran
and Terrin (1994), Constantine and Hall (1994), Feuverger et al. (1994), Chen et
al. (1995), Robinson (1995), Abry and Sellan (1996), Comte (1996), McCoy and
Walden (1996), Hall et al. (1997), Kent and Wood (1997), and more recently in
Jensen (1998), Poggi and Viano (1998) and Coeurjolly (2001).
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It was observed that there are some phenomena which exhibit self-similar be-
haviour locally but the nature of self-similarity changes as the phenomenon evolves.
It was suggested that the parameter H must be allowed to vary as function of time
for modeling such data. Goncalves and Flandrin (1993) and Flandrin and Goncalves
(1994) propose a class of processes which are called locally self-similar with depen-
dent scaling exponents and discuss their applications. Wang et al. (2001) develop
procedures using wavelets to construct local estimates for time varying scaling ex-
ponent H(t) of a locally self-similar process.

3. Stochastic differential equations driven by fBm

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions. The natural
fitration of a process is understood as the P -completion of the filtration generated
by this process.

Let WH = {WH
t , t ≥ 0} be a normalized fractional Brownian motion (fBm)

with Hurst parameter H ∈ (0, 1), that is, a gaussian process with continuous sample
paths such that WH

0 = 0, E(WH
t ) = 0 and

E(WH
s WH

t ) =
1
2
[s2H + t2H − |s − t|2H ], t ≥ 0, s ≥ 0. (3.1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic
integral equation

Yt =
∫ t

0

C(s)ds +
∫ t

0

B(s)dWH
s , t ≥ 0 (3.2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a nonvanishing
nonrandom function. For convenience, we write the above integral equation in the
form of a stochastic differential equation

dYt = C(t)dt + B(t)dWH
t , t ≥ 0 (3.3)

driven by the fractional Brownian motion WH . The integral
∫ t

0

B(s)dWH
s (3.4)

is not a stochastic integral in the Ito sense but one can define the integral of a
deterministic function with respect to the fBm in a natural sense (cf. Gripenberg
and Norros (1996); Norros et al. (1999)). Even though the process Y is not a
semimartingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which is called
a fundamental semimartingale such that the natural filtration (Zt) of the process Z
coincides with the natural filtration (Yt) of the process Y (Kleptsyna et al. (2000)).
Define, for 0 < s < t,

kH = 2H Γ(
3
2
− H) Γ(H +

1
2
), (3.5)

κH(t, s) = k−1
H s

1
2−H(t − s)

1
2−H , (3.6)

λH =
2H Γ(3 − 2H) Γ(H + 1

2 )
Γ(3

2 − H)
, (3.7)

wH
t = λ−1

H t2−2H , (3.8)
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and

MH
t =

∫ t

0

κH(t, s)dWH
s , t ≥ 0. (3.9)

The process MH is a Gaussian martingale, called the fundamental martingale (cf.
Norros et al. (1999)) and its quadratic variation < MH

t >= wH
t . Further more the

natural filtration of the martingale MH coincides with the natural fitration of the
fBm WH . In fact the stochastic integral

∫ t

0

B(s)dWH
s (3.10)

can be represented in terms of the stochastic integral with respect to the martingale
MH . For a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s

f(r)rH− 1
2 (r − s)H− 1

2 dr, 0 ≤ s ≤ t (3.11)

when the derivative exists in the sense of absolute continuity with respect to the
Lebesgue measure(see Samko et al. (1993) for sufficient conditions). The following
result is due to Kleptsyna et al. (2000).

Theorem 3.1. Let MH be the fundamental martingale associated with the fBm
WH defined by (3.9). Then

∫ t

0

f(s)dWH
s =

∫ t

0

Kf
H(t, s)dMH

s , t ∈ [0, T ] (3.12)

a.s. [P ] whenever both sides are well defined.

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see

Samko et al. (1993)) so that

QH(t) =
d

dwH
t

∫ t

0

κH(t, s)
C(s)
B(s)

ds, t ∈ [0, T ] (3.13)

is well-defined where wH and kH are as defined in (3.8) and (3.6) respectively and
the derivative is understood in the sense of absoulute continuity. The following
theorem due to Kleptsyna et al. (2000) associates a fundamental semimartingale Z
associated with the process Y such that the natural filtration (Zt) coincides with
the natural filtration (Yt) of Y.

Theorem 3.2. Suppose the sample paths of the process QH defined by (3.13) belong
P -a.s to L2([0, T ], dwH) where wH is as defined by (3.8). Let the process Z =
(Zt, t ∈ [0, T ]) be defined by

Zt =
∫ t

0

κH(t, s)B−1(s)dYs (3.14)

where the function κH(t, s) is as defined in (3.6). Then the following results hold:
(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =
∫ t

0

QH(s)dwH
s + MH

t (3.15)
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where MH is the fundamental martingale defined by (3.9),
(ii) the process Y admits the representation

Yt =
∫ t

0

KB
H(t, s)dZs (3.16)

where the function KB
H(., .) is as defined in (3.11), and

(iii) the natural fitrations of (Zt) and (Yt) coincide.

Kleptsyna et al. (2000) derived the following Girsanov type formula as a conse-
quence of the Theorem 3.2.

Theorem 3.3. Suppose the assumptions of Theorem 3.2 hold. Define

ΛH(T ) = exp{−
∫ T

0

QH(t)dMH
t − 1

2

∫ t

0

Q2
H(t)dwH

t }. (3.17)

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability
measure and the probability measure of the process Y under P ∗ is the same as that
of the process V defined by

Vt =
∫ t

0

B(s)dWH
s , 0 ≤ t ≤ T. (3.18)

.

