
SECTION 13 

Estimation from 
Censored Data 

Let P be a a nonatomic probability distribution on [0, oo ). The cumulative 
hazard function (:J is defined by 

(:J(t) = j {0 ~ x ~ t} P(dx). 
P[x, oo) 

It uniquely determines P. Let T2, T2, ... be independent observations from P 
and { c;} be a deterministic sequence of nonnegative numbers representing censoring 
times. Suppose the data consist of the variables 

and {T, < c·} t - t for i = 1, ... , n. 

That is, we observe T; if it is less than or equal to c;; otherwise we learn only that 
T; was censored at time c;. We always know whether T; was censored or not. 

If the { c;} behave reasonably, we can still estimate the true (:J despite the cen­
soring. One possibility is to use the Nelson estimator: 

where 
1 

Ln(t) = - ~ {T; (\ C; ~ t}. 
n. 

t$n 

It has become common practice to analyze fin by means of the theory of stochastic 
integration with respect to continuous-time martingales. This section will present 
an alternative analysis using the Functional Central Limit Theorem from Section 10. 
Stochastic integration will be reduced to a convenient, but avoidable, means for 
calculating limiting variances and covariances. 
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13. ESTIMATION FROM CENSORED DATA 

Heuristics. Write G(t) for IP{Ti ;::: t} and define 

1 
rn(t) =;;: ~)ci;::: t}. 

i~n 

Essentially we need to justify replacement of Ln by its expected value, 

1 
lP'Ln(t) = - L lP'{Ti ~ t}{ Ci ~ t} = G(t)r n(t). 

n i~n 
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That would approximate /3n by an average of independent processes, which should 
be close to its expected value: 

~ ~ 1 " {Ti $ Ci 1\ t} 
f3n(t) ~;;: L.,;< G(Ti)r n(Ti) 

t_n 

~ ~ L lP' {Ti $ t}{Ti $ ci} 
n . G(Ti)r n(Ti) 

•~n 

( {T1 $ t} 1 ) 
= lP' G(T1)r n(Tl) n ~ {T1 $ ci} 

= (J(t). 

A more precise analysis will lead to a functional central limit theorem for the 
standardized processes ..fii(/3n - (3) over an interval [0, r], if we assume that: 

(i) the limit r(t) =limn-cor n(t) exists for each t; 
(ii) the valuer is such that G(r) > 0 and r(r) > 0. 

The argument will depend upon a limit theorem for a process indexed by pairs 
(t, m), where 0 $ t $ r and m belongs to the class JY( of all nonnegative increasing 
functions on [0, r]. Treating (3 as a measure on [0, r], define 

(J(t, m) = j {0 $ x $ t}m(x)(J(dx), 

fi(w, t, m) = {Ti $ t 1\ ci}m(Ti)- (J(t 1\ Ti 1\ Ci, m). 

Such a centering for fi is suggested by martingale theory, as will be explained soon. 
We will be able to establish a functional central limit theorem for 

1 
Xn(t, m) = ..fii L fi(w, t, m) 

i~n 

~ fo ( ( ~ ~ {T; S: t A c;}m(T;)) - {i(t, mL.}). 

Putting m equal to 1/ Ln we get the standardized Nelson estimator: 

Xn(t, 1/Ln) = vn(/3n(t)- (J(t)). 

The limit theorem for Xn will justify the approximation 

Xn(t, 1/Ln) ~ Xn(t, ljGrn). 

It will also give the limiting distribution for the approximating process. 
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Some martingale theory. The machinery of stochastic integration with re­
spect to martingales provides a very neat way of calculating variances and covari­
ances for the fi processes. We could avoid stochastic integration altogether by 
direct, brute force calculation; but then the happy cancellations arranged by the 
martingales would appear most mysterious and fortuitous. 

The basic fact, not altogether trivial (Dellacherie 1972, Section V.5), is that both 

and 

are continuous parameter martingales in t. That is, both the simple jump process 
{Ti :::; t} and the submartingale Zf have compensator (3(t 1\ Ti)· The J; process is 
expressible as a stochastic integral with respect to Zi: 

fi(w, t, m) =I {0:::; x:::; t 1\ ci}m(x)Zi(dx). 

It follows that, for fixed m, the process fi is also a martingale in t. In particular, 
fl'j;(w,t,m) = Yl'fi(w,O,m) = 0 for every t. 

From now on let us omit the w from the notation. 
Stochastic integration theory tells us how to calculate compensators for new 

processes derived from the martingales {Zi}· In particular, for fixed t1. t2, m 1 , 

and m2, the product fi(t 1\ t1, ml)fi(t 1\ t2, m2) has compensator 

Ai(t) =I {0:::; x:::; t 1\ t1 1\ t2 1\ Ti 1\ ci}m1(x)m2(x)(3(dx); 

the difference J;(t 1\ t 1,ml)fi(t 1\ t2,m2)- Ai(t) is a martingale in t. This implies 
that 

for each t. 
Putt= max(tt, t2), then average over i. Because each Ti has the same distribution, 
we get 

1 
fl'Xn(tt, mt)Xn(t2, m2) =- L Yl'fi(lt, ml)fi(t2, m2) 

ni~n 

= fl' I {0:::; x.:::; t1 1\ t2}Ln(x)mt(x)m2(x)(3(dx) 

(13.1) 

The calculations needed to derive this result directly would be comparable to the 
calculations needed to establish the martingale property for Zi. 

