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Abstract: Alzaid et al. (1986) and Rao et al. (2002) have shown that several
of the results on damage models have links with certain results on nonnegative
matrices. Rao et al. (2002) have also shown that there is a connection between
a specialized version of de Finetti’s theorem for discrete exchangeable random
variables and a potential theoretic result relative to nonnegative matrices.
In the present article, we deal with integral equations met in damage model
studies via specialized versions of de Finetti’s theorem and extend further the
theorems of Rao and Rubin (1964) and Shanbhag (1977) on damage models.

1. Introduction

The concept of damage models was first introduced by Rao (1963) and it has led
to many interesting and illuminating characterizations of discrete distributions;
among various noteworthy results in the area are those of Rao and Rubin (1964)
and Shanbhag (1977). In mathematical terms, a damage model can be described by
a random vector (X, Y ) of non-negative integer-valued components, with the joint
probability law of X and Y having the following structure:

P{X = x, Y = y} = S(y|x)gx, y = 0, 1, 2, . . . , x; x = 0, 1, 2, . . . , (1.1)

where {S(y|x) = P{Y = y|X = x} : y = 0, 1, 2, . . . , x} is a discrete probability
law for each x = 0, 1, 2, . . . and {gx = P{X = x} : x = 0, 1, 2, . . .} is the marginal
probability law of X . In the context of damage models, the conditional probability
law {S(y|x) : y = 0, 1, 2, . . . , x} is called the survival distribution. It is also natural
to call Y the undamaged part of X and X−Y the damaged part of X . Multivariate
versions of the terminologies have also been dealt with in the literature. Rao and
Rubin (1964) showed via Bernstein’s theorem for absolutely monotonic functions
that if the survival distribution is binomial with parameter vector (x, p) for almost
all x (i.e. for each x with gx > 0), where p ∈ (0, 1) and fixed, and g0 < 1, then the
Rao-Rubin condition (RR(0))

P{X = y} = P{Y = y|X = Y }, y = 0, 1, 2, . . . (1.2)

is met if and only if X is Poisson. It was pointed out by Shanbhag (1977) that an
extended version of the Rao–Rubin result can be deduced from the solution to a
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general recurrence relation of the form

vn =
∞∑

m=0

wmvm+n, n = 0, 1, 2, . . . , (1.3)

where {wm : m ≥ 0} is a given sequence of nonnegative real numbers with w1 > 0
and {vn : n ≥ 0} is a sequence of nonnegative real numbers to be determined.
Using essentially a renewal theoretic approach, Shanbhag obtained a complete so-
lution to (1.3), which provided a unified approach to a variety of characterizations
of discrete distributions including, in particular, those related to damage models,
strong memoryless property, order statistics, record values, etc.

Shanbhag’s (1977) general result on damage models states essentially (in the
notation described above) that if g0 < 1 and, with {(an, bn) : n = 0, 1, . . .} as a
sequence of 2-component real vectors such that an > 0 for all n, b0, b1 > 0, and
bn ≥ 0 for all n ≥ 2, we have, for almost all x,

S(y|x) ∝ aybx−y, y = 0, 1, . . . , x,

then the following are equivalent:

(i) (1 · 1) (i.e. RR(0)) is met;

(ii) Y and X − Y are independent;

(iii) (gx/cx) = (g0/c0)λx, x = 0, 1, . . . , for some λ > 0, where {cn} is the convo-
lution of {an} and {bn}.