4. Statistical inference for linear SDE driven by fBm

Statistical inference for diffusion type processes satisfying stochastic differential
equations driven by Wiener processes have been studied earlier and a comprehen-
sive survey of various methods is given in Prakasa Rao (1999a, b). There has been
a recent interest to study similar problems for stochastic processes driven by a
fractional Brownian motion for modeling stochastic phemonena with possible long
range dependence. Le Breton (1998) studied parameter estimation and filtering
in a simple linear model driven by a fractional Brownian motion. In a recent pa-
per, Kleptsyna and Le Breton (2002) studied parameter estimation problems for
fractional Ornstein-Uhlenbeck type process. This is a fractional analogue of the
Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive
process X = {Xt, t ≥ 0} which is the solution of a one-dimensional homogeneous
linear stochastic differential equation driven by a fractional Brownian motion (fBm)
WH = {WH

t , t ≥ 0} with Hurst parameter H ∈ [1/2, 1). Such a process is the unique
Gaussian process satisfying the linear integral equation

Xt = θ

∫ t

0

Xsds + σWH
t , t ≥ 0. (4.1)

They investigate the problem of estimation of the parameters θ and σ2 based on the
observation {Xs, 0 ≤ s ≤ T } and prove that the maximum likelihood estimator θ̂T

is strongly consistent as T → ∞.
We now discuss more general classes of stochastic processes satisfying linear

stochastic differential equations driven by a fractional Brownian motion and review
some recent work connected with the asymptotic properties of the maximum like-
lihood and the Bayes estimators for parameters involved in such processes. We will
also discuss some aspects of sequential estimation and minimum distance estimation
problems for fractional Ornstein-Uhlenbeck type processes in the next section.
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Let us consider the stochastic differential equation

dX(t) = [a(t, X(t)) + θ b(t, X(t))]dt + σ(t)dWH
t , X(0) = 0, t ≥ 0 (4.2)

where θ ∈ Θ ⊂ R, W = {WH
t , t ≥ 0} is a fractional Brownian motion with known

Hurst parameter H and σ(t) is a positive nonvanishing function on [0,∞). In other
words X = {Xt, t ≥ 0} is a stochastic process satisfying the stochastic integral
equation

X(t) =
∫ t

0

[a(s, X(s)) + θ b(s, X(s))]ds +
∫ t

0

σ(s)dWH
s , X(0) = 0, t ≥ 0. (4.3)

Let

C(θ, t) = a(t, X(t)) + θ b(t, X(t)), t ≥ 0 (4.4)

and assume that the sample paths of the process {C(θ,t)
σ(t) , t ≥ 0} are smooth enough

so that the the process

QH,θ(t) =
d

dwH
t

∫ t

0

κH(t, s)
C(θ, s)
σ(s)

ds, t ≥ 0 (4.5)

is well-defined where wH
t and κH(t, s) are as defined in (3.8) and (3.6) respectively.

Suppose the sample paths of the process {QH,θ, 0 ≤ t ≤ T } belong almost surely
to L2([0, T ], dwH

t ). Define

Zt =
∫ t

0

κH(t, s)
σ(s)

dXs, t ≥ 0. (4.6)

Then the process Z = {Zt, t ≥ 0} is an (Ft)-semimartingale with the decomposition

Zt =
∫ t

0

QH,θ(s)dwH
s + MH

t (4.7)

where MH is the fundamental martingale defined by (3.9) and the process X admits
the representation

Xt =
∫ t

0

Kσ
H(t, s)dZs (4.8)

where the function Kσ
H(., .) is as defined by (3.11). Let PT

θ be the measure induced
by the process {Xt, 0 ≤ t ≤ T } when θ is the true parameter. Following Theorem
3.3, we get that the Radon-Nikodym derivative of PT

θ with respect to PT
0 is given

by

dPT
θ

dP T
0

= exp[
∫ T

0

QH,θ(s)dZs −
1
2

∫ T

0

Q2
H,θ(s)dwH

s ]. (4.9)

Maximum likelihood estimation
We now consider the problem of estimation of the parameter θ based on the

observation of the process X = {Xt, 0 ≤ t ≤ T } and study its asymptotic properties
as T → ∞.
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Strong consistency:
Let LT (θ) denote the Radon-Nikodym derivative dP T

θ

dP T
0

. The maximum likelihood

estimator (MLE) θ̂T is defined by the relation

LT (θ̂T ) = sup
θ∈Θ

LT (θ). (4.10)

We assume that there exists such a measurable maximum likelihood estimator.
Sufficient conditions can be given for the existence of such an estimator (cf. Lemma
3.1.2, Prakasa Rao (1987)).

Note that

QH,θ(t) =
d

dwH
t

∫ t

0

κH(t, s)
C(θ, s)
σ(s)

ds (4.11)

=
d

dwH
t

∫ t

0

κH(t, s)
a(s, X(s))

σ(s)
ds + θ

d

dwH
t

∫ t

0

κH(t, s)
b(s, X(s))

σ(s)
ds

= J1(t) + θJ2(t).(say)

Then

log LT (θ) =
∫ T

0

(J1(t) + θJ2(t))dZt −
1
2

∫ T

0

(J1(t) + θJ2(t))2dwH
t (4.12)

and the likelihood equation is given by
∫ T

0

J2(t)dZt −
∫ T

0

(J1(t) + θJ2(t))J2(t)dwH
t = 0. (4.13)

Hence the MLE θ̂T of θ is given by

θ̂T =

∫ T

0 J2(t)dZt +
∫ T

0 J1(t)J2(t)dwH
t∫ T

0 J2
2 (t)dwH

t

. (4.14)

Let θ0 be the true parameter. Using the fact that

dZt = (J1(t) + θ0J2(t))dwH
t + dMH

t , (4.15)

it can be shown that

dP T
θ

dP T
θ0

= exp[(θ − θ0)
∫ T

0

J2(t)dMH
t − 1

2
(θ − θ0)2

∫ T

0

J2
2 (t)dwH

t ]. (4.16)

Following this representation of the Radon-Nikodym derivative, we obtain that

θ̂T − θ0 =

∫ T

0 J2(t)dMH
t∫ T

0
J2

2 (t)dwH
t

. (4.17)

Note that the quadratic variation < Z > of the process Z is the same as the
quadratic variation < MH > of the martingale MH which in turn is equal to wH .
This follows from the relations (3.15) and (3.9). Hence we obtain that

[wH
T ]−1 lim

n
Σ[Z

t
(n)
i+1

− Z
t
(n)
i

]2 = 1 a.s [Pθ0 ]
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where (t(n)
i is a partition of the interval [0, T ] such that sup |t(n)

i+1 − t
(n)
i | tends to

zero as n → ∞. If the function σ(t) is an unknown constant σ, the above property
can be used to obtain a strongly consistent estimator of σ2 based on the continuous
observation of the process X over the interval [0, T ]. Here after we assume that the
nonrandom function σ(t) is known.

We now discuss the problem of maximum likelihood estimation of the parame-
ter θ on the basis of the observation of the process X or equivalently the process Z
on the interval [0, T ]. The following result holds.

