
SECTION 14 

Biased Sampling 

Vardi (1985) introduced a far-reaching extension of the classical model for length­
biased sampling. He solved the problem of estimating a distribution function based 
on several independent samples, each subject to a different form of selection bias. 
Using empirical process theory, Gill, Vardi and Wellner (1988) developed the asymp­
totic theory for generalizations ofVardi's method to abstract settings. They showed 
that the general model includes many interesting examples as special cases. This 
section presents a reworking of the ideas in those two papers. It is part of a study 
carried out by me in collaboration with Robert Sherman of Yale University. 

The general problem is to estimate a distribution P on some set S using inde­
pendent samples of sizes ni+ from distributions Qi, for i = 1, ... , s, where the Qi 
are related to P by means of known nonnegative weight functions Wi ( ·) on S: 

where 'lri = 1/ PWi. 

Of course the normalizing constants 'lri, which we must assume to be finite and 
strictly positive, are unknown. For example, the Wi might be indicator functions 
of various subdomains of S. The problem is then one of combining the different 
samples in order to form an estimate of P over the whole of S. The difficulty lies in 
deciding how to combine the information from samples whose subdomains overlap. 

For the general problem, to ensure that we get information about P over the 
whole domain, we must assume that the union of the sets {Wi > 0} covers S. 

Vardi suggested that a so-called nonparametric maximum likelihood estimator 
Pn be used. This is a discrete probability measure that concentrates on the com­
bined observations x 1 , x2 , ... from all s samples. If x 3 appears a total of nij times 
in the ith sample, the combined empirical measure Qn puts mass n+i/n at Xj, 

where 

and n = L nij· 

i,j 

The estimator Pn modifies Qn, putting at Xj the mass Pi defined by maximization 
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of a pseudo log-likelihood function: maximize 

~ n;i [logpi -log(L W;(xk)Pk )] , 
,,J k 

subject to the constraints 

Pi > 0 for each j, and L Pi= 1. 
i 

In this form the estimation problem involves parameters whose number increases 
with the sample sizes. The first part of the analysis will show how to transform the 
problem into an equivalent maximization involving only a fixed number of unknown 
parameters. 

Simplify the notation by writing W;k for W;(xk)· Reparametrize by substituting 
exp(,Bi) for Pi. Then we need to maximize the function 

Ln(/3) = L n+i,Bi- L ni+ log(Lk W;k exp(,Bk)) 
J ' 

over all real {,Bi}, subject to the constraint 

L exp(,Bi) = 1. 
i 

Let 1 denote a vector of ones. The criterion function Ln is constant along the lines 
{/3 + t1 : t E JR}; the constraint serves to locate a unique point on each such line. 

Simple calculus shows that Ln is a concave function. Indeed, for each fixed f3 
and o the function Ln ({3 + to) has derivative 

(14.1) L n+ibi- Lni+ (Ek W;kbkexp(,Bk)) at t = 0, 
· . L:k W;k exp(,Bk) 

J ' 

and second derivative 

at t = 0, 

where 

i 
and b; is the weighted average 

b; = L B;kbk. 
k 

Clearly the second derivative is always nonpositive; the function Ln is concave along 
every line. The second derivative can equal zero only if 8k is constant over each of 
the subsets 

K(i) = {k: W;k > 0} fori= 1, ... , s. 
Under mild connectedness assumptions about the regions {W; > 0}, it can be shown 
(almost surely as the ni+ tend to infinity) that constancy over each K(i) forces o to 
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be a multiple of 1. That is, Ln is strictly concave along all directions except the 1 
direction. Moreover, the connectedness assumption also forces the derivative to be 
strictly negative for t large enough. It follows that the constrained maximization 
problem eventually has a unique solution /3. (Clearly jj depends on n, but I will 
omit the subscript n to avoid notational clutter.) 

For a precise statement of the necessary connectedness property, see pages 1071-
1072 of Gillet al. (1988). Let us assume such a property to hold from now on. 

Transformation to an equivalent problem. The function Ln must have all 
its directional derivatives equal to zero at its maximizing point. Putting 6 equal to 
a vector with Oj as its only nonzero component, we get from (14.1) that 

(14.2) ( ~ n+J 
exp (33) = ~ 

I:, ( n,+ w,3 1 L:k w,k exp(f3k)) 
for each j. 

Notice that the s linear combinations of the exp(;3k) values on the right-hand side 
determine all the ~ values. That is why we will be able to reduce the problem to 
one involving only s unknown parameters. 

