
SECTION 5 

Stability 

Oftentimes an interesting process can be put together from simpler processes, 
to which the combinatorial methods of Section 4 apply directly. The question then 
becomes one of stability: Does the process inherit the nice properties from its 
component pieces? This section provides some answers for the case of processes 
u · f indexed by subsets of Euclidean space. 

Throughout the section J" and 9 will be fixed subsets of JRn, with envelopes F 
and G and u = (a1, ... , an) will be a vector of independent random variables, each 
taking the values ±1 with probability 1/2. In particular, u will be regarded as the 
generic point in the set S of all n-tuples of ±1 's, under its uniform distribution JID,.. 
The problem is to determine which properties of J" and 9 are inherited by classes 
such as 

J" El7 9 = {f + g: f E J"', g E 9}, 
J"' V 9 = {f V g: f E J"', g E 9}, 
J"' A 9 = {fAg : f E J"', g E 9}, 
J" 0 9 = {f 0 g: f E J"', g E 9}. 

The reader might want to skip the material in the subsection headed "General 
Maximal Inequalities". It is included in this section merely to illustrate one of 
the more recent developments in the subject; it is based on the paper by Ledoux 
and Talagrand (1989). For most applications to asymptotic problems, the simpler 
results contained in the first two subsections seem to suffice. 

Pseudodimension. This property is stable only for the formation of unions, 
pointwise maxima, and pointwise minima. 

Suppose that both J" and 9 have pseudodimension at most V. Then, for every 
t in JRk and every k less than n, Lemma 4.6 asserts that the projection of J" can 
occupy at most 
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of the orthants around t, and similarly for 9. For any two vectors a and (3 in JRk, 
the orthants of t occupied by a V (3 and a 1\ (3 are uniquely determined by the 
orthants occupied by a and (3. (The same cannot be said for a+ (3 or a 0 (3.) 
Thus the projections of 'J'V 9 and '3' 1\9 each occupy at most m 2 different orthants. 
It is even easier to show that the union '3' U 9 occupies at most 2m orthants. If k 
could be chosen so that m 2 < 2k, this would imply that none of the projections 
surrounds t. So, we need to find a k such that 

On the left-hand side we have a polynomial of degree 2V, which increases much 
more slowly with k than the 2k on the right-hand side. For k large enough the 
inequality will be satisfied. Just knowing that such a k exists is good enough for 
most applications, but, for the sake of having an explicit bound, let us determine 
how k depends on V. 

Introduce a random variable X with a Bin(k, 1/2) distribution. The desired 
inequality is equivalent to 

Bound the left-hand side by 

[g-(k-V)rgxr = 81 -ck-VJ 25k, 

then choose k = 10V to make the bound less than 2-k for every V. [It is possible 
to replace 10 by a smaller constant, but this has no advantage for our purposes.] 

(5.1) LEMMA. If both '3' and 9 have pseudodimension at most V, then all of 
'3' U 9 and '3' V 9 and '3' 1\ 9 have pseudodimension less than lOV. 0 

Unfortunately neither sums nor products share this form of stability. 

Packing Numbers. Stability properties for packing or covering numbers fol­
low easily from the triangle inequality: we construct approximating subclasses { f;} 
for '3' and {gj} for 9, and then argue from inequalities such as 

/f v g- f; v gj/2:::; /f- f;/2 + /g- gj/2· 

In this way we get covering number bounds 

N2(E + 8, '3'09) :::; N2(E, 'J)N2(8, 9), 

where 0 stands for either + or V or /\. The corresponding bounds for packing 
numbers, 

D2(2E + 28, '3'09):::; D2(E, 'J)D2(8, 9), 
follow from the inequalities that relate packing to covering. An even easier argument 
would establish a stability property for the packing numbers for the union '3' U 9. 

Pointwise products are more interesting, for here we need the flexibility of bounds 
valid for arbitrary rescaling vectors. Let us show that the covering numbers for the 
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set J'" 0 9 of all pairwise products f 0 g satisfy the inequality 

(5.2) N2(E + 8, o: 0 J'" 0 9) ::'S N2(E, o: 0 G 0 J'") N2 (8, o: 0 F 0 9), 

which implies the corresponding inequality for packing numbers 

Dz(2E + 28, o: 0 J'" 0 9) ::'S D2(t, o: 0 G 0 J'") Dz(8, o: 0 F 0 9). 