Theorem 4.1. The maximum likelihood estimator θ̂T is strongly consistent, that
is,

θ̂T → θ0 a.s [Pθ0 ] as T → ∞ (4.18)

provided ∫ T

0

J2
2 (t)dwH

t → ∞ a.s [Pθ0 ] as T → ∞. (4.19)

Remark. For the case fractional Ornstein-Uhlenbeck type process investigated in
Kleptsyna and Le Breton (2002), it can be checked that the condition stated in
equation (4.19) holds and hence the maximum likelihood estimator θ̂T is strongly
consistent as T → ∞.

Limiting distribution:
We now discuss the limiting distribution of the MLE θ̂T as T → ∞.

Theorem 4.2. Assume that the functions b(t, s) and σ(t) are such that the process
{Rt, t ≥ 0} is a local continuous martingale and that there exists a norming function
It, t ≥ 0 such that

I2
T < RT >= I2

T

∫ T

0

J2
2 (t)dwH

t
p→ η2 as T → ∞ (4.20)

where IT → 0 as T → ∞ and η is a random variable such that P (η > 0) = 1. Then

(IT RT , I2
T < RT >) L→ (ηZ, η2) as T → ∞ (4.21)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

For the proofs of Theorems 4.1 and 4.2, see Prakasa Rao (2003a).

Theorem 4.3. Suppose the conditions stated in the Theorem 4.2 hold. Then

I−1
T (θ̂T − θ0)

L→ Z

η
as t → ∞ (4.22)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

Remarks. If the random variable η is a constant with probability one, then the
limiting distribution of the maximum likelihood estimator is normal with mean
0 and variance η−2. Otherwise it is a mixture of the normal distributions with
mean zero and variance η−2 with the mixing distribution as that of η. The rate of
convergence of the distribution of the maximum likelihood estimator is discussed
in Prakasa Rao (2003b).
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Bayes estimation
Suppose that the parameter space Θ is open and Λ is a prior probability measure

on the parameter space Θ. Further suppose that Λ has the density λ(.) with respect
to the Lebesgue measure and the density function is continuous and positive in an
open neighbourhood of θ0, the true parameter. Let

αT ≡ IT RT = IT

∫ T

0

J2(t)dMH
t (4.23)

and

βT ≡ I2
T < RT >= I2

T

∫ T

0

J2
2 (t)dwH

t . (4.24)

We have seen earlier in (4.17) that the maximum likelihood estimator satisfies the
relation

αT = (θ̂T − θ0)I−1
T βT . (4.25)

The posterior density of θ given the observation XT ≡ {Xs, 0 ≤ s ≤ T } is given by

p(θ|XT ) =

dP T
θ

dP T
θ0

λ(θ)
∫
Θ

dP T
θ

dP T
θ0

λ(θ)dθ
. (4.26)

Let us write t = I−1
T (θ − θ̂T ) and define

p∗(t|XT ) = IT p(θ̂T + tIT |XT ). (4.27)

Then the function p∗(t|XT ) is the posterior density of the transformed variable
t = I−1

T (θ − θ̂T ). Let

νT (t) ≡
dPθ̂T +tIT

/dPθ0

dPθ̂T
/dPθ0

(4.28)

=
dPθ̂T +tIT

dPθ̂T

a.s.

and
CT =

∫ ∞

−∞
νT (t)λ(θ̂T + tIT )dt. (4.29)

It can be checked that

p∗(t|XT ) = C−1
T νT (t)λ(θ̂T + tIT ) (4.30)

and

log νT (t) = I−1
T αT [(θ̂T + tIT − θ0) − (θ̂T − θ0)] (4.31)

−1
2
I−2
T βT [(θ̂T + tIT − θ0)2 − (θ̂T − θ0)2]

= tαT − 1
2
t2βT − tβT I−1

T (θ̂T − θ0)

= −1
2
βT t2

in view of the equation (4.25).
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Suppose that the convergence in the condition in the equation (4.20) holds
almost surely under the measure Pθ0 and the limit is a constant η2 > 0 with
probability one. For convenience, we write β = η2. Then

βT → β a.s [Pθ0 ] as T → ∞. (4.32)

Further suppose that K(t) is a nonnegative measurable function such that, for
some 0 < ε < β, ∫ ∞

−∞
K(t) exp[−1

2
t2(β − ε)]dt < ∞ (4.33)

and the maximum likelihood estimator θ̂T is strongly consistent, that is,

θ̂T → θ0 a.s [Pθ0 ] as T → ∞. (4.34)

In addition, suppose that the following condition holds for every ε > 0 and
δ > 0 :

exp[−εI−2
T ]

∫
|u|>δ

K(uI−1
T )λ(θ̂T + u)du → 0 a.s.[Pθ0 ] as T → ∞. (4.35)

Then we have the follwing theorem which is an analogue of the Bernstein - von
Mises theorem proved in Prakasa Rao (1981) for a class of processes satisfying a
linear stochastic differential equation driven by the standard Wiener process.

Theorem 4.4. Let the assumptions (4.32) to (4.35) hold where λ(.) is a prior
density which is continuous and positive in an open neighbourhood of θ0, the true
parameter. Then

lim
T→∞

∫ ∞

−∞
K(t)|p∗(t|XT ) − (

β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ]. (4.36)

As a consequence of the above theorem, we obtain the following result by choosing
K(t) = |t|m, for some integer m ≥ 0.

Theorem 4.5. Assume that the following conditions hold:

(C1) θ̂T → θ0 a.s [Pθ0 ] as T → ∞, (4.37)

(C2) βT → β > 0 a.s [Pθ0 ] as T → ∞. (4.38)

Further suppose that
(C3)λ(.) is a prior probability density on Θ which is continuous and positive in an
open neighbourhood of θ0, the true parameter and

(C4)
∫ ∞

−∞
|θ|mλ(θ)dθ < ∞ (4.39)

for some integer m ≥ 0. Then

lim
T→∞

∫ ∞

−∞
|t|m|p∗(t|XT ) − (

β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ]. (4.40)
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In particular, choosing m = 0, we obtain that

lim
T→∞

∫ ∞

−∞
|p∗(t|XT ) − (

β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ] (4.41)

whenver the conditions (C1), (C2) and (C3) hold. This is the analogue of the
Bernstein-von Mises theorem for a class of diffusion processes proved in Prakasa
Rao (1981) and it shows the asymptotic convergence in the L1-mean of the posterior
density to the normal distribution.

For proofs of above results, see Prakasa Rao (2003a).