Introduce new parameters a1, ... , a 8 • Trivially, the constrained maximization 
of Ln is equivalent to the problem: maximize 

L n+Jf3J + L n,+ai 
j i 

subject to the constraints 

exp( -a;) = L W;j exp(f33 ) 

j 

for each i. 

Equality (14.2) translates into a set of relations that the maximizing ii and /3 must 
satisfy; the maximization problem is unaffected if we add another constraint, 

n+· 
exp(f33 ) = 3 

I:, n,+ w,J exp(a.) 
for each j, 

to the list. This allows us to eliminate the {(33 } from the problem altogether, leaving 
a constrained maximization over the {a,}: maximize 

Lni+a•-~ n+ilog(L nk+Wk3 exp(ak)), 
• J k 

for each i. 
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Just as the addition of an extra constraint did not affect the previous maximization, 
so will the elimination of a constraint not affect this maximization. By marvellous 
good luck (What is going on here?) the last set of equations corresponds exactly to 
the requirement that the directional derivatives of the criterion function all equal 
zero at its global maximizing value a; it can be discarded without changing the 
problem. The remaining constraint then serves only to locate a unique point along 
the lines of constancy of the criterion function. 

The Vardi procedure takes a much neater form when expressed in empirical 
process notation. Write Ani for the proportion ni+/n of observations that belong 

to the ith sample, and hn(·, a) for the function (l:i Ani exp(ai)Wi(·)) - 1. Then the 
Vardi estimator is determined by: maximize 

Mn(a) =A~ a+ Qn log hn(·, a) 

subject to the constraint 

Under the connectedness assumptions mentioned earlier, the function Mn is (almost 
surely, with increasing sample sizes) strictly concave along all directions except 
those parallel to 1, along which it is constant. [Recycled notation.] The constraint 
locates the unique maximizing ii along a line of constancy. The measure Pn is 
determined by putting mass 

~ ({3~ ) n+i h ( ~) Pi = exp j = -- n Xj, a 
n 

at xi. 

That is, Pn has density hn(·, ii) with respect to the empirical measure CJn· 

Heuristics. The estimator Pn is partly parametric and partly nonpararnetric. 
The ii is determined by a finite-dimensional, parametric maximization problem. 
It determines the density of Pn with respect to the nonparametric estimator Qn. 
Limit theorems for Pn will follow from the parametric limit theory for ii and the 
nonparametric limit theory for Qn. 

To simplify the analysis let us assume that the proportions are well behaved, 
in the sense that Ani .....,. Ai > 0 as n .....,. oo, for each i. This assumption could be 
relaxed. Let CJni denote the empirical measure for the ith sample (mass nii fni+ on 
each observation from Qi). We should then have 

CJn = L AniCJni .....,. L AiQi 
i i 

for some mode of convergence. Call the limit measure Q. For each integrable 
function J, 

the measure Q has density G( ·) = L:i 1riAi Wi ( ·) with respect to P. The function 
hn ( ·, a) converges pointwise to 

h(·,a) = (~,\iexp(ai)Wi(·)) - 1 

• 
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Notice that G(·) = 1/h(·, o:*), where o:* is determined by 

exp(a;) = 1ri for i = 1, ... , s. 

It would seem reasonable that the limiting behavior of ii should be obtained 
by solving the limiting form of the constrained maximization problem. That is, ii 
should converge to the o: that maximizes 

M(o:) = >.' o: + Q log[G(· )h(·, o:)], 

subject to the constraint 

Qh(·, o:).= 1. 
The extra factor G contributes a centering of the log term; each product G( · )h( ·, o:) 
is bounded away from zero and infinity. This ensures that M(o:) is well defined for 
every o:, without affecting the location of the maximizing value. 

Calculation of first and second directional derivatives, in much the same way 
as before, shows that M is concave. The connectedness assumption implies strict 
concavity, except along the 1 direction, along which it is constant. Modulo 1, it 
has a unique maximizing value, determined by setting all the partial derivatives 

8M _ A _ Q ( >., exp(a,)W, ) 
aa, - • Ek Ak exp(ak)Wk 

=A,- A, exp(a,)P(W,Gh(·, o:)) 

to zero. Since 1/G(·) = h(·,o:*), these derivatives are zero at o: = o:*, and the 
constraint is satisfied: 

Qh(·, o:*) = P(G/G) = 1. 

