
SECTION 3 

Chaining 

The main aim of the section is to derive a maximal inequality for the processes 
u · f, indexed by subsets of JRn, in the form of an upper bound on the w norm of 
SUP:r lu. fl. [Remember that w(x) = 1/sexp(x2).] First we need a bound for the 
individual variables. 

(3.1) LEMMA. For each f in !Rn, the random variable u · f has sub9aussian tails, 
with Orlicz norm iiu · fllw less than 2lfl. 

PROOF. The argument has similarities to the randomization argument used in 
Section 2. Assume the probability space is a product space supporting independent 
N(O, 1) distributed random variables 91, ... , 9n, all of which are independent of the 
sign variables o-11 •.• , O"n. The absolute value of each 9i has expected value 

'Y = lP'IN(O, 1)1 = J2f;. 
By Jensen's inequality, 

lP',. exp(l::adi/C) 
2 

= lP',. exp(~adilP'gl9ilhC) 2 

•~n •~n 

:s; lP' ,.lP'g exp(~ail9dfihC r 
•~n 

The absolute value of any symmetric random variable is independent of its sign. In 
particular, under lP',. 0 lP' g the products o-1l91l, ... , O"n l9nl are independent N(O, 1) 
random variables. The last expected value has the form lP'exp(N(O,r2 ) 2), where 
the variance is given by 

Provided r 2 < lj2, the expected value is finite and equals (1- 2lfl 2 h 2C2)-1. If we 
choose C = 2lfl this gives lP'w(u · f/C) :s; 1, as required. D 

9 



10 EMPIRICAL PROCESSES 

The next step towards the maximal inequality is to bound the W norm of the 
maximum for a finite number of random variables. 

(3.2) LEMMA. For any random variables z1, ... , Zm, 

llmax IZ;IIIw ~ J2 + logm maxiiZ;IIw· 
i~m i~m 

PROOF. The inequality is trivially satisfied if the right-hand side is infinite. So 
let us assume that each Z; belongs to /:.; w. For all positive constants K and C, 

w (maxiZ;I/C) ~ \l/(1) + 1oo {KmaxiZ;I/C > Kx}W(dx) 

~ \l/(1) + 1= W(K;~;~;I/C) W(dx) 

~ IJ!(1)+ "foe W(KZ;/C)W(dx). 
~ 1 IJ!(Kx) 
t~m 

If we choose C = K max II Z; II w then take expectations we get 

roo 1 
lP' IJ!(max IZ;I/C) ~ IJ!(1) + m }1 W(Kx) W(dx) 

= ~ + m(K2 - 1)-1 exp( -K2 + 1). 

The right-hand side will be less than 1 if K = J2 +log m. (Now you should be 
able to figure out why the 1/5 appears in the definition of W.) D 

Clearly the last lemma cannot be applied directly to bound llsup:rlu · flllw if 
:J' is infinite. Instead it can be used to tie together a sequence of approximations 
to sup:rlu · fl based on an increasing sequence of finite subsets :3". The argument, 
which is usually referred to as chaining, depends on the geometry of :J' only through 
the size of its packing numbers. To begin with, let us consider a more general--­
more natural-setting: a stochastic process {Z(t) : t E T} whose index set T is 
equipped with a metric d. [Actually, d need only be a pseudometric; the argument 
would not be affected if some distinct pairs of points were a distance zero apart.] 

(3.3) DEFINITION. The packing number D(E, To) for a subset T0 of a metric 
space is defined as the largest m for which there exist points t1, ... , tm in T0 with 
d( t;, t j) > E for i =I j. The covering number N ( E, To) is defined as the smallest 
number of closed balls with radius E whose union covers T0 • 

The two concepts are closely related, because 

N(E, To) ~ D(E, T0) ~ N(E/2, T0). 

Both provide approximating points tr, ... , tm for which min; d(t, t;) ~ E for every t 
in To. Sometimes the { t;} provided by D are slightly more convenient to work with, 
because they lie in To; the centers of the balls provided by N need not lie in T0 . The 



3. CHAINING 11 

definition of D depends only upon the behavior of the metric d on the set To; the 
value of N can depend upon the particular T into which To is embedded. If T =To 
the ambiguity disappears. However, it is largely a matter of taste, or habit, whether 
one works with covering numbers or packing numbers. Notice that finiteness of all 
the packing or covering numbers is equivalent to total boundedness of T0 . 

For the general maximal inequality let us suppose that some point t 0 has been 
singled out from T. Also, let us assume that the process Z(t) = Z(w, t) has contin­
uous sample paths, in the sense that Z(w, ·) defines a continuous function on T for 
each w. For the intended application, this causes no loss of generality: clearly u · f 
is a continuous function off for each fixed u. [Without the continuity assumption 
the statement of the next lemma would have to be modified to assert existence of a 
version of the process Z having continuous sample paths and satisfying the stated 
inequality.] 

(3.4) LEMMA. If the process Z has continuous sample paths and its increments 
satisfy the inequality 

IJZ(s)- Z(t)ll~~t :5 d(s,t) 

and if 8 = supt d(t, to), then 

for all s, t in T, 

00 8 
llsup IZ(t)ill~~t :5 IIZ(to)ll~~t + L 2i ../2 +log D(6j2i+l, T). 

T i=O 

PROOF. The inequality holds trivially if the right-hand side is infinite. So let 
us assume that 8 and all the packing numbers are finite. 