Characterizations of many standard discrete distributions in damage model
studies follow as corollaries to this latter result. In particular, taking an = pn/n!, n =
0, 1, . . . , and bn = (1 − p)n/n!, n = 0, 1, . . . , where p ∈ (0, 1) and fixed, we get the
Rao–Rubin (1964) theorem as a corollary to this. There are several other interesting
contributions to the literature on damage models. Rao and Shanbhag (1994; Chap-
ter 7) have reviewed and unified most of these. More recently, Rao et al. (2002) and
Rao et al. (2003) have provided systematic approaches to damage models based
on nonnegative matrices and Markov chains. In particular, Rao et al. (2002) have
shown that several of the findings on damage models in the literature are corollaries
to a potential theoretic result, appearing as Theorem 4.4.1 in Rao and Shanbhag
(1994), on nonnegative matrices; these subsume some of the results in the area based
on the version of de Finetti’s theorem for discrete exchangeable random variables.

The purpose of the present paper is to go beyond Rao et al. (2002) and show,
amongst other things, that certain specialized versions of de Finetti’s theorem or
the relevant moment arguments provide us with further novel approaches to arrive
at the Rao–Rubin–Shanbhag theorems or their generalizations. In the process of
doing this, we also establish some new results on damage models or otherwise,
including, in particular, an improved version of the crucial result of Alzaid et al.
(1987a).

2. Simple integral equations in damage model studies

The link between the Choquet–Deny type integral equations and exchangeability
or, in particular, certain versions of de Finetti’s theorem for an infinite sequence
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of exchangeable random variables is well-documented in Rao and Shanbhag (1994)
and other places in the literature. Some specialized versions of de Finetti’s theo-
rem follow via simple arguments involving, among others, moments of probability
distributions, or a potential theoretic result on nonnegative matrices; see, for ex-
ample, Feller (1966, pp. 225–226) and Rao et al. (2002). A detailed account of the
literature on de Finetti’s theorem is provided by Aldous (1985); see, also, Chow
and Teicher (1979) for an elegant proof of the theorem in the case of real-valued
random variables.

Our main objective in this section though is to verify certain key results on func-
tional equations with applications to damage models, as corollaries to specialized
versions of de Finetti’s theorem; the theorems and corollaries that we have dealt
with in this section are obviously subumed by the relevant general results obtained
via certain other techniques in Rao and Shanbhag (1994, Chapter 3) and Rao and
Shanbhag (1998).

Theorem 2.1 (Shanbhag’s Lemma [32]). Let {(vn, wn) : n = 0, 1, . . .} be a
sequence of 2-vectors with nonnegative real components, such that vn > 0 for at
least for one n > 0 and w1 > 0. Then (1.3) is met if and only if, for some b > 0,

vn = v0b
n, n = 1, 2, . . . , and

∞∑
n=0

wnbn = 1. (2.1)

Proof. The “if” part of the assertion is trivial. To prove the “only if” part of the
assertion, let (1.3) be met with the stated assumptions. Since in that case we have
vn(1 − w0) ≥ w1vn+1, n = 0, 1, . . . , it is clear that w0 < 1 and v0 > 0. (Note that
Shanbhag (1977) observes via a slightly different argument that vn > 0 for all n ≥ 0,
but, for us, it is sufficient to have that v0 > 0.) Essentially from (1.3), we have then
that there exists a sequence {Xn : n = 1, 2, . . .} of 0-1-valued exchangeable random
variables satisfying

P{X1 = · · · = Xn = 1} =
vn

v0
wn

1 , n = 1, 2, . . . . (2.2)

(For some relevant information,see Remark 2.6.) From the corresponding special-
ized version of de Finetti’s theorem, we have hence that {vn

v0
wn

1 : n = 0, 1, . . .} is

a moment sequence of a (bounded) nonnegative random variable, which, in turn,
implies that {vn

v0
: n = 0, 1, . . .} is a moment sequence of a (bounded) nonnegative

random variable. Denoting the random variable in the latter case by Y and appeal-
ing to (1.3) in conjunction with the expression for Z, we get, in view of Fubini’s
theorem,or the monotone convergence theorem, that

E(Z) = E
(
Z2

)
= 1, (2.3)

where

Z =
∞∑

n=0

wnY n. (2.4)