It follows that o:* uniquely solves the limiting constrained maximization problem. 
If ii does converge too:* then the density hn(·, ii) of Pn with respect to Qn will 

converge pointwise to h(·,o:*) = 1/G(·). For a fixed integrable f we should then 
have 

Pnf = Qn(f(·)h(·,ii)) ~ Q(f/G) = PJ. 
A precise formulation of these heuristic approximations will establish a central limit 
theorem for Pn as an estimator for P. 

Asymptotic behavior of ii. Decompose ii into a sumo:* +6/ .fii+€1, where 
the random vector 6 lies in the subspace 'D of vectors in lR8 that are orthogonal to 1. 
Constancy of Mn along the 1 directions lets us ignore the € in the maximization; 
the vector 6 maximizes the concave function 

over 6 in 'D. The constraint may be written as 

(14.3) exp(€) = Qnhn(·, o:* + 6jy'n). 

Equivalently, for each integrable f, 

(14.4) Pnf = Q_:fhn(·, o:* + !fy'n). 
Qnhn(·, O:* + {J / Vn) 
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The denominator has the interpretation of a normalization factor needed to make 
Pn a probability measure. 

The asymptotic behavior of i will be controlled by a quadratic approximation 
to Hn. To develop the approximation we decompose the empirical measures into 
deterministic parts (for which Taylor expansion to quadratic terms is appropriate) 
plus smaller perturbations due to the empirical processes. Define 

Vni = .,;ni+(Qni- Qi) fori= 1, ... , s, 

Vn = vn(Qn -IP'Qn) = L vT.: Vni· 
i 

Here IP'Qn represents the measure Li AniQi, which has density 

Gn(·) = L 11'iAniWi(·) = 1/hn(·, a*) 
i 

with respect to P. For each f we have a decomposition 

(14.5) 

If P(Gf2 ) < oo, the random component has an asymptotic normal distribution, 

(14.6) 

where 

0'2(!) = 2:>-.i(Qd2 - (Qd) 2 ) = P(Gf2)- LAi7!}(PWd)2 • 

i i 

A similar multivariate central limit theorem would hold for each vector-valued func­
tion f with P(Gifl 2 ) finite. 

Substituting for Qn in the definition of Mn, using (14.5), we get 

(14.7) Hn(6) = [ yn.\~6 + nPGn log (Gnhn(·, a*+ 6/ vn))] 

+ vnvn log (Gnhn(·, a*+ 6/vn)) 

Fix 6. Calculation of first and second deriva:tives, in much the same way as for Ln, 
shows that the deterministic contribution (the first term on the right-hand side) 
is of the form - 1/26'V 6 + o(1) as n -+ oo, where V equals diag(>-.i) minus the 
s x s matrix whose (i,j)th element is 11'i11'jAiAj P(WiWj/G). Of course V1 = 0, 
but the connectedness assumption ensures that V acts as a positive definite linear 
transformation on the subspace f). 

The term linear in 6 is contributed by the random perturbation (the second term 
on the right-hand side of (14.7)). Again a Taylor expansion gives 

log (Gnhn(·, a*+ 6/vn)) = )n6'Dn0 + Pn(·), 

where Dn is an s x 1 vector of uniformly bounded functions, 

D ·(·) = 11'iAniWi(·) 
nt Gn(-) ' 
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and Pn is a remainder function less than 1612 /n in absolute value. For fixed 6, the 
contribution to Hn(6) from Pn converges in probability to zero, because 

var(VnPn) = var ( ~ v>:::;vniPn) 

' 
~ LAmQ,(p;) 

~ l614/n2. 
The remainder term VnVnPn is actually of order Op(1/ Vii). 

Collecting together these contributions to Hn we get, for each fixed 6, 

Hn(6)- 61vnDn-+ -~61V6 in probability. 

The stochastic process on the left-hand side is concave in 6. A simple modification 
(see Section 6 of Pollard 1990, for example) of a standard result from convex analysis 
(Theorem 10.8 of Rockafellar 1970) shows that such convergence automatically 
holds in a stronger sense: 

(14.8) uniformly on compacta. 

The op(1) term is a random function of 6 and n whose supremum over bounded 
sets of 6 converges in probability to zero. 

Singularity of V slightly complicates the argument leading from (14.8) to an 
asymptotic expression for 6. A reparametrization will solve the problem. Let J be 
an s x (s- 1) matrix whose columns span 1>. Then for (J ranging over IR8 - 1, 

Hn(J9) = 91 J 1vnDn- ~91 J 1V J(J + op(1) uniformly on compacta. 

The (s- 1) x (s -1) matrix J1V J is nonsingular. A small concavity argument (as 
in Pollard 1990) shows that the if that maximizes Hn(J9) over JR8 - 1 must lie close 
to the value that maximizes the quadratic approximation, that is, 

if= (J1V J)-1 J 1vnDn + Op(1). 

