
SECTION 4 

Packing and Covering 
in Euclidean Spaces 

The maximal inequality from Theorem 3.6 will be useful only if we have suitable 
bounds for the packing numbers of the set :J. This section presents a method for 
finding such bounds, based on a geometric property that transforms calculation of 
packing numbers into a combinatorial exercise. 

The combinatorial approach generalizes the concept of a Vapnik-Cervonenkis 
class of sets. It identifies certain subsets of IRn that behave somewhat like compact 
sets of lower dimension; the bounds on the packing numbers grow geometrically, 
at a rate determined by the lower dimension. For comparison's sake, let us first 
establish the bound for genuinely lower dimensional sets. 

( 4.1) LEMMA. Let :J be a subset of a V dimensional affine subspace of IRn. If :J 
has finite diameter R, then 

( 3R)v D(t, :J) 5 -~: for 0 < t 5 R. 

PROOF. Because Euclidean distances are invariant under rotation, we may 
identify :J with a subset of IR v for the purposes of calculating the packing number 
D( E, :J). Let f1, ... , fm be points in :J with /fi - fj / > t for i =I= j. Let Bi be the 
(V-dimensional) ball of radius ~:/2 and center fi. These m balls are disjoint; they 
occupy a total volume of m(~:/2)vr, where r denotes the volume of a unit ball 
in IR v. Each fi lies within a distance R of f1; each Bi lies inside a ball of radius 
3/2R and center f 1 , a ball of volume (3/2R)vr. It follows that m 5 (3R/t)v. D 

A set of dimension V looks thin in !Rn. Even if projected down onto a subspace 
of IRn it will still look thin, if the subspace has dimension greater than V. One way 
to capture this idea, and thereby create a more general notion of a set being thin, is 
to think of how much of the space around any particular point can be occupied by 
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4. PACKING AND COVERING IN EUCLIDEAN SPACES 15 

the set. The formal concept involves the collection of zk ortltants about each point 
tin JRk defined by means of all possible combinations of coordinatewise inequalities. 

(4.2) DEFINITION. For each tin JRk and each subset J of {1, ... , k}, define the 
Jth orthant about t to consist of all those x in JRk for which 

X;> f; 

X; < t; 
if i E J, 

if i E F. 

A subset of JRk will be said to occupy the Jth orthant oft if it contains at least one 
point in that orthant. A subset will be said to surround t if it occupies all 2k of 
the orthants defined by t. 

There is a surprising connection between the packing numbers of a set in JRn and 
the maximum number of orthants its lower dimensional projections can occupy. 
The projections that we use will differ slightly from the usual notion. For each 
k-tuple I = ( i(1 ), ... , i(k)) of integers from the range 1, ... , n, call (x;(l), ... , Xi(k)) 

the !-projection of the point (x1 , ... , xn) in JRn, even if the integers i(1), ... , i(k) 
are not all distinct. Call such a map into JRk a k-dimensional coordinate projection. 
If all the integers are distinct, call it a proper coordinate projection. 

( 4.3) DEFINITION. Say that a subset ;J of JRn has a pseudodimension of at 
most V if, for every point t in lR v +l, no proper coordinate projection of ;J can 
surround t. 

The concept of pseudodimension bears careful examination. It requires a prop­
erty for all possible choices of I= (i(1), ... , i(V + 1)) from the range 1, ... , n. For 
each such choice and for each t in lR v +1, one must extract a J from I such that 
no f in ;J can satisfy the inequalities 

j; > t; 
j; < t; 

for i E J, 

fori E I\J. 
Clearly any duplication amongst the elements of I will make this task a triviality. 
Only for distinct integers i(1), ... , i(V + 1) must one expend energy to establish 
impossibility. That is why only proper projections need be considered. 

If a set ;J actually sits within an affine space of dimension V then it has pseudo­
dimension at most V. To see this, notice that a (V + 1 )-dimensional projection of 
such an ;J must be a subset of an affine subspace A with dimension strictly less 
than V + 1. There exists a nontrivial vector {3 in lR v +1 and a constant 1 such that 
{3 · a = 1 for every a in A. We may assume that (J; > 0 for at least one i. If t has 
{3 · t ~ 1 it is impossible to find an a in A such that 

when (J; > 0, 

when (J; ~ 0, 

for these inequalities would lead to the contradiction 1 = 2:; (J;a; < 2:; (J;t; ~ I· If 
f3 · t > 1 we would interchange the roles of "(J; > 0" and "(J; ::; 0" to reach a similar 
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contradiction. For the pseudodimension calculation we need the contradiction only 
for ai > ti, but to establish the next result we need it for ai 2: ti as well. 