From (2.3), noting, for example, that E{(Z − 1)2} = 0, we see that Z = 1 a.s.;
consequently, from (2.4) and, in particular, the property that w0 < 1, we get that
there exists a number b > 0 such that Y = b a.s. and

∑∞
n=0 wnbn = 1. Since

vn

v0
= E(Y n), n = 0, 1, . . . ,

we then see that the “only if” part of the theorem holds.
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Theorem 2.2. Let k be a positive integer and N0 = {0, 1, 2, . . .} and {(vn, wn) :
n ∈ N

k
0} be a sequence of 2-vectors of nonnegative real components such that v0 >

0, w0 < 1 and wn > 0 whenever n is of unit length. (The notation 0 stands for n
with all coordinates equal to zero.) Then

vn =
∑

m∈Nk
0

vn+mwm, n ∈ N
k
0 (2.5)

if and only if {vn/v0} is the moment sequence relative to a k-component random
vector (Y1, . . . , Yk) with Yr’s as nonnegative and bounded such that (in obvious
notation) ∑

n∈Nk
0

wn

k∏
r=1

Y nr
r = 1 a.s. (2.6)

Proof. It is sufficient, as in the case of Theorem 2.1, to prove the “only if” part of
the assertion. Clearly under the assumptions of the theorem taking for convenience
k ≥ 2, the validity of (2.5) implies the existence of a sequence {Xm : m = 1, 2, . . .} of
exchangeable random variables, with values in {0, 1, . . . , k}, satisfying (with obvious
interpretation when some or all of the nr’s equal zero)

P{X1, . . . , Xn1+...+nk
are such that the first n1 of these equal 1, the next n2

equal 2, and so on}

=
vn

v0

k∏
r=1

wnr

I(r), n
(

= (n1, . . . , nk)
)
∈ N

k
0 , (2.7)

where I(r) is the rth row of the k × k identity matrix. (For some relevant infor-
mation,see Remark 2.6.) Using the appropriate version of de Finetti’s theorem and
following a suitably modified version of the relevant part of the argument in the
proof of Theorem 2.1, we see that there exists a random vector (Y1, . . . , Yk) as in
the assertion with {vn/v0} as the corresponding moment sequence; note especially
that in this latter case (2.3) holds with Z given by the left hand side of (2.6).

Corollary 2.1 (Hausdorff). A sequence {µn : n ∈ N
k
0} of real numbers represents

the moment sequence of some probability distribution concentrated on [0, 1]k if and
only if µ0 = 1 and

(−1)m1+...+mk∆m1
1 . . .∆mk

k µn ≥ 0, (m1, . . . , mk, n ) ∈ N
2k
0 , (2.8)

where ∆i is the usual difference operator acting on the ith coordinate.

Proof. Define the left hand side of the inequality under (2.8) by v(m1,...,mk,n1,...,nk).
Then, we can easily verify that

v(m1,...,mk,n1,...,nk)

=
1
k

{
v(m1+1,...,mk,n1,...,nk) + · · · + v(m1,...,mk+1,n1,...,nk)

+ v(m1,...,mk,n1+1,...,nk) + · · · + v(m1,...,mk,n1,...,nk+1)

}
,

(m1, . . . , mk, n ) ∈ N
2k
0 .

Because of (2.8),Theorem 2.2 implies then that {µn : n ∈ N
k
0} (i.e. {v(0,n) : n ∈ N

k
0})

is the moment sequence relative to a k-component random vector (Y1, . . . , Yk) with
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Yi’s bounded and nonnegative. In view of (2.8), it follows further that {E(Y nr
r ) :

nr = 0, 1, . . .} is decreasing and hence, it is obvious that the “if” part of the result
holds. The “only if” part here is trivial and therefore we have the corollary.