Hence 

(14.9) ~ I -1 I fJ = J(J V J) J VnDn + Op(l). 

Let us denote by v- the matrix multiplying VnDn; it is a generalized inverse of v. 
For each i, the functions Dni converge uniformly to 

D·(·) = 1!",-\iW,(·) 
' G(-) . 

This allows us to invoke a multivariate analogue of (14.6) to show that 

(14.10) VnDn = VnD + Op(l)- N( 0, P(GDD1)- L Ai(Q,D)(Q,D)1). 

i 

It follows that g also has an asymptotic normal distribution. 
It is possible to solve (14.3) to get a similar asymptotic expression for €, and hence 

for a. That would lead to an asymptotic normal distribution for y'ri(Ci-a*). Such 
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a calculation will be implicit in the next stage of the argument, which will apply 
the so-called delta method to (14.4) to derive a central limit theorem for Pn. 

Asymptotic behavior of Pn. Yet another Taylor expansion gives an approx­
imation that lets us capture the effect of 6 on Pnf· 

* 1 o'Dn(x) I(W 
hn(x, 0 + 6/..fii) = Gn(x) - ynGn(x) + nGn Rn(x, 6). 

The remainder function Rn is uniformly bounded on compact sets of 6, in the sense 
that for each compact K there is a constant CK such that 

for all x, all n, all 6 in K. 

If f is ?-integrable, the contribution from the remainder term can be ignored 
because 

(14.11) 

Since 161 = Op(1), the remainder terms will contribute only a Op(1/n) to Pnf· 
From (14.5), the leading term in the Taylor expansion contributes 

(14.12) 

which, by (14.6), is asymptotically normal if P(j2 /G) < oo. 
The linear term contributes 

1 ~,( 1 ) - yno P(!Dn) + ynvn(!Dn/Gn) . 

The Vn part can be absorbed into the Op(1/n) term if P(j2 /G) < oo, because 

(14.13) var vn(J Dni/Gn) :::; const L AniQi(J2 /G~) < const P(f2 /G). 

If P(1/G) < oo, similar approximations are valid for the denominator in (14.4). 
Consequently, if both P(1/G) < oo and P(j2 /G) < oo (which also takes care of 
?-integrability of f), 

~ Pf+ (vnU/Gn)-6'P(JDn))!vn+op(1/yn) 
Pnf = ----7-------~-<-------

1 + (vn(1/Gn)- 6 1 PDn) /vn + op(1/ yn) 

The right-hand side simplifies to 

PJ + Jn ( (vn(J /Gn)- Pf vn(1/Gn))- 6'(P(!Dn)- Pf PDn)) 

plus terms of order op (1/ yn). The coefficient of the linear term in 6 might be 
thought of as a covariance. Substituting from (14.9) for 6, then consolidating the 
lower-order terms, we get 
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The right-hand side has an asymptotic normal distribution, by virtue of the multi­
variate central limit theorem. 

Uniformity in f. The preceding calculations are easily extended to provide 
a functional central limit theorem for iln = .fii(Pn - P) treated as a stochastic 
process indexed by a class of functions 9". 

Let us assume that 9" has an envelope F(·), that is, 1!1 :S F for each f in 9". 
IfF is ?-integrable, the analogue of (14.11), with f replaced by F, shows that the 
remainder terms are of order Op(1/n) uniformly over 9". 

If both P(1/G) < oo and P(F2 /G) < oo, and if the processes indexed by 
the classes of functions that appear in (14.13) and (14.14) are manageable in the 
sense of Section 7, then the maximal inequalities from that section can take over 
the role played by (14.13). (Here the stability results from Section 5 could be 
applied.) The random contribution to the linear term can again be absorbed into 
the op ( 1/ .fii), this time uniformly over 9". The Op ( 1) remainder in ( 14.14) then 
also applies uniformly over 9", which gives the desired uniform functional central 
limit theorem. 

REMARKS. The concavity argument leading to the central limit theorem for 6'is 
adapted from similar arguments for least absolute deviations regression estimators 
in Pollard (1990). Almost sure convergence of Pn could be established by an even 
simpler concavity argument, based on pointwise application of a strong law of large 
numbers, somewhat in the style of Lemma 5.3 of Gill et al (1988). Concavity also 
explains the success of Vardi's (1985) algorithm-his procedure climbs a concave 
hill by successive maximizations along coordinate directions. 
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