As a Corollory to the Theorem 4.5, we also obtain that the conditional expec-
tation, under Pθ0 , of [I−1

T (θ̂T −θ)]m converges to the corresponding m-th abosolute
moment of the normal distribution with mean zero and variance β−1.

We define a regular Bayes estimator of θ, corresponding to a prior probability
density λ(θ) and the loss function L(θ, φ), based on the observation XT , as an
estimator which minimizes the posterior risk

BT (φ) ≡
∫ ∞

−∞
L(θ, φ)p(θ|XT )dθ. (4.42)

over all the estimators φ of θ. Here L(θ, φ) is a loss function defined on Θ × Θ.

Suppose there exists a measurable regular Bayes estimator θ̃T for the para-
meter θ (cf. Theorem 3.1.3, Prakasa Rao (1987).) Suppose that the loss function
L(θ, φ) satisfies the following conditions:

L(θ, φ) = 
(|θ − φ|) ≥ 0 (4.43)

and the function 
(t) is nondecreasing for t ≥ 0. An example of such a loss function
is L(θ, φ) = |θ − φ|. Suppose there exist nonnegative functions R(t), J(t) and G(t)
such that

(D1) R(t)
(tIT ) ≤ G(t) for all T ≥ 0, (4.44)

(D2) R(t)
(tIT ) → J(t) as T → ∞ (4.45)

uniformly on bounded intervals of t. Further suppose that the function

(D3)
∫ ∞

−∞
J(t + h) exp[−1

2
βt2]dt (4.46)

has a strict minimum at h = 0, and
(D4)the function G(t) satisfies the conditions similar to (4.33) and (4.35).

We have the following result giving the asymptotic properties of the Bayes risk
of the estimator θ̃T .

Theorem 4.6. Suppose the conditions (C1) to (C3) in the Theorem 4.5 and the
conditions (D1) to (D4) stated above hold. Then

I−1
T (θ̃T − θ̂T ) → 0 a.s [Pθ0 ] as T → ∞ (4.47)

and

lim
T→∞

R(T )BT (θ̃T ) = lim
T→∞

R(T )BT (θ̂T ) (4.48)

= (
β

2π
)1/2

∫ ∞

−∞
K(t) exp[−1

2
βt2]dt a.s [Pθ0 ].
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This theorem can be proved by arguments similar to those given in the proof of
Theorem 4.1 in Borwanker et al. (1971).

We have observed earlier that

I−1
T (θ̂T − θ0)

L→ N(0, β−1) as T → ∞. (4.49)

As a consequence of the Theorem 4.6, we obtain that

θ̃T → θ0 a.s [Pθ0 ] as T → ∞ (4.50)

and
I−1
T (θ̃T − θ0)

L→ N(0, β−1) as T → ∞. (4.51)

In other words, the Bayes estimator is asymptotically normal and has asymptot-
ically the same distribution as the maxiumum likelihood estimator. The asymptotic
Bayes risk of the estimator is given by the Theorem 4.6.

5. Statistical inference for fractional Ornstein–Uhlenbeck type process

In a recent paper, Kleptsyna and Le Breton (2002) studied parameter estimation
problems for fractional Ornstein-Uhlenbeck type process. This is a fractional ana-
logue of the Ornstein-Uhlenbeck process, that is, a continuous time first order au-
toregressive process X = {Xt, t ≥ 0} which is the solution of a one-dimensional
homogeneous linear stochastic differential equation driven by a fractional Brown-
ian motion (fBm) WH = {WH

t , t ≥ 0} with Hurst parameter H ∈ (1/2, 1). Such a
process is the unique Gaussian process satisfying the linear integral equation

Xt = θ

∫ t

0

Xsds + σWH
t , t ≥ 0. (5.1)

They investigate the problem of estimation of the parameters θ and σ2 based on
the observation {Xs, 0 ≤ s ≤ T } and prove that the maximum likelihood esti-
mator θ̂T is strongly consistent as T → ∞. It is well known that the sequential
estimation methods might lead to equally efficient estimators, as compared to the
maximum likelihood estimators, from the process observed possibly over a shorter
expected period of observation time. Novikov (1972) investigated the asymptotic
properties of a sequential maximum likelihood estimator for the drift parameter
in the Ornstein-Uhlenbeck process. Maximum likelihood estimators are not robust.
Kutoyants and Pilibossian (1994) developed a minimum L1-norm estimator for the
drift parameter. We now discuss the asymptotic properties of a sequential maximum
likelihood estimators and minimum L1-norm estimators for the drift parameter for
a fractional Ornstein-Uhlenbeck type process.

Maximum likelihood estimation
Let

KH(t, s) = H(2H − 1)
d

ds

∫ t

s

rH− 1
2 (r − s)H− 3

2 dr, 0 ≤ s ≤ t. (5.2)

The sample paths of the process {Xt, t ≥ 0} are smooth enough so that the process
Q defined by

Q(t) =
d

dwH
t

∫ t

0

κH(t, s)Xsds, t ∈ [0, T ] (5.3)
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is well-defined where wH and κH(t, s)H are as defined in (3.8) and (3.6) respectively
and the derivative is understood in the sense of absolute continuity with respect to
the measure generated by wH . More over the sample paths of the process Q belong
to L2([0, T ], dwH) a.s. [P]. Define the process Z as in (4.6).

As an application of the Girsanov type formula given in Theorem 3.3 for the
fractional Brownian motions derived by Kleptsyna et al. (2000) , it follows that the
Radon-Nikodym derivative of the measure PT

θ , generated by the stochastic process
X when θ is the true parameter, with respect to the measure generated by the
process X when θ = 0, is given by

dP T
θ

dP T
0

= exp[θ
∫ T

0

Q(s)dZs −
1
2
θ2

∫ T

0

Q2(s)dwH
s ]. (5.4)

Further more the quadratic variation < Z >T of the process Z on [0, T ] is equal
to σ2wH

T a.s. and hence the parameter σ2 can be estimated by the relation

lim
n

Σ[Z
t
(n)
i+1

− Z
t
(n)
i

]2 = σ2wH
T a.s. (5.5)

where (t(n)
i ) is an appropriate partition of [0, T ] such that

sup
i

|t(n)
i+1 − t

(n)
i | → 0

as n → ∞. Hence we can estimate σ2 almost surely from any small interval as
long as we have a continuous observation of the process. For further discussion, we
assume that σ2 = 1.

We consider the problem of estimation of the parameter θ based on the observa-
tion of the process X = {Xt, 0 ≤ t ≤ T } for a fixed time T and study its asymptotic
properties as T → ∞. The following results are due to Kleptsyna and Le Breton
(2002) and Prakasa Rao (2003a).

