
CHAPTER 2 

Group Actions and Relatively 
Invariant Integrals 

In this chapter, group actions are reviewed and are illustrated with examples 
of relevance for statistical applications. Relatively invariant integrals (measures) 
are defined and examples are given. An important result, due to Weil, gives 
necessary and sufficient conditions for the existence and uniqueness of relatively 
invariant integrals when the group action is transitive. A discussion of invariant 
and equivariant functions closes out the chapter. 

2.1. Group actions. In many examples, the elements of a group G are 
functions which are one-to-one and onto from a set X to itself. Further, the 
group operation in G is just function composition when the elements of G are 
regarded as functions on X. A typical example of this is the group Gln of n X n 
nonsingular matrices and the space Rn. Each g E Gln is a one-to-one onto map 
from Rn to Rn and 

ex= x. 

That is, g 1 evaluated at the point g2(x) E Rn is equal to g 1 o g 2 E Gln evaluated 
at x ERn and the identity in G is the identity function. Thus, function 
composition is "the same as" the group operation. In many circumstances the 
group operation is defined so that the above relationship holds. The idea of a 
group action on a set simply abstracts the essentials of this situation. 

Let X be a set and let G be a group with identity e. 

DEFINITION 2.1. A function F defined on G X X to X satisfying 

(i) F(e, x) = x, x EX, 
(ii) F(g1g 2 , x) = F(g1, F(g2 , x)), g 1, g2 E G, x E X, 

specifies G acting on the left of X. 
19 
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Although Definition 2.1 captures mathematically what one means by a left 
group action, in concrete examples, the explicit use of F can be mathematical 
overkill. In the statistical literature, the most common verbiage to indicate left 
group action is "Suppose G acts on the left of X with action x ~ gx." What this 
means is that the value of F at (g, x) is denoted by gx (whose definition is 
suppose to be clear from context), so in this notation, conditions (i) and (ii) of 
Definition 2.1 are 

ex= x, x EX, 

(glg2)x = gl(g2x). 

That is, g E G is thought of as defining a function of X to X and the value of g 
at x is written gx or sometimes g(x). The equation (g1g 2 )x = glg2x) then 
means that "function composition" and the group operation are "the same." 
This can actually be made precise using Definition 2.1. For each g E G, define a 
function Tg on X to X by 

Tg(x) = F(g, x). 

Then Te is the identity function and (ii) simply means 

TgJ Tg/x)) = Tg1g2(x ). 

That each Tg is one-to-one and onto is easily verified as is the equation 

T -T 1 g -1- g . 

Thus {Tglg E G} is a group under function composition and function composi­
tion in this group corresponds to group composition in G. 

The reason for the adjective "left" in Definition 2.1, is that there is also a 
definition of a right group action in which condition (ii) becomes 

(ii') F(g1g2, X) = F(g2, F(gj, X)). 

In these notes, all group actions are defined so that they are left group actions. 
Some care must be taken in certain examples to insure that a group action is a 
left group action. 

Here is our first example. 

EXAMPLE 2.1. Consider G = Gln and X= Rn. Define F on Gln X Rn by 

F(g, x) = gx, 

where gx means the matrix g times the vector x. That F defines a left group 
action is immediate. In less formal notation, one would say "Gln acts on the left 
of Rn via the group action 

x ~ gx," 

where gx means what it did before. Since Gln acts on the left of Rn, so does 
every subgroup of G1n-just restrict the action to the subgroup. In particular, On 
and Gi c Gln both act on the left of Rn via the action 

x ~gx. 0 
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Henceforth we will switch to the less formal description of left group actions 
and just say something like "consider G acting on the left of X with action 

x ~ gx." 

A group G acting on the left of X induces a natural equivalence relationship 
among the elements of X, namely x1 is equivalent to x2 iff x 1 = gx2 for some 
g E G. This equivalence relationship divides X into disjoint subsets called orbit..'!, 
that is 

Ox = {gxlg E G} 

is called the orbit of x and consists of exactly those elements in X which are 
equivalent to x. Hence two points are equivalent iff they are in the same orbit. 