Remark 2.1. Although Theorem 2.1 is a corollary to Theorem 2.2, we have dealt
with it separately because of its importance in characterization theory relative to
univariate discrete distributions. Theorem 2.2, in turn, is a corollary to a result of
Ressel (1985) and also to that of Rao and Shanbhag(1998) established via certain
general versions of de Finetti’s theorem, but its proof given by us here could appeal
to the audience due to its simplicity. It may also be worth pointing out in this
place that Chapter 3 of Rao and Shanbhag(1994) reviews and unifies,amongst other
things,martingale approaches to certain generalized versions of Theorem 2.2,implied
earlier;the cited chapter also shows,explicitly or otherwise,using partially a different
route to ours that the following Corollaries 2.1 and 2.2 are consequences of the
general results.

Remark 2.2. Corollary 2.1 can also be proved directly via de Finetti’s theorem
noting that there exists a sequence {Xn : n = 1, 2, . . .} of exchangeable random
variables with values in {0, 1, . . . , k} and satisfying (2.7) with its right hand side re-
placed by µnk−(n1+...+nk). Also, since {µn} in Corollary 2.1 is the moment sequence
relative to a probability distribution with compact support, it is obvious that it de-
termines the distribution; in view of this, we can easily obtain the following result
as a further corollary to Theorem 2.2

Corollary 2.2 (Bochner). Let f be a completely monotonic function on (0,∞)k.
Then f has the integral representation

f(x) =
∫

[0,∞)k

exp
{
−〈 y, x 〉

}
dν(y), x ∈ (0,∞)k, (2.9)

with ν as a uniquely determined measure on [0,∞)k.

Proof. Given any x 0 ∈ (0,∞)k, Corollary 2.1, on taking into account the latter ob-
servation in Remark 2.2 and the continuity of f , implies after a minor manipulation
that there exists a probability measure µx 0

on [0,∞)k such that for all k-vectors r
with positive rational components

f(x 0 + r ) = f(x 0)
∫

[0,∞)k

exp
{
−〈 y, r 〉

}
dµx 0

(y). (2.10)

Since f(x 0 + ·) is continuous on [0,∞)k, (2.10) implies because of the dominated
convergence theorem that

f(x 0 + x ) = f(x 0)
∫

[0,∞)k

exp
{
−〈 y, x 〉

}
dµx 0

(y), x ∈ [0,∞)k.

In view of the arbitrary nature of x 0 and the uniqueness theorem for Laplace-
Stieltjes transforms, we have (2.9) to be valid with ν as unique and such that,
irrespectively of what x 0 is,

dν(y) = f(x 0) exp
{
〈 y, x0〉

}
dµx 0

(y), y ∈ [0,∞)k.

Hence, we have the Corollary.
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Remark 2.3. Bernstein’s theorem for completely monotonic or absolutely monotonic
functions is indeed a corollary to Corollary 2.2. Rao and Rubin (1964) have used
this theorem to arrive at a characterization of Poisson distributions based on a
damage model. There are also further applications of the theorem to damage mod-
els; see, for example, the next section of the present paper. Talwalker (1970) has
given an extended version of the Rao–Rubin result via Corollary 2.2, while Puri and
Rubin (1974) have given representations of relevance to reliability essentially via
Corollaries 2.2 and 2.1, respectively; for certain observations on these latter results,
see, for example, Shanbhag (1974) and Davies and Shanbhag (1987).

The following theorem of Rao and Shanbhag (1994, p.167), which is an extended
version of the results of Rao and Rubin (1964) and Talwalker (1970) referred to in
Remark 2.3 above as well as of the relevant result in Shanbhag (1977), is indeed
a corollary to Theorem 2.2; this obviously tells us that Theorem 7.2.6 of Rao and
Shanbhag (1994) is also subsumed by Theorem 2.2.