Theorem 5.1. The maximum likelihood estimator θ from the observation X =
{Xt, 0 ≤ t ≤ T } is given by

θ̂T = {
∫ T

0

Q2(s)dwH
s }−1

∫ T

0

Q(s)dZs. (5.6)

Then the estimator θ̂T is strongly consistent as T → ∞, that is,

lim
T→∞

θ̂T = θ a.s. [Pθ] (5.7)

for every θ ∈ R.

We now discuss the limiting distribution of the MLE θ̂T as T → ∞.

Theorem 5.2. Let

RT =
∫ T

0

Q(s)dZs. (5.8)

Assume that there exists a norming function It, t ≥ 0 such that

I2
T

∫ T

0

Q2(t)dwH
t

p→ η2 as T → ∞ (5.9)
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where IT → 0 as T → ∞ and η is a random variable such that P (η > 0) = 1. Then

(IT RT , I2
T < RT >) L→ (ηZ, η2)as T → ∞ (5.10)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

Observe that
I−1
T (θ̂T − θ0) =

IT RT

I2
T < RT >

(5.11)

Applying the Theorem 5.2, we obtain the following result.

Theorem 5.3. Suppose the conditions stated in the Theorem 5.2 hold. Then

I−1
T (θ̂T − θ0)

L→ Z

η
as T → ∞ (5.12)

where the random variable Z has the standard normal distribution and the random
variables Z and η are independent.

Remarks. If the random variable η is a constant with probability one, then the
limiting distribution of the maximum likelihood estimator is normal with mean 0
and variance η−2 Otherwise it is a mixture of the normal distributions with mean
zero and variance η−2 with the mixing distribution as that of η. Berry-Esseen
type bound for the MLE is discussed in Prakasa Rao (2003b) when the limiting
distribution of the MLE is normal.

Sequential maximum likelihood estimation
We now consider the problem of sequential maximum likelihood estimation of

the parameter θ. Let h be a nonnegative number. Define the stopping rule τ(h) by
the rule

τ(h) = inf{t :
∫ t

0

Q2(s)dwH
s ≥ h}. (5.13)

Kletptsyna and Le Breton (2002) have shown that

lim
t→∞

∫ t

0

Q2(s)dwH
s = +∞ a.s. [Pθ] (5.14)

for every θ ∈ R. Then it can be shown that Pθ(τ(h) < ∞) = 1. If the process
is observed up to a previuosly determined time T , we know that the maximum
likelihood estimator is given by

θ̂T = {
∫ T

0

Q2(s)dwH
s }−1

∫ T

0

Q(s)dZs. (5.15)

The estimator

θ̂(h) ≡ θ̂τ(h) (5.16)

= {
∫ τ(h)

0

Q2(s)dwH
s }−1

∫ τ(h)

0

Q(s)dZs

= h−1

∫ τ(h)

0

Q(s)dZs
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is called the sequential maximum likelihood estimator of θ. We now study the as-
ymptotic properties of the estimator θ̂(h).

The following lemma is an analogue of the Cramer-Rao inequality for sequential
plans (τ(X), θ̂τ (X)) for estimating the parameter θ satisfying the property

Eθ{θ̂τ (X)} = θ (5.17)

for all θ.

Lemma 5.4. Suppose that differentiation under the integral sign with respect to θ
on the left side of the equation (5.17) is permissible. Further suppose that

Eθ{
∫ τ(X)

0

Q2(s)dwH
s } < ∞ (5.18)

for all θ. Then

V arθ{θ̂τ (X)} ≥ {Eθ{
∫ τ(X)

0

Q2(s)dwH
s }−1 (5.19)

for all θ.

A sequential plan (τ(X), θ̂τ (X)) is said to be efficient if there is equality in
(5.19) for all θ. We now have the following result.

Theorem 5.5. Consider the fractional Ornstein-Uhlenbeck type process governed
by the stochastic differential equation (5.1) with σ = 1 driven by the fractional
Brownian motion WH with H ∈ [12 , 1). Then the sequential plan (τ(h), θ̂(h)) defined
by the equations (5.13) and (5.16) has the following properties for all θ.

(i) θ̂(h) ≡ θ̂τ(h) is normally distributed with Eθ(θ̂(h)) = θ and V arθ(θ̂(h)) = h−1;

(ii) the plan is efficient; and

(iii) the plan is closed, that is, Pθ(τ(h) < ∞) = 1.

For proof, see Prakasa Rao (2004a).

Minimum L1-norm estimation
In spite of the fact that maximum likelihood estimators (MLE) are consistent

and asymptotically normal and also asymptotically efficient in general, they have
some short comings at the same time. Their calculation is often cumbersome as the
expression for the MLE involve stochastic integrals which need good approximations
for computational purposes. Further more the MLE are not robust in the sense
that a slight perturbation in the noise component will change the properties of the
MLE substantially. In order to circumvent such problems, the minimum distance
approach is proposed. Properties of the minimum distance estimators (MDE) were
discussed in Millar (1984) in a general frame work.

We now obtain the minimum L1-norm estimates of the drift parameter of a frac-
tional Ornstein-Uhlenbeck type process and investigate the asymptotic properties
of such estimators following the work of Kutoyants and Pilibossian (1994).

We now consider the problem of estimation of the parameter θ based on the
observation of fractional Ornstein-Uhlenbeck type process X = {Xt, 0 ≤ t ≤ T }
satisfying the stochastic differential equation

dXt = θX(t)dt + εdWH
t , X0 = x0, 0 ≤ t ≤ T (5.20)
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for a fixed time T where θ ∈ Θ ⊂ R and study its asymptotic properties as ε → 0.

Let xt(θ) be the solution of the above differential equation with ε = 0. It is
obvious that

xt(θ) = x0e
θt, 0 ≤ t ≤ T. (5.21)

Let

ST (θ) =
∫ T

0

|Xt − xt(θ)|dt. (5.22)

We define θ∗ε to be a minimum L1-norm estimator if there exists a measurable
selection θ∗ε such that

ST (θ∗ε) = inf
θ∈Θ

ST (θ). (5.23)

Conditions for the existence of a measurable selection are given in Lemma 3.1.2
in Prakasa Rao (1987). We assume that there exists a measurable selection θ∗ε
satisfying the above equation. An alternate way of defining the estimator θ∗ε is by
the relation

θ∗ε = arg inf
θ∈Θ

∫ T

0

|Xt − xt(θ)|dt. (5.24)

Consistency:

Let WH∗
T = sup0≤t≤T |WH

t |. The self-similarity of the fractional Brownian mo-
tion WH

t implies that the random variables WH
at and aHWt have the same prob-

ability distribution for any a > 0. Further more it follows from the self-similarity
that the supremum process WH∗ has the property that the random variables WH∗

at

and aHWH∗
t have the same probability distribution for any a > 0. Hence we have

the following observation due to Novikov and Valkeila (1999).