( 4.4) LEMMA. Suppose the coordinates of the points in :-F can take only two 
values, c0 and c1 . Suppose also that there is a V -dimensional vector subspace A 
of IRn with the pmperty: for each f E :-F there is a .A E A such that fi = c1 if and 
only if Ai 2: 0. Then :-F has pswdodimension at most V. 

PROOF. We may assume that c0 = 0 and c1 = 1. Suppose that some proper 
!-projection of :-r surrounds a point tin JRV+I. Each coordinate ti must lie strictly 
between 0 and 1. The inequalities required for the projection of f to occupy the 
orthant corresponding to a subset J of I are 

li = 1 fori E J, 

li = 0 fori E I\J. 

That is, 

.Ai 2: 0 fori E J, 

>.i < 0 fori E I\J. 

As shown above, there exists a J such that this system of inequalities cannot be 
satisfied. 0 

The connection between pseudodimension and packing numbers is most easily 
expressed if we calculate the packing numbers not for the usual Euclidean, or £2 , 

distance on !Rn, but rather for the £1 distance that corresponds to the norm 

!xh = :~:)xil· 
i$n 

To distinguish between the two metrics on !Rn let us add subscripts to our notation, 
writing D1(E,:-f) for the £1 packing number of the set :-r, and so on. [Notice that 
the f 1 norm is not invariant under rotation. The in variance argument used in the 
proof of Lemma 4.1 would be invalid for £1 packing numbers.] 

A set in!Rn of the form Tii[ai, ,Bi] is called a box. It has £1 diameter Li(,Bi- ai). 
The smallest integer greater than a real number X is denoted by r X l· 

( 4.5) LEMMA. Let 5-" lie within a box of £1 diameter one in IRn. If 5-" contains m 
points, each pair separated by an £1 distance of at least E, then: fork = f2c 1log ml, 
there exists a point t in JRk and a k-dimensional coordinate projection of :-F that 
occupies at least m orthants of t. 

PROOF. We may assume that the box has the form Tii[O,pi], where the Pi are 
nonnegative numbers summing to one. Partition [0, 1] into subintervals h, ... , In 
of lengths Pl> ... ,Pn· Generate i(1), ... , i(k) and t = (t1 , ... , tk) randomly, from 
a set of independent Uniform[O, 1] random variables Ul> ... , Uk, in the following 
way. If Ua lands in the subinterval Ij, put i(a) equal to j and t 01 equal to the 
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distance of Ua from the left endpoint of Ij. [That is, the method chooses edge i 
with probability Pi, then chooses ti uniformly from the [O,pi) interval.) 

Let :t'o be the subset of :t consisting of the m points with the stated separation 
property. To each f in :t'o there corresponds a set of n points in [0, 1): the jth 

lies in Ij, at a distance /j from the left endpoint of that interval. The 2n points 
defined in this way by each pair f, g from :t0 form n subintervals of [0, 1), one in 
each Ij. The total length of the subintervals equals If- gl 1, which is greater than f, 

by assumption. If U a lands within the interior of the subintervals, the coordinates 
fi(a) and gi(a) will be on opposite sides of ta; the projections off and g will then 
lie in different orthants oft. Each Ua has probability at most 1 - f of failing to 
separate f and g in this way. Therefore the projections have probability at most 
(1 - E)k of lying in the same orthant oft. 

Amongst the (';') possible pairs from :t0 , the probability that at least one pair 
of projections will occupy the same orthant oft is less than 

(;)(1- f)k < ~ exp(2 log m- kt:). 

The value of k was chosen to make this probability strictly less than one. With 
positive probability the procedure will generate i(1), ... , i(k) and t with the desired 
properties. 0 

Notice that the value of k does not depend on n, the dimension of the space lRn 
in which the set :tis embedded. 

