
SECTION 10 

Functional 
Central Limit Theorems 

When does the standardized partial-sum processes converge in distribution, in 
the sense of the previous section, to a Gaussian process with nice sample paths? 
This section will establish a workable sufficient condition. 

Part of the condition will imply finiteness (almost everywhere) of the envelope 
functions, which will mean that Sn ( w, ·) is a bounded function on T, for almost 
all w. Ignoring negligible sets of w, we may therefore treat Sn as a random element 
of the space B(T) of all bounded, real-valued functions on T. The natural metric 
for this space is given by the uniform distance, 

d(x, y) =sup lx(t)- y(t)l. 
t 

One should take care not to confuse d with any metric, or pseudometric, p defined 
on T. Usually such a p will have something to do with the covariance structure 
of the partial-sum processes. The interesting limit distributions will be Gaussian 
processes that concentrate on the set 

Up(T) = {x E B(T): xis uniformly p continuous}. 

Under the uniform metric d, the space Up(T) is separable if and only if Tis totally 
bounded under p. (Notice that total boundedness excludes examples such as the 
real line under its usual metric.] In the separable case, a Borel probability measure 
P on Up(T) is uniquely determined by its finite dimensional projections, 

P(B I t1, ... , tk) = P{x E Up(T): (x(ti), ... , x(tk)) E B}, 

with { h, ... , tk} ranging over all finite subsets of T and B ranging over all Borel 
sets in JRk, fork= 1, 2, .... 

Let us first consider a general sequence of stochastic processes indexed by T, 

{Xn(w,t): t E T} for n = 1, 2, ... , 
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and then specialize to the case where Xn is a properly standardized partial-sum 
process. Let us assume that the finite dimensional projections of Xn converge 
in distribution. That is, for each finite subset { t1 , ... , tk} of T there is a Borel 
probability measure P(· I t1, ... , tk) on JRk such that 

(10.1) 

Usually classical central limit theorems will suggest the standardizations needed to 
ensure such finite dimensional convergence. 

(10.2) THEOREM. Let {Xn(·, t) : t E T} be stochastic processes zndexed by a 
totally bounded pseudometrzc space (T, p). Suppose: 

(z} the finzte dzmensional dzstributions converge, as zn (10.1}; 

(zz) for each t > 0 and rJ > 0 there zs a 6 > 0 such that 

limsuplP'*{ sup IXn(w,s)-Xn(w,t)l>ry}<t. 
p(s,t)<8 

Then there exzsts a Borel measure P concentrated on Up(T), wzth finite dzmenszonal 
projectzons gzven by the dzstributions P(· I t1, ... , tk) from (10.1}, such that Xn 
converges in dzstribution to P. 

Conversely, zf Sn converges zn dzstrzbution to a Borel measure P on Up(T) then 
condztions (i) and (zi) are satzsfied. 

SKETCH OF A PROOF. The converse part of the theorem is a simple exercise 
involving almost sure representations. 

For the direct part, first establish existence of the measure P concentrating 
on Up(T). Let T(oo) = {t1 , t2 , ... } he a countable dense subset ofT. Define 
T(k) = {h, ... , tk}. The Kolmogorov extension theorem lets us build a measure P 
on the product 0'-field of ~T(oo) with the finite dimensional distributions from the 
right-hand side of (10.1). By passing to the limit in (ii) we get 

P{x E ~T(oo) : max lx(s)- x(t)l 2:: 'f}} ::; f. for every k. 
p(s,t)<8 
s,tET(k) 

Letting k -+ oo, then casting out various sequences of negligible sets, we find that P 
concentrates on the set Up(T(oo)) of all uniformly continuous functions on T(oo). 
Each function in Up(T(oo)) has a unique extension to a function in Up(T); the 
extension carries P up to the sought-after Borel measure on Up(T). 