Abbreviate 8 j2i to 8i. Construct a succession of approximations to the supre­
mum based on a sequence of finite subsets { t0 } = To ~ T1 ~ · · · with the property 
that 

min d(t, t*) :::; Oi for every t in T. 
t•ET, 

Such sets can be obtained inductively by choosing Ti as a maximal superset of Ti-l 

with all points of Ti greater than 8i apart. [Notice that the definition of 8 ensures 
that {to} has the desired property for 8o.] The definition of packing number gives 
us a bound on the cardinality of Ti, namely, #Ti :::; D(8i, T). Let us write mi for 
this bound. 

Fix, for the moment, a non-negative integer k. Relate the maximum of IZ(t)l 
over Tk+l to the maximum over Tk. For each t in Tk+l let t* denote a point in Tk 
such that d(t, t*) :::; 8k. By the triangle inequality, 

max IZ(t)l :::; max IZ(t*)l + max IZ(t)- Z(t*)l. 
tETk+l tETk+l tETk+l 

On the right-hand side, the first term takes a maximum over a subset of Tk. The 
second term takes a maximum over at most mk+l increments, each of which has 
w norm at most 8k. Taking w norms of both sides of the inequality, then applying 
Lemma 3.2 to the contribution from the increments, we get 

II max IZ(t)ill~~t:::; llmax IZ(t)ill~~t + 8k..j2 +log mk+l· 
Tk+l Tt 
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Repeated application of this recursive bound increases the right-hand side to the 
contribution from T0 , which reduces to IIZ(to)ll-w• plus a sum of terms contributed 
by the increments. 

As k tends to infinity, the set Tk+l expands up to a countable dense subset Too 
ofT. A monotone convergence argument shows that 

II max IZ(t)lll-w / II sup IZ(t)lll-w· 
Tk+l Too 

Continuity of the sample paths of Z lets us replace Too by T, since 

sup IZ(w, t)l =sup IZ(w, t)l for every w. 
Too T 

This gives the asserted inequality. 0 

Now we have' only to specialize the argument to the process u · f indexed by a 
subset :J of !Rn. The packing numbers for :J should be calculated using the usual 
Euclidean distance on !Rn. By Lemma 3.1 the increments of the process satisfy 

llu · (f- g) 11-.v :$ 2lf- gl, 

which differs from the inequality required by Lemma 3.4 only through the presence 
of the factor 2. We could eliminate the factor by working with the process l/2u · f. 

To get a neater bound, let us take the origin of !Rn as the point corresponding 
to t 0 • At worst, this increases the packing numbers for :J by one. We can tidy up 
the integrand by noting that D(x, :J) ~ 2 for x < 8, and then using the inequality 

J2 + log(1 +D)/ Jlog D < 2.2 forD~ 2. 

It has also become traditional to replace the infinite series in Lemma 3.4 by the 
corresponding integral, a simplification made possible by the geometric rate of 
decrease in the { 8i}: 

8i J log D( 8i+I. :J) :$ 4 j { 8i+2 < x :$ 8i+I} J log D(x, :J) dx. 

With these cosmetic changes the final maximal inequality has a nice form. 

(3.5) THEOREM. For every subset :J of !Rn, 

llsuplu · £111-.v :$9 {
8 

Jlog D(x,:J)dx 
~ lo where 8 = sup 1£1. 

~ 

0 

The theorem has several interesting consequences and reformulations. For exam­
ple, suppose the integral on the right-hand side is finite. Then there exist positive 
constants ~~;1 and "'2 such that 

lP'u{sup lu · fl ~ e} :$"'I exp(-~~;2e2 ) 
~ 

for all e > 0. 

It will also give bounds for less stringent norms than the Ill norm. For example, for 
each p with oo > p ~ 1 there exists a constant Cp such that lxiP :$ llt(Cpx) for all x. 
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This implies that IIZIIP:::; CpiiZII'll for every random variable Z, and, in particular, 

(3.6) llsuplu·flll :s;9Cp { 6 y'logD(x,:T)dx, 
1' P lo 

Such bounds will prove convenient in later sections. 

where 8 = sup lfl. 
1' 

REMARKS. The literature contains many different maximal inequalities derived 
by chaining arguments. The method presented in this section could be refined to 
produce more general inequalities, but Theorem 3.5 will suffice for the limited 
purposes of these notes. 

I learnt the method for Lemma 3.1 from Gilles Pisier. The whole section is based 
on ideas exposited by Pisier (1983), who proved an inequality equivalent to 

lP'sup IZ(s)- Z(t)i :::; K { 6 q,- 1(D(x, T)) dx 
s,t Jo 

for general convex, increasing <ll with <ll(O) = 0. This result is weaker than the 
corresponding inequality with the left-hand side increased to 

llsup IZ(s)- Z(t)illw· 
s,t 

For the special case where <ll(x) = 1/sexp(x2 ) the improvement is made possible by 
the substitution of my Lemma 3.2 for Pisier's Lemma 1.6 in the chaining argument. 
Ledoux and Talagrand (1990, Chapter 11) have shown how the stronger form of 
the inequality can also be deduced directly from a slight modification of Pisier's 
inequality. 

Both Gaenssler and Schlumprecht (1988) and Pollard (1989) have established 
analogues of Theorem 3.5 for JI·IIP norms instead of the 11·11'11· 


	rcsps2_19_of_100
	rcsps2_20_of_100
	rcsps2_21_of_100
	rcsps2_22_of_100
	rcsps2_23_of_100