Choose approximating points o: 0 G 0 f1, ... , o: 0 G 0 fr for o: 0 G 0 J'", and points 
o: 0 F 0 g1, ... , o: 0 F 0 g 8 for F 8 9. We may assume each fi lies within the box 
defined by the envelope F, and each g1 lies within the box defined by G. For an 
o: 0 f 0 g in the set o: 0 J'" 0 9, and appropriate fi and g1, 

jo: 0 f 0 g - o: 0 fi 0 gj lz 

::S lo: 0 f 0 g- o: 0 fi 0 g/z + jo: 0 fi 0 g - o: 0 fi 0 gj /2 

::S jo: Co) f 0 G - o: 0 fi 0 G/2 + jo: 0 F 0 g - o: 0 F 0 gj /z 

::'S E + 8. 

Inequality (5.2) fits well with the bounds from Section 4. 

(5.3) LEMMA. Suppose J'" and 9 are subsets of Kin for which 

D1(Ejo: 0 F/1, o: 0 J'")::::; A(1/E)w, 

D1(Ejo: 0 Gj1,o: 0 9)::::; A(1/E)w, 

for 0 < E ::::; 1 and every rescaling vector o: of nonnegative weights. Then, for every 
sucho:, 

(5.4) for 0 < E ::::; 1. 

A similar inequality holds for the packing numbers. 

PROOF. The set J{ = o: 0 J'" 0 9 has envelope H = o: 0 F 0 G, whose £2 norm, 

provides the natural scaling factor. From inequality (5.2) and Lemma 4.9, which 
relates £1 and £2 packing numbers, we get 

Nz(EjHiz, X) ::'S N2( ~E/H/z, o: 0 G 0 J'") N2( ~EjHj2, o: 0 F 0 9) 

::S D1( iE2 /H/~, H 8 o: 0 G 0 J'") D1(~E2 jHj~, H 0 o: 8 F 0 9). 

The setH 0 o: 0 G 0 J'" has envelope H 0 H, which has £1 norm jHj~, and likewise 
for the set H 0 o: 0 F 0 9. With the uniform bounds on D1 packing numbers applied 
to the last two factors we end up with the asserted inequality. D 

The results in this subsection are actually examples of a more general stability 
property involving contraction maps. A function A from Kin into another Euclidean 
space is called an £2-contraction if it satisfies the inequality 

/.X(f)- .X(g)/2 s /f- g/2 for all f, g in JRn. 
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For such a map A, it is easy to show that 

D2(f, AW)) ~ D2(f, g'). 

When applied to various cartesian products, for various maps A from JR2n into !Rn, 
this would reproduee the bounds stated above. 

General maximal inequalities. It is perhaps most natural-or at least most 
elegant-to start from the assumption that we are given bounds on quantities such 
as lP\,.<P(sup~ lu · fl), for a convex, inereasing nonnegative function <P on JR+. The 
bounds might have been derived by a chaining argument, based on inequalities for 
packing numbers, but we need not assume as much. 

Without loss of generality we may assume sets such as g' to be compact: by 
continuity, the supremum over g' in each of the asserted inequalities will be equal 
to the supremum over the closure of g'; and the inequalities for unbounded g' may 
be obtained as limiting cases of the inequalities for a sequence of bounded subsets 
of g', Also we may assume that the zero vector belongs to g', 

The stability property for sums follows directly from the convexity of <P: 

(5.5) lP' .,.<P (sup lu · (f +g) I) ~ lP' .,.<P (sup lu · fl +sup lu · gl) 
~.s ~ s 

~ ~lP'.,.<P(2s~plu·f1) +~lP'.,.<P(2s~plu·gl). 
To eliminate the extra factors of 2 from the last two terms (or from similar terms 
later in this section) we could apply the same argument to the rescaled function 
<Po(x) = <P(x/2). 

More subtle is the effect of applying a contraction operation to each coordinate 
of the vectors in g', Suppose we have maps A; : lR ---+ lR such that 

(5.6) A;(O) = 0 and IA;(s)- A;(t)i ~ Is- ti for all real s, t. 