To complete the proof let us construct a new probability space (D, A, JP) that 
supports perfect maps ¢n into n, such that Xn o ¢n converges to an X with dis­
tribution P, in the strengthened almost sure sense of the Representation Theorem 
from the previous section. This is not the circular argument that it might appear; 
we do not need to assume the convergence Xn .,... P in order to adapt sc,me of the 
ideas from the proof of that theorem. Indeed, we can break into the proof between 
its second and third steps by estab~ishing directly that lim inf lP' * { Xn E B} 2:: P B 
for every B that is a finite intersection of closed balls in B(T) with centers in Up(T) 
and zero P measure on their boundaries. 
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Such a set B has a simple form; it is defined by a pair of functions g, h in Up(T): 

B = {x E B(T): g(t)::; x(t)::; h(t) for all T}. 

It has zero P measure on its boundary. For "l > 0 define 

B 11 = {x E B(T): g(t) + "l < x(t) < h(t)- rJ for all t}. 

As "l -+ 0, the sets B11 expand up to the interior of B. The fact that P puts 
zero measure on the boundary of B lets us choose "l so that P B11 2:: P B - f. This 
inequality gives us room to approximate the paths of the Xn processes from their 
values on a finite subset ofT. 

Fix an f > 0. The fact that P concentrates on Up(T) lets us choose a 6 > 0 so 
that the set 

F = { x E B(T) : sup Jx(s)- x(t)J ::; ry/2} 
p(s,t)<6 

hasP measure at least 1- f. Condition (ii) of the theorem lets us assume that 6 is 
small enough to ensure limsuplP*{Xn E Fe}< f. We may also assume that both g 
and h belong to F, because both are uniformly continuous. 

Now let T(k) = {t1 , ... , tk} be a finite set that approximates within a distance 6 
to every point ofT. For a function x in F and at with p(t, ti) < 15, if x(ti) < h(ti)-ry 
then x(t)::; x(ti) + fJ/2 < h(ti)- ry/2. The upper bound is less than h(t), because 
hE F. A similar argument with g would give a lower bound. It follows that the 
set 

{Xn E F: g(ti) + "l < Xn(·, ti) < h(ti)- "l forti E T(k)} 
is contained within {Xn E B}, and hence 

lP*{Xn E B} 2:: lP{g + "l < Xn < h- "l on T(k)} -JP*{Xn E Fe}. 

The first term on the right-hand side may be reexpressed as 

lP{(Xn(·,h), ... ,Xn(·,tk)) E G}, 

where G is the open subset of JRk defined by the inequalities 

g(ti) + 'f/ < Xi < h(ti) - rJ for i = 1, ... , k. 

From assumption (i), the lim inf of the last probability is greater than 

P{x E Up(T): (x(h), ... ,x(tk)) E G} 2:: PB11 • 

It follows that 

for each f > 0. 

By copying Steps 3 through 8 in the proof of the Representation Theorem we 
could now complete the construction of versions of the Xn that converge in the 
strong sense to an X with distribution P. The assertion of the theorem would then 
follow easily. 0 

Condition (ii) of Theorem 10.2 is sometimes called stochastic equicontinuity or, 
less precisely, uniform tightness. It is equivalent to the requirement: for every 
sequence {rn} of real numbers converging to zero, 

(10.3) sup{JXn(s)- Xn(t)J: p(s, t) < rn}-+ 0 in probability. 
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It also implies (and actually is implied by) that for every sequence of random 
elements {an}, { Tn} ofT with p(an, Tn) -+ 0 in probability, 

(10.4) Xn(O'n)- Xn(Tn)-+ 0 in probability. 

One has only to choose r n converging to zero so slowly that JP'* {p( an, T n) 2: r n} ---+ 0 
to establish the implication. Notice that (10.4) is much stronger than the cor­
responding assertion for deterministic sequences {an}, {rn} with p(sn, tn) ---+ 0. 
Verification of the weaker assertion would typically involve little more than an ap­
plication of Tchebychev's inequality, whereas (10.4) corresponds to a much more 
powerful maximal inequality. 

