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On the distribution of the greatest

common divisor

Persi Diaconis1 and Paul Erdös1

Stanford University

Abstract: For two integers chosen independently at random from {1, 2, . . . , x},
we give expansions for the distribution and the moments of their greatest com-
mon divisor and the least common multiple, with explicit error rates. The ex-
pansion involves Riemann’s zeta function. Application to a statistical question
is briefly discussed.

1. Introduction and statement of main results

Let M and N be random intergers chosen uniformly and independently from
{1, 2, . . . , x}. Throughout (M, N) will denote the greatest common divisor and
[M, N ] the least common multiple. Cesàro (1885) studied the moments of (M, N)
and [M, N ]. Theorems 1 and 2 extend his work by providing explicit error terms.
The distribution of (M, N) and [M, N ] is given by:
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Where [x] denotes the greatest integer less than or equal to x. Christopher (1956)
gave a weaker form of (1.2).

(1.2) easily yields an estimate for the expected value of (M, N):
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(1.2) does not lead to an estimate for higher moments of (M, N). Similarly the form
of (1.3) makes direct computation of moments of [M, N ] unwieldy. Using elementary
arguments we will show:

Theorem 2.
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where C is an explicitly calculated constant.
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where ζ(z) is Riemann’s zeta function,
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Section two of this paper contains proofs while section three contains remarks,
further references and an application to the statistical problem of reconstructing
the sample size given a table of rounded percentages.

2. Proofs of main theorems

Throughout we use the elementary estimate

Φ(x) =
∑

1≤k≤x

ϕ(k) =
3
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x2 + R(x) (2.1)

where R(x) = O(x log x).
See, for example, Hardy and Wright (1960) Theorem 330. Since # {m, n ≤ x :

(m, n) = 1} = 2Φ(x) + O(1) and (m, n) = k if and only if k|m, k|n and
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k ) + O(1). This
proves (1.2). To prove (1.1) and (1.3) we need a preparatory lemma.
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Proof. Consider the number of lattice points in the region Rx(t) = {m, n ≤ x :
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Lemma 1 immediately implies that the product of 2 random integers is independent
of their greatest common divisor:

Corollary 1.
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To prove (1) note that

Px

{
[M, N ] ≤ tx2 and (M, N) = k

}
= Px

{
[M, N ] ≤ tx2|(M, N) = k

}
· Px

{
(M, N) = k

}

= Px

{
MN ≤ t

k
x2|(M, N) = k

}
· Px

{
(M, N) = k

}
.



58 P. Diaconis and P. Erdös

Use of (1.2) and Corollary 1 completes the proof of (1.1). To prove (1.3) note that
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Using (1.2) and Corollary 1 as before completes the proof of Theorem 1.
To prove Theorem 2, write, for k ≥ 1,

∑
m,n≤x

(m, n)k = 2
∑

1≤m≤x

∑
1≤n≤m

(m, n)k −
∑

1≤i≤x

ik

= 2
∑

1≤m≤x

fk(m) − xk+1

k + 1
+ O

(
xk

)
(2.2)
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When k = 1, we proceed as follows: Choose t =
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and γ is Euler’s constant. Using this in equation (2.5) yields that the second sum
in (2.3) is
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Combining (2.8), (2.7) and (2.4) in (2.3) and using this in (2.2) yields:
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where d is defined in (2.6).
When k ≥ 2, the best choice of t in (2.3) is t = 1. A calculation very similar to

the case of k = 1 leads to (1.3).
We now prove (1.6). Consider the sum
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When we substitute this expression for fk(j) in (2.9) we must evaluate:
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Substituting in the right side of (2.9) we have

∑
i,j≤x

[i, j]k = 2
x∑

d=1

dk

{
S1

(
x

d

)
+ S2

(
x

d

)}
+ O

(
xk+1

)

=
6
π2

1
(k + 1)2

x2k+2
x∑

d=1

1
dk+2

+ O
(
x2k+1 log x

)

=
ζ(k + 2)

ζ(2)
x2k+2

(k + 1)2
+ O

(
x2k+1 log x

)
.

3. Miscellaneous remarks

1. If M1, M2, . . . , Mk are random integers chosen uniformly at random then the
results stated in Christopher (1956) (see also Cohen (1960), Herzog and Stewart
(1971), and Neymann (1972)) imply that

Px

{
(M1, M2, . . . , Mk) = j

}
=

1
ζ(k)

1
jk

+ O

(
1

x jk−1

)
k ≥ 3. (3.1)

We have not tried to extend theorems 1 and 2 to the k-dimensional case.
(3.1) has an application to a problem in applied statistics. Suppose a population

of n individuals is distributed into k categories with n individuals in category i.
Often only the proportions pi = ni/n are reported. A method for estimating n
given pi, 1 ≤ i ≤ k is described in Wallis and Roberts (1956), pp. 184–189. Briefly,
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let m = min |
k∑

i=1

pibi| where the minimum is taken over all k tuples (b1, b2, . . . , bk),

with bi ε {0,±1,±2, . . .} not all bi equal zero. An estimate for n is [1/m]. This
method works if the pi are reported with enough precision and the ni are relatively
prime for then the Euclidean algorithm implies there are integers {bi}k

i=1 such that∑
bini = 1. These bi give the minimum m = 1

n . If it is reasonable to approximate
the ni as random integers then (3.1) implies that Prob((n1, n2, . . . , nk) = 1) .= 1

ζ(k)

and, as expected, as k increases this probability goes to 1. For example, 1
ζ(5)

.= .964,
1

ζ(7)

.= .992, 1
ζ(9)

.= .998. This suggests the method has a good chance of working
with a small number of categories. Wallace and Roberts (1956) give several examples
and further details about practical implementation.

2. The best result we know for R(x) defined in (2.1) is due to Saltykov (1960).
He shows that

R(x) = O
(
x(log x)2/3(log log x)1+ε

)
.

Use of this throughout leads to a slight improvement in the bounds of theorems 1
and 2.

3. The functions (M, N) and [M, N ] are both multiplicative in the sense of
Delange (1969, 1970). It would be of interest to derive results similar to Theorems 1
and 2 for more general multiplicative functions.
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