Theorem 2.3. Let (X, Y ) be a random vector such that X and Y are k-component
vectors satisfying

P{X = n, Y = r} = gnS( r|n ), r ∈ [ 0, n ] ∩ N
k
0 , n ∈ N

k
0

with {gn : n ∈ N
k
0} as a probability distribution and, for each n for which gn > 0,

S( r|n ) =
arbn−r

cn
, r ∈ [ 0, n ] ∩ N

k
0 , n ∈ N

k
0 ,

where {an : n ∈ N
k
0} and {bn : n ∈ N

k
0} are respectively positive and nonnegative

real sequences with b0 > 0 and bn > 0 if n is of unit length, and {cn : n ∈ N
k
0} is

the convolution of these two sequences. Then

P{Y = r} = P{Y = r|X = Y }, r ∈ N
k
0 , (2.11)

if and only if (in obvious notation)

gn/cn =
∫

[0,∞)k

(
k∏

i=1

λni

i

)
dν(λ), n ∈ N

k
0 , (2.12)

with (o0 = 1 and)ν as a finite measure on [0,∞)k such that it is concentrated for
some β > 0 on {λ :

∑
n∈Nk

0
bn

∏k
i=1 λni

i = β}.

The above theorem follows on noting especially that (2.11) is equivalent to

gn /cn ∝
∑

m∈Nk
0

bm(gm+n /cm+n), n ∈ N
k
0 .

To provide a further generalization of the Rao–Rubin-Shanbhag theorems, con-
sider S to be a countable Abelian semigroup with zero element, equipped with
discrete topology, and S∗ ⊂ S such that given w : S → [0,∞) with supp (w)(= {x :
w(x) > 0}) = S∗, any function v : S → [0,∞) with v(0) > 0 cannot be a solution
to

v(x) =
∑
y∈S

v(x + y)w(y), x ∈ S (2.13)
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unless it has an integral representation in terms of w-harmonic exponential func-
tions, with respect to a probability measure. (By a w-harmonic exponential function
here, we mean a function e : S → [0,∞) such that e(x + y) = e(x)e(y), x, y ∈ S,
and

∑
x∈S e(x)w(x) = 1.) Examples of such S, S∗ have been dealt with by Rao and

Shanbhag (1998) and studied implicitly or otherwise by Rao and Shanbhag (1994).
Suppose now that a : S → (0,∞) and b : S → [0,∞) are such that b(0) > 0 and
there exists c : S → (0,∞) as the convolution of a and b, and Y and Z are random
elements defined on a probability space, with values in S, such that

P{Y = y, Z = z} = g(y + z)
a(y)b(z)
c(y + z)

, y, z ∈ S,

where {g(x) : x ∈ S} is a probability distribution. If supp(b) = S∗, then it easily
follows that

P{Y = y} = P{Y = y|Z = 0}, y ∈ S,

if and only if g(x)/c(x), x ∈ S, is of the form of a constant multiple of the solution
v to (2.13) with, for some γ > 0, w replaced by γb; this latter result is clearly an
extended version of Theorem 2.3.

Remark 2.4. In view of Rao et al. (2002), the link between the general result
relative to a countable semigroup that we have met above and Theorem 4.4.1 of
Rao and Shanbhag (1994) or its specialized version appearing in Williams (1979)
is obvious. The arguments in Rao and Shanbhag (1994) for solving general integral
equations on semigroups, including those involving martingales obviously simplify
considerably if the semigroups are countable; we shall throw further light on these
issues through a separate article.

Remark 2.5. Modifying the proof of Theorem 2.1 slightly, involving in particular
a further moment argument, a proof based on the version of de Finetti’s theorem
relative to 0-1-valued exchangeable random variables can be produced for Corol-
lary 2.2.3 appearing on page 31 in Rao and Shanbhag (1994). (Note that the version
of (1.3) in this case implies that there exists a nonnegative bounded random vari-
able Y such that E(Y mn) = vmn

v0
, n = 0, 1, . . . , for each m with wm > 0.) This

latter result is indeed a corollary to the Lau–Rao theorem ([13], [20]), and, in turn,
is essentially a generalization of Shanbhag’s lemma. As pointed out by Rao and
Shanbhag (2004), in view of Alzaid et al. (1987b), there exists a proof for the Lau–
Rao theorem based, among other things, on the version of de Finetti’s theorem
just referred to; there also exist possibilities of solving integral equations via this
or other versions of de Finetti’s theorem, elsewhere.