They define a contraction map on Rn pointwise, A(f) = (A1(JI), ... , AnUn)). 

(5.7) THEOREM. For every subset g' of!Rn, and contraction maps A;, 

lP'.,.<P(s~plu·A(f)l) ~ ~lP'.,.<P(2s~plu·f1), 
where A( f)= (AI(fi), ... , An(/n)). 0 

Before proceeding to the proof, let us see how the theorem can be applied. 

(5.8) EXAMPLE. We can build the class g'V 9 (or g'f\ 9) using sums and con­
tractions, based on the representation 

j; v g; = (f; - g;)+ + g;. 

Arguing as for (5.5) we get a bound for the set of all differences f- g. With the 
contraction maps A; ( s) = s+ we get a bound for the set of vectors with components 
(f;- g;)+, which we combine with the bound for 9 using (5.5). 0 
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(5.9) EXAMPLE. If we impose the condition that 1/il ::::; 1 and IYil ::::; 1 for all 
components of all vectors in :7 and 9, then we can build :7 0 9 using sums and 
contractions, based on the representation 

figi = i(fi + Yi) 2 - i(fi- Yi)2 . 

Stability for sums (and differences) gives bounds for the sets of vectors with com­
ponents 1/2(/i ± gi)· With the contraction map >.i(s) = 1/2 min (1, s2 ) we get a 
suitable bound for both the squared terms, which we again combine by means of 
inequality (5.5). D 

As the first step towards the proof of Theorem 5. 7 we must establish a stronger 
result for a special case, using only elementary properties of 4>. 

(5.10) LEMMA. If :7 lies within the positive orthant of !Rn, 

IP'0'4> (s~p lu · A(f)l) ::::; IP'0'4>(s~p lu · fl) 

for contraction maps >.i, as in {5.6}. 

PROOF. It would suffice to consider the effect of the contractions one coordinate 
at a time. We would first show that 

Then we could argue similarly for the (n-1) 8 t coordinate-replacing the right-hand 
side by the quantity now on the left-hand side, and replacing fn-1 on the left-hand 
side by An-lUn-1)-and so on. 

Let us establish only the inequality for the nth coordinate. Argue conditionally 
on a 11 ... , an-l· To simplify the notation, write >. instead of An, write x(f) for the 
contribution from the first n- 1 coordinates, and write y(f) for fn· Then we need 
to show that 

(5.11) 4> (s~p lx(f) + >.(y(f))l) + 4> (s~p lx(f)- >.(y(f))l) 

::::; 4> (s~p lx(f) + y(f)l) + 4> (s~p lx(f)- y(f)l). 

The argument will be broken into four cases. Suppose the supremum in the first 
term on the left-hand side is achieved at f0 and for the second term at f1. That is, 
if xo = x(fo) and so on, 

(5.12) lxo +>.(yo) I ~ lx(f) + >.(y(f))l 

lx1- >.(yl)l ~ lx(f)- >.(y(f))l 

for all fin :f. For the first two cases we will need only to appeal to the facts: 4>(t) 
is an increasing function oft on JR+; both y0 and Y1 are nonnegative; and 

(5.13) fori= 0, 1, 
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as a consequence of the contraction property for .A. 
For notational convenience, extend the function <P by symmetry to the whole 

real line: <P( -t) = <P(t). Then it will be enough to show that in each case at least 
one of the following inequalities holds: 

{ <P(xo +Yo) + <P(x1 - yl) 
(5.14) <P(xo + .A(yo)) + <P(x1- .A(yl)) :$ <P(x1 + Yl) + <P(xo _Yo) 

First case: if xo + .A(yo) 2: 0 2: x1 - .A(yl), then 

<P(xo + .A(yo)) :$ <P(xo +Yo), 

<P(x1 + .A(yl)) :$ <P(x1- Yl)· 

Second case: if xo + .A(yo) :$ 0 :$ x1 - .A(yl), then 

<P(xo + .A(yo)) :$ <P(xo- Yo), 

<P(x1- .A(yl)) :$ <P(x1 + Yl)· 

At least one of the inequalities in (5.14) is clearly satisfied in both these cases. 
For the other two cases, where x0 + .A(y0 ) and x1 - .A(yl) have the same sign, 

we need the following consequence of the convexity of <P: if a :$ {3 and {3 2: 0 and 
0 :$ s :$ t, then 

(5.15) <P({3 + t)- <P({3)- <P(a + s) + <P(a) 2: 0. 