Let us now specialize Theorem 10.2 to random processes constructed from a 
triangular array {fni(w, t) : t E T, 1 ::; i ::; kn, n = 1, 2, ... }, with the Um} 
independent within each row. Define 

Xn(w, t) = L (!nz(W, t) -lP'fn,(-, t)), 
t:::;kn 

) 
1/2 

Pn(s, t) = ( L IP!fm(·, s)- fnz(·, tW · 
t:::;kn 

The double subscripting allows us to absorb into the notation the various standard­
izing constants needed to ensure convergence of finite dimensional distributions. If 
we also arrange to have 

(10.5) p(s, t) = lim Pn(s, t) 
n-->oo 

well defined for each pairs, tinT, then such a p will be an appropriate choice for the 
pseudometric on T. In the frequently occurring case where fni(w, t) = f,(w, t)/ Vii, 
with the {!;} independent and identically distributed, we have p(s, t) = Pn(s, t), 
and condition (v) of the next theorem is trivially satisfied. 

(10.6) FUNCTIONAL CENTRAL LIMIT THEOREM. Suppose the processes from 
the tnangular array {fm(w, t)} are mdependent w~thin rows and sat~sfy: 

(z) the {fn;} are manageable, in the sense of Definztion 7.9; 
(n) H(s, t) = limn--+oo IPXn(s)Xn(t) ex~sts for every s, t m T; 

(in) lim sup E,JP>F;, < oo; 
(zv) E,IPF;i{Fm > E}-+ 0 for each E > 0; 
( v) the l~mzt p( ·, ·) ~s well defined by ( 10. 5) and, for all determinzstzc sequences 

{sn} and {tn}, zf p(sn,tn)-+ 0 then Pn(sn,tn)-+ 0. 
Then 

(a) T is totally bounded under the p pseudometrzc; 
(b) the finzte d~menswnal distributwns of Xn have Gausswn lzmzts, w~th zero 

means and covariances gwen by H, wh~ch uniquely determine a Gausszan 
dzstnbutwn P concentrated on Up(T); 

(c) Xn converges m d~stribution toP. 

PROOF. Conditions (ii) and (iv) imply (Lindeberg central limit theorem) that 
the finite dimensional distributions have the stated Gaussian limits. 
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The stochastic equicontinuity requirement of Theorem 10.2 will be established 
largely by means of maximal inequalities implied by manageability. Recall from 
Section 7 that manageability of the {fm} means that there exists a deterministic 
function ,\ with y"'log'1 integrable and 

for 0 < x ::::; 1, all w, all a, all n. 

For manageable arrays of processes we have the moment bounds, for 1 ::::; p < oo, 

(10.8) 

where 6~ supt 2:::~ fm(w, t) 2 and Ap is a continuous, increasing function that 
depends only on ,\ and p, with Ap(O) = 0 and Ap(1) < oo. 

The presence of the rescaling vector a in ( 10. 7) will allow us to take advantage 
of the Lindeberg condition (iv) without destroying the bound. Because (iv) holds 
for each fixed € > 0, it also holds when € is replaced by a sequence { tn} converging 
to zero slowly enough: 

We can replace fnz by fn,{Fn,::::; t:n} and Fn, by Fn,{Fm::::; t:n} without disturbing 
inequality (10.7); the indicator function {Fm ::::; t:n} is absorbed into the weight a,. 
The same truncation has no bad effect on the other four assumptions of the theorem. 
We therefore lose no generality by strengthening (iv) to: 

(iv )' for all n, all i, all w. 

Henceforth assume this inequality holds. 

The idea will be to apply a maximal inequality analogous to (10.8) to the pro­
cesses 

hn,(w, s, t) = fm(w, s)- fm(w, t), 

at least for those pairs s, t with p(.s, t) < rn, with the aim of establishing stochastic 
equicontinuity in the form (10.3). The maximal inequality will involve the random 
variable 

8n(w) = sup{lhn(w, s, t)l2 : p(s, t) < rn}· 

We will use manageability to translate the convergence rn ~ 0 into the conclusion 
that 8n ~ 0 in probability. 