Remark 2.6. Suppose S is a countable Abelian semigroup with zero element,
equipped with discrete topology, and v and w are nonnegative real-valued functions
on S such that v(0) > 0, w(0) < 1, and (2.13) is met. Then there exists an infinite
sequence {X ′

n : n = 1, 2, . . .} of exchangeable random elements with values in S for
which for each positive integer n and x′

1, . . . , x
′
n ∈ S,

P
{
X ′

1 = x′
1, X

′
2 = x′

2, . . . , X
′
n = x′

n

}
=

(
v
(
x′

1 + · · · + x′
n

)
/v(0)

) n∏
i=1

w
(
x′

i

)
. (2.14)

If si, i = 1, . . . , k (with k ≥ 1), are distinct nonzero members of S such that
w(si) > 0, i = 1, . . . , k, taking for example, Xn, n = 1, 2, . . . , such that

Xn =
{

i if X ′
n = si, i = 1, . . . , k,

0 if X ′
n /∈ {s1, . . . , sk},
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we can now see that there exists a sequence {Xn : n = 1, 2, ...} of exchangeable
random variables with values in {0, 1, . . . , k} for which (2.7) (when its left hand side
is read as that of (2.2) with n1 in place of n if k = 1) is valid, provided its right hand
side is now replaced by v(n1s1+···+nksk)

v(0)

∏k
i=1(w(si))ni . Consequently, in view of the

relevant version of de Finetti’s theorem, it follows that even when si, i = 1, . . . , k,
are not taken to be distinct or nonzero, provided w(si) > 0, i = 1, . . . , k, we
have { v(n1s1+···+nksk)

v(0) : n1, n2, . . . , nk = 0, 1, ...} to be the moment sequence of a
probability distribution on R

k, with support as a compact subset of [0,∞)k.

3. Spitzer’s integral representation theorem and relevant observations

This section is devoted mainly to illustrate as to how Bernstein’s theorem on ab-
solutely monotonic functions,referred to in Remark 2.3, in conjunction with Ya-
glom’s theorem mentioned on page 18 in Athreya and Ney (1972), leads us to an
improved version of the key result of Alzaid et al. (1987a) and certain of its corol-
laries.

Suppose {Zn : n = 0, 1, . . .} is a homogeneous Markov chain with state space
{0, 1, . . .}, such that the corresponding one-step transition probabilities are given
by

pij = P{Zn+1 = j|Zn = i}

=

{
cp

(i)
j , i=0,1,. . . ; j=1,2,. . . ,

1 − c + cp
(i)
0 , i=0,1,. . . ; j=0,

where c ∈ (0, 1] and {p(i)
j : j = 0, 1, . . .} is the i-fold convolution of some proba-

bility distribution {pj} for which p0 ∈ (0, 1), for i = 1, 2, . . . , and the degenerate
distribution at zero if i = 0. Clearly, this is an extended version of a Bienaymé-
Galton-Watson branching process; indeed, we can view the latter as a special case
of the former with c = 1.

Under the condition that m =
∑∞

j=1 jpj < 1 with m∗ =
∑∞

j=1(j log j)pj < ∞,
Alzaid et al. (1987a) have given an integral representation for stationary measures
of the general process referred to above. A specialized version of this representa-
tion in the case of c = 1 was essentially established earlier by Spitzer (1967); this
latter result appears also as Theorem 3 in Section 2 of Chapter II of Athreya and
Ney (1972). The general representation theorem as well as its specialized version
follow via Martin boundary related approaches or their alternatives involving spe-
cific tools such as Bernstein’s theorem on absolutely monotonic functions, see, for
example, Alzaid et al. (1987a) and Rao et al. (2002) for some relevant arguments
or observations in this connection.