The next result relates the occupation of a large number of orthants in JRk to the 
property that some lower-dimensional projection of the set completely surrounds 
some point. This will lead to a checkable criterion for an :t in lRn to have packing 
numbers that increase at the same sort of geometric rate as for the low-dimensional 
set in Lemma 4.1. The result is a thinly disguised form of the celebrated Vapnik­
Cervonenkis lemma. 

( 4.6) LEMMA. A coordinate projection into JRk of a set with pseudodimension 
at most V can occupy at most 

orthants about any point of JRk. 

PROOF. Let X be a set with pseudodimension at most V. Its projection into JRk 

also has pseudodimension at most V. So without loss of generality we may assume 
that X ~ JRk. Let S denote the set of all k-tuples u = (e11, ... , O'k) with O'i = ±1 
for each i. Identify the 2k orthants of t with the 2k vectors in S. The orthants 
of t that are occupied by X correspond to a subset A of S. Suppose #A i J strictly 
greater than the asserted bound, and then argue for a contradiction. 

The vectors in S also index the proper coordinate projections on JRk. Let us 
denote by 7f17 the projection that discards all those coordinates for which O'i = -1. 
The orthants of 1fut correspond to vectors TJ inS with TJ ::::; u: we merely ignore those 
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coordinates 'r/i for which O'i = -1, then identify the orthants by means of the signs 
of the remaining T/i· For the projection 7rcrJC to occupy the orthant corresponding 
to TJ, there must exist an a in A such that o:i = 'r/i whenever O'i = +1; that is, 
a 1\ u = TJ. 

Let Sv denote the set of all vectors u in S with O'i = + 1 for at least V + 1 
coordinates. The assumption of pseudodimension at most V means that 7rcrJC does 
not surround 7rcrt, for every u in Sv. Thus for each u in Sv there exists an ry(u) ~ u 
such that a 1\ u =/= ry( u) for every a in A. For definiteness define r1( u) = u for 
u ¢. Sv. 

Invoke the Basic Combinatorial Lemma from Section 1 to obtain a one-to-one 
map (J from S onto itself such that B(u) 1\ u = ry(u) for every u. The assumption 
about the size of A ensures that 

#{B- 1(a): a E A} + #Sv > 
which implies that there exists an a in A for which e-1(a) E Sv. But then, for 
that a, we have 

a contradiction that establishes the assertion of the lemma. 0 

The V in the statement of the last lemma plays almost the same role as the 
dimension V in Lemma 4.1, which gave the O(cv) bound on packing numbers. 
By combining the assertions of the last two lemmas we obtain the corresponding 
bound in terms of the pseudodimension. 

( 4. 7) THEOREM. Let :1 have pseudodimension at most V and lie within a box 
of£ 1 diameter one in lRn. Then there exist constants A and W, depending only on 
V, such that 

for 0 < f ~ 1. 

PROOF. Fix 0 < f ~ 1. Let m = D1(E,:f). Choose k = r2E-1 log ml as in 
Lemma 4.5. :From Lemma 4.6, 

The left-hand side of this inequality is a polynomial of degree V in k; it is smaller 
than (1 + V)kv. [There is not much to be gained at this stage by a more precise 
upper bound.] Thus 

whence 
(1 + V) m 

Ev 2: (1 + 2log m)V · 
For some positive constant C depending on V, the right-hand side is greater 
than C .;m, for all positive integers m. The asserted inequality holds if we take 
A= (1 + V) 2 /C2 and W = 2V. 0 
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For the sake of comparison with Lemma 4.1, let us see what sort of bound is 
given by Theorem 4.7 when :J is contained within a V-dimensional affine subspace 
of JRn. If :J also lies within an £1 box of diameter one, the argument from the 
proof of Theorem 4.7 gives packing numbers that grow as O(cw), for W = 2V. 
We could reduce W to any constant slightly larger than V. [Use Cm1- 6 , for some 
tiny positive 8, instead of c,;rn, in the proof.] This falls just slightly short of the 
O(cv) bound from Lemma 4.1. 