Manageability. For each positive constant K let M(K) denote the class of all 
those min M for which m(r) :::; K. To establish manageability of the {fi(t, m)} 
processes, as t ranges over [0, r] (or even over the whole of JR+) and m ranges over 
M(K), it suffices to consider separately the three contributions to k 

Let us show that the indicator functions {1i :::; t 1\ ci} define a set with pseudo­
dimension one. Suppose the ( i, j)-projection could surround some point in JR2. 
Suppose Ti :::; Tj. We would need to be able to find t1 and t2 such that both pairs 



of inequalities, 
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Ti ::; t1 1\ c, 

T, > t2 1\ c, 

and 

and 

T1 ::; t11\ c1 , 

Tj ::; t2 1\ CJ' 
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were satisfied. The first pair would imply Ti :::; ci and T1 :::; c1 , and then the second 
pair would lead to a contradiction, t2 2:: T1 2:: T, > t2, which would establish the 
assertion about pseudodimension. 

For the factors {m(Ti)} with m ranging over M(K), we can appeal to the result 
from Example 6.3 if we show that no 2-dimensional projection of the convex cone 
generated by M(K) can surround the point (K, K). This is trivial. For if 1i ::; T1 

then no r E JR.+ and m E M(K) can achieve the pair of inequalities rm(Ti) > K 
and rm(T1 ) < K. 

The argument for the third contribution to f, is similar. For each t ::; T and 
mE M(K), the process f3(t 1\ T, 1\ Cz.m) is less thanK'= Kf3(r). If, for example, 
T, 1\ c, ::; Tj 1\ c1 then it is impossible to find an r E JR.+, an m E M(K), and 
atE [0, r] such that rf3(t 1\ T, 1\ Cz. m) > K' and rf3(t 1\ T1 1\ c1 , m) < K'. 

Functional Central Limit Theorem. It is a simple matter to check the 
five conditions of the Functional Central Limit Theorem from Section 10 for the 
triangular array of processes 

for i = 1, ... , n, t E [0, r], m E M(K), 

for some constant K to be specified. These processes have constant envelopes, 

which clearly satisfy conditions (iii) and (iv) of the theorem. The extra 1/.,fii factor 
does not affect the manageability. Taking the limit in (13.1) we get 

H((tll m1), t2, m2)) = f3(t11\ t2, Gfm1m2). 

For simplicity suppose t1 ::; t2. Then, because fni has zero expected value, (13.1) 
also gives 

Pn((h, m1), (t2, m2)) 2 

= lP'JXn(tll m1)- Xn(t2, m2W 

= f3(t1, Gr nm~) + f3(t2, Gr nm~)- 2f3(tl, Gr nm1m2) 

= J {0::; X::; tl}Gr n(ml- m2)2/3(dx) + J {tl::; X::; t2}Gr nm~f3(dx) 

::; j {0::; x::; tl}(m1 - m2) 2/3(dx) + j {t1 ::; x::; t2}m~f3(dx). 
A similar calculation with r n replaced by r gives 

p((h, ml), (t2,m2)) 2 

=I {0::; x::; tl}Gf(m1- m2)2/3(dx) +I {t1::; x::; t2}Gfm~f3(dx), 
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which is greater than the positive constant factor G( 7 )r( 7) times the upper bound 

just obtained for Pn ( ( h, ml), ( t2, m2) ( The second part of condition ( v) of the 
Functional Central Limit Theorem follows. 

The processes {Xn(t, m)}, for 0 ~ t ~ 7 and mE M(K), converge in distribution 
to a Gaussian process X(t, m) with p-continuous paths, zero means, and covariance 
kernel H. 

Asymptotics for f3n. We now have all the results needed to make the heuristic 
argument precise. A straightforward application of Theorem 8.2 shows that 

sup /Ln(t)- G(t)r n(t)/---> 0 almost surely. 
t 

If we choose the constant K so that G( 7)f( 7) > 1/ K, then, with probability tending 
to one, both 1/ Ln and 1/Gf n belong to M(K) and 

sup p((t, 1/Ln), (t, 1/Gfn))---> 0 in probability. 
o::;t::;r 

From stochastic equicontinuity of {Xn} we then deduce that 

y'n(jjn(t)- {3(t)) = Xn(t, 1/Ln) 

= Xn(t, 1/Gf n) + Op(1) 

- X(t, 1/Gf). 

uniformly in 0 ~ t ~ 7 

The limit is a Gaussian process on (0, 7] with zero means and covariance kernel 
/3(t1 1\ t 2 , 1/GI'). It is a Brownian motion with a stretched out time scale. 

REMARKS. As suggested by Meier (1975), deterministic censoring times { ci} 
allow more flexibility than the frequently made assumption that the { C;} are in­
dependent and identically distributed random variables. A conditioning argument 
would reduce the case of random { ci} to the deterministic case, anyway. 

The method introduced in this section may seem like a throwback to the original 
proof by Breslow and Crowley (1974). However, the use of processes indexed by 
M(K) does eliminate much irksome calculation. More complicated forms of multi­
variate censoring might be handled by similar methods. For a comparison with the 
stochastic integral approach see Chapter 7 of Shorack and Wellner (1986). 

I am grateful to Rani Doss for explanations that helped me understand the role 
of martingale methods. 
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