From a minute scrutiny of the proof provided by Alzaid et al. (1987a) for the
general representation theorem, i.e. Theorem 2 in the cited reference, it has now
emerged that the theorem referred to holds even when the constraint that m∗ < ∞
is dropped. Indeed, Yaglom’s theorem mentioned on page 18 in Athreya and Ney
(1972) implies (in obvious notation) that if m < 1, then, irrespective of whether
or not m∗ < ∞, {Bn} converges pointwise to B; essentially, the argument on page
1212 in Alzaid et al. (1987a) to show that a certain function, U∗, is the generating
function of a nonnegative sequence then remains valid and gives us specifically the
sequence to be that corresponding to a stationary measure of the process with
p0 = 1−m and p1 = m, without requiring that m∗ < ∞. (One can also, obviously,
give the argument implied here in terms of fn, the nth iterates of f , directly without



70 C. R. Rao and D. N. Shanbhag

involving Qn; note that we use, as usual, the notation f for the generating function
of {pj}.)

The original form of Spitzer’s theorem, involving, amongst other things, the
parameter Q(0), requires the assumption of m∗ < ∞. [Note that fn(s) = B−1(1 −
mn + mnB(s)) and hence Qn(0) =

(fn(0) − 1)
mn

= (B−1(1 − mn) − 1)/mn has a

nonzero limit Q(0) as n → ∞ only of B′(1−) < ∞ and hence only if m∗ < ∞; see
the proof of the theorem on page 70, in conjunction with the remark on page 18, in
Athreya and Ney (1972).] However, from what we have observed above, it is clear
that this latter theorem holds even when the assumption mentioned is deleted,
provided “−1” is taken in place of “Q(0)” in the statement of the theorem.

As a by-product of the revelation that we have made above, it follows that
if m < 1, U(·) is the generating function of a stationary measure of the process
if and only if it is of the form U∗(B(·)) with U∗ as the generating function of a
stationary measure in the special case where p0 = 1−m, p1 = m. This is obviously
a consequence of Yaglom’s theorem, in light of the extended continuity theorem
of Feller (1966, page 433). The example given by Harris, appearing on page 72 of
Athreya and Ney (1972), to prove the existence of stationary measures does not
require m∗ < ∞ and is of the form that we have met here; clearly it is not covered
by Spitzer’s original representation theorem. As implied in Alzaid et al. (1987a), a
representation for U∗ itself in our general case follows essentially as a consequence
of Bernstein’s theorem on absolutely monotonic functions or the Poisson-Martin
integral representation theorem for a stationary measure; see, also, Rao et al. (2002)
for some relevant observations.

Taking into account our observations, it is hence seen that the following modified
version of the main result of Alzaid et al. (1987a) holds.

Theorem 3.1. If m < 1, then every sequence {ηj : j = 1, 2, . . .} is a stationary
measure if and only if, for some non-null finite measure ν on [0, 1),

ηj =
∞∑

n=−∞
cn

∫
[0,1)

exp
{
−mn−t

}(
j∑

k=1

m(n−t)k

k!
b
(k)
j

)
dν(t), j = 1, 2, . . . ,

(3.1)
where, for each k, {b(k)

j : j = 1, 2, . . .} (with b
(k)
0 = 0) denotes the distribution

relative to the probability generating function (B(·))k with B(·) as implied earlier
(to be a unique probability generating function satisfying B(0) = 0 and B(f(s)) =
1 − m + mB(s), s ∈ [−1, 1].) Moreover, if (3.1) is met with m < 1, then {ηj} is a
stationary measure satisfying

∑∞
j=1 ηjp

j
0 = 1. i.e. with generating function U such

that U(p0) = 1, if and only if, for some probability measure µ on [0, 1),

dν(t) = K dµ(t), t ∈ [0, 1), (3.2)

with K such that

K−1 =




1 if c = 1

(
1 − c

c

) ∞∑
n=−∞

cn

∫
[0,1)

exp
{
−mn−t

}
dµ(t) if c ∈ (0, 1).