Theorem 4. 7 has a slightly more general version that exploits an in variance prop­
erty of orthants. For each vector a = (o: 1 , ... , o:n) of nonnegative constants, and 
each f in JRn, define the pointwise product a 0 f to be the vector in !Rn with ith 
coordinate o:di· Write a 0 :J to denote the set of all vectors a 0 f with fin :.f. At 
least when O:i > 0 for every i, a trivial, but significant, property of orthants is: :J 
occupies orthant J of t if and only if a 0 :J occupies orthant J of a 0 t. Similarly, if 
some coordinate projection of :J cannot surround a point t then the corresponding 
coordinate projection of a 0 :J cannot surround a 0 t. The key requirement of the 
theorem is unaffected by such coordinate rescalings. We can rescale any bounded 
set :J with an envelope F-that is, a vector such that lfd :::; Fi for each f E :J and 
each i---- to lie within a box of £1 diameter one, and then invoke the theorem. 

(4.8) THEOREM. Let :J be a bounded subset of!Rn with envelope F and pseudo­
dimension at most V. Then there exist constants A and W, depending only on V, 
such that 

for 0 < t::::; 1, 
for every rescaling vector a of non-negative constants. 

PROOF. We may assume o:i > 0 for every i. (The cases where some O:i are 
zero correspond to an initial projection of :J into a lower dimensional coordinate 
subspace.) Apply Theorem 4. 7 to the rescaled set :J* consisting of vectors f* with 
coordinates 

r = o:di 
' 2 :Ei o:jFi. 

Then observe that, for vectors in :.f*, 

If*- g*h > t:/2 if and only if 

Absorb the extra factor of 2w into the constant A. 0 

Sets with an O(cw) bound on packing numbers arise in many problems, as 
will become apparent in the sections on applications. The main role of the pseudo­
dimension of a set :J will be to provide such a geometric rate of growth for packing 
numbers of :J. It also applies to any subclass of :J under its natural envelope. For 
subclasses with small natural envelopes, this method sometimes leads to bounds 
unattainable by other methods. 

The added generality of an inequality that holds uniformly over all rescaling 
vectors allows us to move back and forth between £1 and £2 packing numbers. The 
bounds from Theorem 4.8 will translate into bounds on £2 packing numbers suitable 
for the chaining arguments in the Section 3. 
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( 4.9) LEMMA. For each bounded !t with envelope F, and each € > 0, 

D2(€,!t):::; D1(~€2 ,F 0!t'):::; D2(~€2 /IFI2,!t). 

PROOF. For each pair of vectors f, g in !t, 

If- gl~:::; 2IF 0 f- F 0 gil :::; 2IFI21f- gl2· 

The first inequality follows from the bound (fi - gi) 2 :::; 2Filfi -gil; the second 
follows from the Cauchy-Schwarz inequality. 0 

(4.10) COROLLARY. lf':J is a bounded subset of'R.n with envelope F and pseudo­
dimension at most V, then there exist constants A2 and W2, depending only on V, 
such that 

for 0 < E:::; 1 
and every rescaling vector o: of non-negative constants. 

PROOF. The set o: 0 !t has envelope {3 = o: 0 F. Because {3 0 o: 0 !t has 
envelope {3 0 {3 and 1/31~ = l/3 0 .BI1, the £2 packing number is bounded by 

Dl( ~€2 1/3 0 .811, .B 0 0: 0 !t) :::; A( ~.: 2 )-W' 

with A and W from Theorem 4.8. D 

The presence of an arbitrary rescaling vector in the bound also gives us added 
flexibility when we deal with sets that are constructed from simpler pieces, as will 
be explained in the next section. 

REMARKS. My definition of pseudodimension abstracts the concept of a Vapnik­
Cervonenkis subgraph class of functions, in the sense of Dudley (1987). Most of 
the results in the section are reformulations or straightforward extensions of known 
theory for Vapnik-Cervonenkis classes, as exposited in Chapter II of Pollard (1984), 
for example. See that book for a listing of who first did what when. 

The nuisance of improper coordinate projections was made necessary by my 
desire to break the standard argument intp several steps. The arguments could 
be rewritten using only proper projections, by recombining Lemma 4.5 and The­
orem 4. 7. The proof of Lemma 4.6 is a novel rearrangement of old ideas: see the 
comments at the end of Section 1 regarding the Basic Combinatorial Lemma. 
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