Lemma 5.6. Let T > 0 and the process {WH
t , 0 ≤ t ≤ T } be a fBm with Hurst

index H. Let WH∗
T = sup0≤t≤T WH

t . Then

E(WH∗
T )p = K(p, H)T pH (5.25)

for every p > 0, where K(p, H) = E(WH∗
1 )p.

Let θ0 denote the true parameter, For any δ > 0, define

g(δ) = inf
|θ−θ0|>δ

∫ T

0

|xt(θ) − xt(θ0)|dt. (5.26)

Note that g(δ) > 0 for any δ > 0.

Theorem 5.7. For every p > 0, there exists a positive constant K(p, H) such that,
for every δ > 0,

P
(ε)
θ0

{|θ∗ε − θ0| > δ} ≤ 2pT pH+pK(p, H)e|θ0|Tp(g(δ))−pεp (5.27)

= O((g(δ))−pεp).
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Proof. Let ‖.‖ denote the L1-norm. Then

P
(ε)
θ0

{|θ∗ε − θ0| > δ} = P
(ε)
θ0

{ inf
|θ−θ0|≤δ

||X − x(θ)|| > inf
|θ−θ0|>δ

||X − x(θ)||}

≤ P
(ε)
θ0

{ inf
|θ−θ0|≤δ

(||X − x(θ0)|| + ||x(θ) − x(θ0)||)

> inf
|θ−θ0|>δ

(||x(θ) − x(θ0)|| − ||X − x(θ0)||)}

= P
(ε)
θ0

{2||X − x(θ0)|| > inf
|θ−θ0|>δ

||x(θ) − x(θ0)||}

= P
(ε)
θ0

{||X − x(θ0)|| >
1
2
g(δ)}. (5.28)

Since the process Xt satisfies the stochastic differential equation (5.20), it follows
that

Xt − xt(θ0) = x0 + θ0

∫ t

0

Xsds + εWH
t − xt(θ0) (5.29)

= θ0

∫ t

0

(Xs − xs(θ0))ds + εWH
t

since xt(θ) = x0e
θt. Let Ut = Xt − xt(θ0). Then it follows from the above equation

that

Ut = θ0

∫ t

0

Us ds + εWH
t . (5.30)

Let Vt = |Ut| = |Xt − xt(θ0)|. The above relation implies that

Vt = |Xt − xt(θ0)| ≤ |θ0|
∫ t

0

Vsds + ε|WH
t |. (5.31)

Applying Gronwall-Bellman Lemma, we obtain that

sup
0≤t≤T

|Vt| ≤ εe|θ0T | sup
0≤t≤T

|WH
t |. (5.32)

Hence

P
(ε)
θ0

{
||X − x(θ0)|| >

1
2
g(δ)

}
≤ P

{
sup

0≤t≤T
|WH

t | >
e−|θ0T |g(δ)

2εT

}
(5.33)

= P

{
WH∗

T >
e−|θ0T |g(δ)

2εT

}
.

Applying the Lemma 5.6 to the estimate obtained above, we get that

P
(ε)
θ0

{|θ∗ε − θ0| > δ} ≤ 2pT pH+pK(p, H)e|θ0T |p(g(δ))−pεp (5.34)

= O((g(δ))−pεp).

Remarks. As a consequence of the above theorem, we obtain that θ∗ε converges in
probability to θ0 under P

(ε)
θ0

-measure as ε → 0. Further more the rate of convergence
is of the order (O(εp)) for every p > 0.
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Asymptotic distribution
We will now study the asymptotic distribution if any of the estimator θ∗ε after

suitable scaling. It can be checked that

Xt = eθ0t{x0 +
∫ t

0

e−θ0sεdWH
s } (5.35)

or equivalently

Xt − xt(θ0) = εeθ0t

∫ t

0

e−θ0sdWH
s . (5.36)

Let

Yt = eθ0t

∫ t

0

e−θ0sdWH
s . (5.37)

Note that {Yt, 0 ≤ t ≤ T } is a gaussian process and can be interpreted as the
“derivative” of the process {Xt, 0 ≤ t ≤ T } with respect to ε. Applying Theorem
3.1, we obtain that, P -a.s.,

Yte
−θ0t =

∫ t

0

e−θ0sdWH
s =

∫ t

0

Kf
H(t, s)dMH

s , t ∈ [0, T ] (5.38)

where f(s) = e−θ0s, s ∈ [0, T ] and MH is the fundamental gaussian martingale
associated with the fBm WH . In particular it follows that the random variable
Yte

−θ0t and hence Yt has normal distribution with mean zero and further more, for
any h ≥ 0,

Cov(Yt, Yt+h) = e2θ0t+θ0hE[
∫ t

0

e−θ0udWH
u

∫ t+h

0

e−θ0vdWH
v ] (5.39)

= e2θ0t+θ0hH(2H − 1)
∫ t

0

∫ t

0

e−θ0(u+v)|u − v|2H−2dudv

= e2θ0t+θ0hγH(t) (say).

In particular
V ar(Yt) = e2θ0tγH(t). (5.40)

Hence {Yt, 0 ≤ t ≤ T } is a zero mean gaussian process with Cov(Yt, Ys) =
eθ0(t+s)γH(t) for s ≥ t.

Let

ζ = arg inf
−∞<u<∞

∫ T

0

|Yt − utx0e
θ0t|dt. (5.41)

Theorem 5.8. As ε → 0, the random variable ε−1(θ∗ε − θ0) converges in prob-
ability under the probability measure Pθ0 to a random variable whose probability
distribution is the same as that of the random variable ζ under Pθ0 .