If s = 0 this inequality reasserts that <P is an increasing function on JR+. If s > 0 it 
follows from the convexity inequality 

<P(a + s)- <P(a) < <P({3 + t)- <P({3) 
s - t 

and the nonnegativity of the ratio on the right-hand side. 

Third case: if xo + .A(yo) 2: 0 and x1 - .A(y1) 2: 0, then invoke inequality ( 5.15) 
with 

a= X1- Yb {3 = Xo + .A(yo), s = Y1- .A(yl), t =Yo- A(Yo) if Yo 2: Y1, 

a= Xo- Yo, {3 = X1- .A(yl), s =Yo+ .A(yo), t = Y1 + .A(yl) if Yo< Yl· 

The inequalities (5.12) and (5.13) give a :$ {3 in each case, and the inequality s :$ t 
follows from the contraction property 

{ Yo- Y1 
1-A(yl)- .A(yo)l :$ 

Yl- Yo 

if Yo 2: Y1, 

if Yo < Yl· 

Fourth case: if xo + .A(yo) ::; 0 and x1 - .A(y1) ::; 0, then invoke (5.15) with 

a= -x1- Y1, f3 = -xo- .A(yo), s = Y1 + .A(yl), t =Yo+ .A(yo) if Yo 2: Yll 

a= -xo- Yo, f3 = -x1 + .A(y1), s =Yo- .A(yo), t = Y1 - .A(yl) if Yo < Yl· 

The required inequalities a ::; {3 and s ::; t are established as in the third case. 0 
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either 

or 

f, :::; 0 and >.,(!,) = >.,(-f,-) and >.,(!,+) = >.,(0) = 0. 

Convexity of <I> gives the inequality 

r ,.<I> ( s~pl La,[>., u,+) + >., (-f.- )Jj) 
•:::On 

:::; ~r,.<I>(2s~pjLai>.,(fi+)j) + ~r,.<I>(2s~pjLa,>.,(-f,-)j). 
•:::On •:::On 

Lemma 5.10 shows that the right-hand side increases if>.,(!/) is replaced by f,+ 
and>.,(- f.-) is replaced by -f.-. (For -f.-, note that >.( -t) is also a contraction 
mapping.) Argue from convexity of <I> and the inequality f/ = 1/2(!. +If, I) that 

with a similar inequality for the contribution from the -f.- term. The proof will 
be completed by an application of the Basic Combinatorial Lemma from Section 1 
to show that 

Because <I> is increasing and nonnegative, and 5" contains the zero vector, 

The two expectations on the right-hand side are equal; it will suffice if we bound 
the first of them by the corresponding quantity with If. I replaced by f,. 

To do this, let us construct, by means of the Basic Combinatorial Lemma, a 
one-to-one map (J from S onto itself such that 

(5.16) 

For each u in S, the compactness of 5" ensures existence of a vector f"" for which 
the left-hand side of (5.16) equals 

Define the map rt from S into itself by 

rt(u), = { 
+1 

-1 

if a, = + 1 and f; ~ 0, 

otherwise. 



28 EMPIRICAL PROCESSES 

For every u we have ry(u) ~ u. The Basic Combinatorial Lemma gives a one-to-one 
map 0 that has O(u)l\u = 'T/(u). In particular, O(u)i is equal to +1 if both ai = +1 
and It ~ 0, and equal to -1 if ai = + 1 and It < 0. Thus 

~ LO(u)dt 
i~n 

as asserted by (5.16). Because 0 is one-to-one, the random vector O(u) has a uniform 
distribution under lP u, and 

1Pu4>(2s~p ~aillil) ~ lPu4>(2s~pO(u) · r) = 1Pu4>(2s~u · r), 
as required. 0 

REMARKS. The last subsection corresponds to a small fraction of the Ledoux 
and Talagrand (1989) paper. Ledoux and Talagrand (1990, Chapter 4) have further 
refined the method of proof. Except perhaps for the stability result for covering 
numbers of products, the rest of the section merely collects together small results 
that have been derived many times in the literature. 
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