From the stability results for packing numbers in Section 5, the doubly indexed 
processes {hm(w, .s, t)} are also manageable, for the envelopes lin, = 2Fm, with 
capacity bound >..(x/2) 2 . And the processes {hn,(w, .s, t) 2 } are manageable for the 
envelopes { H~,}, by virtue of inequality (5.2) for packing numbers of pointwise 
products. The analogue of (10.8) therefore holds for the { h;J processes, with 
envelopes { H~,} and the Ap function increased by a constant multiple. In particular, 
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there is a constant C such that 

lPsupiL hm(w,s,t)2 -1Phm(·,s,t)21
2

::; CJPL F~, 
s,t , t 

---+ 0. 

Consequently, 

(10.9) sup Jlhn(w, s, t)i~- Pn(s, t)2j ~ 0 
s,t 

in probability. 

The second part of assumption ( v) implies that 

sup{pn(s, t) : p(s, t) < rn} ~ 0. 
s,t 

Together these two uniformity results give Bn ~ 0 in probability. 
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The convergence (10.9) also establishes total boundedness of T under the p 
pseudometric, with plenty to spare. First note that assumption (iii) and the fact 
that I::, r F~i ~ 0 together imply that IF n 12 is stochastically bounded: for some 
constant K there is probability close to one for all n that 1Fnl2::; K. Now suppose 
{ t1 , ..• , tm} is a set of points with p( t,, tJ) > EK for i =f:. j. By definition of p and 
by virtue of (10.9), with probability tending to one, 

fori =f:. j. 

Eventually there will be an w (in fact, a whole set of them, with probability close 
to one) for which m::; D2(EIF nl2, 9"nw)· It follows from (10.7) that m::; >.(E). That 
is, ). is also a bound on the packing numbers of T under the p pseudometric. 

To complete the proof of stochastic equicontinuity, invoke the analogue of (10.8) 
with p = 1 for the processes of differences hm(w, s, t) with p(s, t) < rn. By man­
ageability, there is a continuous, increasing function f(·) with f(O) = 0 such that 

lP'sup{IXn(s) -Xn(t)i: p(s,t) < rn}::; 1PIFnl2f(Bn/I2Fnl2)· 

For a fixed E > 0, split the right-hand side according to whether IF n !2 > f or not, 
to get the upper bound 

E r(1) + PIF nl2r ( 1 A ~:) . 
The Cauchy-Schwarz inequality bounds the second contribution by 

[riF nl~ rr2 (1 A~:) J 112 

Assumption (iii) keeps JPIF nl~ bounded; the convergence in probability of Bn to zero 
sends the second factor to zero. Stochastic equicontinuity of { Xn} follows. 0 

REMARKS. The original functional central limit theorem for empirical distri­
bution functions is due to Donsker (1952). Dudley (1978) extended the result to 
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empirical processes indexed by general classes of sets. He used the term Donsker 
class to describe those classes of sets (and later, also those classes of functions-see 
Dudley (1987), for example) for which a functional central limit theorem holds. 

The literature contains many examples of such limit theorems for empirical 
processes and partial-sum processes, mostly for identically distributed summands. 
Some of the best recent examples may be found in the papers of Dudley (1984), 
Gine and Zinn (1984), Alexander and Pyke (1986), Ossiander (1987), Alexan­
der (1987a, 1987b), Talagrand (1987), and Andersen and Dobric (1987, 1988). My 
Theorem 10.6 extends a central limit theorem of Kim and Pollard (1990), refining 
the earlier result from Pollard (1982). It could also be deduced from the theorems 
of Alexander (1987b). The assumption of manageability could be relaxed. 

Theorem 10.2 is based on Theorem 5.2 of Dudley (1985), which extends a line of 
results going back at least to Dudley (1966). See also Dudley (1984). My method 
of proof is different, although similar in spirit to the methods of Skorohod (1956). 
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