Proof. Let x′
t(θ) = x0te

θt and let

Zε(u) = ||Y − ε−1(x(θ0 + εu) − x(θ0))|| (5.42)

and
Z0(u) = ||Y − ux′(θ0)||. (5.43)
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Further more, let

Aε = {ω : |θ∗ε − θ0| < δε}, δε = ετ , τ ∈ (
1
2
, 1), Lε = ετ−1. (5.44)

Observe that the random variable u∗
ε = ε−1(θ∗ε − θ0) satisfies the equation

Zε(u∗
ε) = inf

|u|<Lε

Zε(u), ω ∈ Aε. (5.45)

Define
ζε = arg inf

|u|<Lε

Z0(u). (5.46)

Observe that, with probability one,

sup
|u|<Lε

|Zε(u) − Z0(u)| = |||Y − ux′(θ0) −
1
2
εu2x′′(θ̃)|| − ||Y − ux′(θ0)|||

≤ ε

2
L2

ε sup
|θ−θ0<δε

∫ T

0

|x′′(θ)|dt

≤ Cε2τ−1. (5.47)

Here θ̃ = θ0 + α(θ − θ0) for some α ∈ (0, 1). Note that the last term in the above
inequality tends to zero as ε → 0. Further more the process {Z0(u),−∞ < u < ∞}
has a unique minimum u∗ with probability one. This follows from the arguments
given in Theorem 2 of Kutoyants and Pilibossian (1994). In addition, we can choose
the interval [−L, L] such that

P
(ε)
θ0

{u∗
ε ∈ (−L, L)} ≥ 1 − βg(L)−p (5.48)

and
P{u∗ ∈ (−L, L)} ≥ 1 − βg(L)−p (5.49)

where β > 0. Note that g(L) increases as L increases. The processes Zε(u), u ∈
[−L, L] and Z0(u), u ∈ [−L, L] satisfy the Lipschitz conditions and Zε(u) converges
uniformly to Z0(u) over u ∈ [−L, L]. Hence the minimizer of Zε(.) converges to the
minimizer of Z0(u). This completes the proof.

Remarks. We have seen earlier that the process {Yt, 0 ≤ t ≤ T } is a zero mean
gaussian process with the covariance function

Cov(Yt, Ys) = eθ0(t+s)γH(t)

for s ≥ t. Recall that

ζ = arg inf
−∞<u<∞

∫ T

0

|Yt − utx0e
θ0t|dt. (5.50)

It is not clear what the distribution of ζ is. Observe that for every u, the integrand
in the above integral is the absolute value of a gaussian process {Jt, 0 ≤ t ≤ T }
with the mean function E(Jt) = −utx0e

θ0t and the covariance function

Cov(Jt, Js) = eθ0(t+s)γH(t)

for s ≥ t.
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6. Identification for linear stochasic systems driven by fBm

We now discuss the problem of nonparametric estimation or identification of the
“drift” function θ(t) for a class of stochastic processes satisfying a stochastic differ-
ential equation

dXt = θ(t)Xtdt + dWH
t , X0 = τ, t ≥ 0 (6.1)

where τ is a gaussian random variable independent of the process {WH
t } which

is a fBm with known Hurst parameter. We use the method of sieves and study
the asymptotic properties of the estimator. Identification of nonstationary diffusion
models by the method of sieves is studied in Nguyen and Pham (1982).

Estimation by the method of sieves
We assume that θ(t) ∈ L2([0, T ], dt). In other words X = {Xt, t ≥ 0} is a

stochastic process satisfying the stochastic integral equation

X(t) = τ +
∫ t

0

θ(s)X(s)ds + WH
t , 0 ≤ t ≤ T. (6.2)

where θ(t) ∈ L2([0, T ], dt). Let

Cθ(t) = θ(t) X(t), 0 ≤ t ≤ T (6.3)

and assume that the sample paths of the process {Cθ(t), 0 ≤ t ≤ T } are smooth
enough so that the process

QH,θ(t) =
d

dwH
t

∫ t

0

κH(t, s)Cθ(s)ds, 0 ≤ t ≤ T (6.4)

is well-defined where wH
t and κH(t, s) are as defined in (3.8) and (3.6) respectively.

Suppose the sample paths of the process {QH(t), 0 ≤ t ≤ T } belong almost surely
to L2([0, T ], dwH

t ). Define

Zt =
∫ t

0

κH(t, s)dXs, 0 ≤ t ≤ T. (6.5)

Then the process Z = {Zt, 0 ≤ t ≤ T } is an (Ft)-semimartingale with the decom-
position

Zt =
∫ t

0

QH,θ(s)dwH
s + MH

t (6.6)

where MH is the fundamental martingale defined by (3.9) and the process X admits
the representation

Xt = X0 +
∫ t

0

KH(t, s)dZs (6.7)

where the function KH is as defined by (3.11) with f ≡ 1. Let PT
θ be the measure

induced by the process {Xt, 0 ≤ t ≤ T } when θ(.) is the true “drift” function.
Following Theorem 3.3, we get that the Radon-Nikodym derivative of PT

θ with
respect to PT

0 is given by

dP T
θ

dP T
0

= exp[
∫ T

0

QH,θ(s)dZs −
1
2

∫ T

0

Q2
H,θ(s)dwH

s ]. (6.8)
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Suppose the process X is observable on [0, T ] and Xi, 1 ≤ i ≤ n is a random
sample of n independent observations of the process X on [0, T ]. Following the
representation of the Radon-Nikodym derivative of PT

θ with respect to PT
0 given

above, it follows that the log-likelihood function corresponding to the observations
{Xi, 1 ≤ i ≤ n} is given by

Ln(X1, . . . , Xn; θ) ≡ Ln(θ) (6.9)

=
n∑

i=1

(
∫ T

0

Q
(i)
H,θ(s)dZi(s) −

1
2

∫ T

0

[Q(i)
H,θ]

2(s)dwH
s ).

where the process Q
(i)
H,θ is as defined by the relation (6.4) for the process Xi. For

convenience in notation, we write Qi,θ(s) hereafter for Q
(i)
H,θ(s).

Let {Vn, n ≥ 1} be an increasing sequence of subspaces of finite dimensions
{dn} such that ∪n≥1Vn is dense in L2([0, T ], dt). The method of sieves consists in
maximizing Ln(θ) on the subspace Vn. Let {ei} be a set of linearly independent
vectors in L2([0, T ], dt) such that the set of vectors {e1, . . . , edn} is a basis for the
subspace Vn for every n ≥ 1. For θ ∈ Vn, θ(.) =

∑dn

j=1 θjej(.), we have

Qi,θ(t) =
d

dwH
t

∫ t

0

κH(t, s)θ(s)Xi(s)ds (6.10)

=
d

dwH
t

∫ t

0

κH(t, s)[
dn∑

j=1

θjej(s)]Xi(s)ds

=
dn∑

j=1

θj
d

dwH
t

∫ t

0

κH(t, s)ej(s)Xi(s)ds

=
dn∑

j=1

θjΓi,j(t) (say).