The following theorem is of relevance to the topic of damage models especially
in view of the results on damage models appearing in Talwalker (1980), Rao et al.
(1980) and Alzaid et al. (1987a); this theorem is indeed a variation of Theorem 1
of Alzaid et al. (1987a).
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Theorem 3.2. Let c ∈ (0, 1) and {(vn, hn) : n = 0, 1, . . .} be a sequence of 2-
vectors with nonnegative real components such that at least one vn is nonzero and
h0 is nonzero and h1 < 1. Then

c

∞∑
k=0

vkh
(k)
j = vj , j = 0, 1, . . . , (3.3)

where, for each k > 0, {h(k)
j } is the k-fold convolution of {hj}, and {h(0)

j } is the
probability distribution that is degenerate at zero, if and only if, for some s0 > 0,

pj = hjs
j−1
0 , j = 0, 1, . . . , (3.4)

is a nondegenerate probability distribution, {vjs
j
0 : j = 1, 2, . . .} is a stationary

measure (not necessarily normalized as in Alzaid et al. (1987a)) relative to the
general branching process with {pj} as in (3.4), and v0 = c(1 − c)−1

∑∞
k=1 vkhk

0 .

Theorem 3.2 is easy to establish.

Remark 3.1. If {hn} of Theorem 3.2 satisfies a further condition that hn = 0 for
n ≥ 2, then the assertion of the theorem holds with s0 = h0

(1−h1)
and the stationary

measure in it satisfying (3.1) with b1 = 1 and m = h1. Additionally, if we are given
a priori that {vj} is of the form

vj = gjα
j , j = 0, 1, . . .

with {gj} as a probability distribution and α > 0, then it is clear that (3.3) holds
if and only if

gj ∝
∞∑

n=−∞
cn

∫
[0,1)

exp
{
−hn−t

1

}h
(n−t)j
1

j!

(
1 − h1

h0α

)j

dµ(t), j = 0, 1, . . .

with µ as a probability measure on [0, 1). As an immediate consequence of the latter
result, Theorem 3 of Alzaid et al. (1987a) now follows.

Remark 3.2. One can extend the main result of Alzaid et al. (1986) based on the
Perron–Frobenius theorem in an obvious way involving (in usual notation)

P{Y = r} = P{Y ′ = r|X ′ − Y ′ = k0}
= P{Y ′′ = r|X ′′ − Y ′′ = k0 + k1}, r = 0, 1, . . .

with k0 ≥ 0 and k1 > 0, such that the survival distributions corresponding to
(X, Y ), (X ′, Y ′) and (X ′′, Y ′′) are not necessarily the same but X

d= X ′ d= X ′′.
This provides us with further insight into Theorem 3 of Alzaid et al. (1987a). (For
an account of the Perron–Frobenius theorem with applications to Markov chains,
see Seneta (1981).)

Remark 3.3. Most of the results dealt with in this article also follow via alternative
arguments based on Choquet’s theorem; for the details of this theorem, see Phelps
(1966).

Remark 3.4. If we agree to rewrite the notation U∗ as U∗
(c), to take into account

the value of the parameter c of the process, it easily follows (in obvious notation)
that,given c < 1 and U∗

(c), there exists an U∗
(1) such that

d

ds
U∗

(1)(s) ∝
(

d

ds
U∗

(c)(s)
)

/(1 − s)(ln c)/(lnm), s ∈ (−1, 1). (3.5)
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However, it is worth noting here that there exist cases of U∗
(1) (such as those with

U∗
(1)(s) = (ln(1−s))/(ln(m)), s ∈ (−1, 1)) for which (3.5) with c ∈ (0, 1) is not met.
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