Further more
∫ T

0

Qi,θ(t)dZi(t) =
∫ T

0

[
dn∑

j=1

θjΓi,j(t)]dZi(t) (6.11)

=
dn∑
j=1

θj

∫ T

0

Γi,j(t)dZi(t)

=
dn∑
j=1

θjRi,j (say)

and
∫ T

0

Q2
i,θ(t)dwH

t =
∫ T

0

[
dn∑

j=1

θjΓi,j(t)]2dwH
t (6.12)

=
dn∑

j=1

dn∑
k=1

θjθk

∫ T

0

Γi,j(t)Γi,k(t)dwH
t

=
dn∑

j=1

dn∑
k=1

θjθk < Ri,j , Ri,k >
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where < ., . > denotes the quadratic covariation. Therefore the log-likelihood func-
tion corresponding to the observations {Xi, 1 ≤ i ≤ n} is given by

Ln(θ) =
n∑

i=1

(
∫ T

0

Qi,θ(t)dZi(t) −
1
2

∫ T

0

Q2
i,θ(t)dwH

t ) (6.13)

=
n∑

i=1

[
dn∑
j=1

θjRi,j −
1
2

dn∑
j=1

dn∑
k=1

θjθk < Ri,j , Ri,k >]

= n[
dn∑
j=1

θjB
(n)
j − 1

2

dn∑
j=1

dn∑
k=1

θjθkA
(n)
j,k ]

where

B
(n)
j = n−1

n∑
i=1

Ri,j , 1 ≤ j ≤ dn (6.14)

and

A
(n)
j,k = n−1

n∑
i=1

< Ri,j , Ri,k >, 1 ≤ j, k ≤ dn. (6.15)

Let θ(n), B(n) and A(n) be the vectors and the matrix with elements θj , j = 1, . . . , dn,
B

(n)
j , j = 1, . . . , dn and A

(n)
j,k , j, k = 1, . . . , dn as defined above. Then the log-

likelihood function can be written in the form

Ln(θ) = n[B(n)θ(n) − 1
2
θ(n)′A(n)θ(n)]. (6.16)

Here α′ denotes the transpose of the vector α. The restricted maximum likelihood
estimator θ̂(n)(.) of θ(.) is given by

θ̂(n)(.) =
dn∑

j=1

θ̂
(n)
j ej(.) (6.17)

where
θ̂(n) = (θ̂(n)

1 , . . . , θ̂
(n)
dn

) (6.18)

is the solution of the equation

A(n)θ̂(n) = B(n). (6.19)

Assuming that A(n) is invertible, we get that

θ̂(n) = (A(n))−1B(n). (6.20)

Asymptotic properties of the estimator θ̂(n)(.) are studied in Prakasa Rao (2004b).
We do not go into the details here.

7. Remarks

(1)We have considered the stochastic differential equations of the type

dYt = C(t)dt + B(t)dWH
t , t ≥ 0 (7.1)

driven by a fBm where B(.) is a nonrandom function. As was mentioned earlier,
one can define a stochastic integral of a nonrandom function with respect to a
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fractional Brownian motion via a suitable limit of Riemann-Steiltjes type approxi-
mating sums as was described in Gripenberg and Norros (1996). However it is not
possible to extend this approach to define stochastic integration of a large class
of random functions with respect to a fractional Brownian motion in view of the
fact that the fractional Brownian is not a semimartingale. It is known that if a
stochastic process {Zt, t ≥ 0} has the property that the stochastic integral

∫
BtdZt

is well-defined for a large class of integrands {Bt, t ≥ 0} and satisfies reasonable
conditions such as linearity, dominated convergencge theorems as satisfied by in-
tegrals with respect to σ-finite measures, then the process {Zt, t ≥ 0} has to be a
semimartingale (cf. Metivier and Pellaumail (1980)). Hence the classical theory of
stochastic integration with respect to a Brownian motion cannot be extended to
define stochastic integration with respect to a fBm for random integrands in the
usual manner. Lin (1995) and Dai and Heyde (1996) defined stochastic integrals
with respect to fBm and extended the Ito formula. Their definition of a stochastic
integral leads to a stochastic integral of Stratonovich type and the corresponding
Ito formula is the standard chain rule for differentiation. The stochastic integral∫

BtdZt defined by them however does not satisfy the property E(
∫

BtdZt) = 0
in general which is essential for modeling purposes. Duncan et al (2000) defined
stochastic integration of a random function {Bt, t ≥ 0} with respect to a fBm
{WH

t , t ≥ 0}, H ∈ (1
2 , 1) using the concept of Wick product and this integral sat-

isfies the condition E(
∫

BtdWH
t ) = 0 whenever it is well-defined. They have also

developed the correponding Ito type formula in their work. Using the notion of Sko-
rokhod integral, Decreusefond and Ustunel (1999) developed a stochastic integral
with respect to a fBm (cf. Decreusefond (2003)).

(2) We have assumed through out the Section 4 to Section 6 that a complete
path of the process {Xt, 0 ≤ t ≤ T } is observable and that the process is driven by
a fBm with known Hurst index H. The problem of estimation of the index H has
been studied well and a discussion is given Section 2. The problem of estimation of
the parameters in the absence of knowledge of the Hurst index H remains open. It
would be interesting to find whether it is possible to estimate the parameters and
the index H simultaneously from a complete path of the process {Xt, 0 ≤ t ≤ T }.
From a practical point of view, it is clear that the assumption, that a complete path
of the process {Xt, 0 ≤ t ≤ T } is observable, is not tenable. Suppose the process
{Xt, 0 ≤ t ≤ T } is observed at some discrete set of times {ti, 1 ≤ i ≤ n} in the
interval [0, T ] where the time points {ti, 1 ≤ i ≤ n} could be nonrandom or random
as well as equally spaced or irregularly spaced. If the process is observed at a set of
discrete times, then the problems of estimation of the parameters involved as well
as the estimation of Hurst index in case it is unknown remain open. It would be
interesting to study these problems for the models discussed in this paper. A general
discussion on statistical inference from sampled data for stochastic processes is given
in Prakasa Rao (1988). Results for the special case of diffusion type processes are
studied in Prakasa Rao (1999a).
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