EXAMPLE 2.2. Take X to be the real vector space Sn of all n X n real 
symmetric matrices and take G = On. The left action of On on X is defined by 

x ~ gxg', 

where g' is the transpose of g E On and gxg' means the product of the three 
matrices g, X and g'. To describe the orbit of X E sn, recall the spectral theorem 
for elements of Sn which asserts that for each X, there is agE On such that 

X= gAg', 

where the diagonal matrix A E sn has diagonal elements Al ;;:::: )\2 ;;:::: ... ;;:::: An 
which are the ordered eigenvalues of x. Thus, two points x1 and x 2 are 
equivalent iff x1 and x 2 have the same vector of ordered eigenvalues. This 
follows because the group action 

x ~gxg' 

does not change the eigenvalues of x and if x1 is equivalent to x2 , then x1 and x 2 

have the same eigenvalues. Thus, we can say that the eigenvalues provide an 
index for the orbits in Sn under the action of On-an index in the sense that 
there is a one-to-one correspondence between orbits and vectors (ordered) of 
eigenvalues. Later in this chapter, we introduce maximal invariant..'! which are 
just functions which provide one-to-one orbit indices. Thus for this example, the 
vector of eigenvalues provides a maximal invariant. 0 

EXAMPLE 2.3. For this example, take X to be Fp, n which is the set of n X p 
real matrices x which satisfy x'x = IP, the p X p identity matrix. Thus x E FP, n 

iff the p columns of x are the first p columns of some n X n orthogonal matrix. 
Let G = On which acts on the left of Fp, n via 

x ~gx, 

where gx means matrix multiplication. Note that F1 n is the sphere of radius 1 
on Rn and Fn, n = on. Given X E Fp, n• let g E on have as its first p rows the 
transposes of the first p columns of x. Then the orthogonality of g implies that 

gx = x0 = ( ~): n X p. 
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Thus there is only one orbit in Fp, n since every element x is equivalent to x0 • 

More generally, when G acts on X and there is only one orbit, we say G acts 
transitively on X. D 

EXAMPLE 2.4. Let .P. be the vector space of all n X p real matrices, p,n 

p ~ n, and consider the product group on X Gl p whose elements are written 
(y, g). The group action is defined by 

x ~ yxg' 

for X E !C'p, n' y E on and g E Gl P' where g' means the transpose of g. The 
reason for the transpose on g is so that the action is a left action. Without the 
transpose, Definition 2.1(ii) does not hold. This action is not transitive, but it 
"almost" is transitive in the following sense. Let X c !C'p, n be all the rank p 
elements in !C'p, n so the complement of X in !C'p, n has Lebesgue measure 0. 
Then On x Gl P acts on X with the action defined above. To see that this action 
on X is transitive, consider x E X and write x as 

x = uv', 

where u E Fp, n (of Example 2.3) and v E a; c Glp. [This is the so-called Q-R 
decomposition which is usually proved via the Gram-Schmidt orthogonalization 
procedure; for an example, see Proposition 5.2 in Eaton (1983), page 160.] Hence, 
for (y, g) E on X Glp, 

(y,g)x = yxg' = yuv'g' = yu(gv)'. 

By picking g = v- 1 andy so that 

y U = ( ~) = x0 E X, 

it follows that 

(y,g)x = x 0 • 

Thus, every x is equivalent to x 0 , so the group action is transitive. D 

The issue of removing a "small" subset from a space in order to make a group 
action "nicer" in some sense occurs in many examples. In the above example, 
"small" means a set of Lebesgue measure 0 and "nice" means transitive. 
However, in other examples, these words can have different meanings. 

2.2. Relatively invariant integrals. Consider a space X (space in the sense 
introduced in Chapter 1, so X is a locally compact Hausdorff space whose 
topology has a countable base) and let G be a topological group. 

DEFINITION 2.2. The group G acts topologically on the left of X if G acts on 
the left of X and if the action of G, say F: G X X ~ X, is continuous. 

Because all the actions we consider are left actions, the phrase "on the left" is 
deleted in what follows and we simply say G acts topologically on X. As usual, 



2.2. RELATIVELY INVARIANT INTEGRALS 23 

K(X) denotes the vector space of continuous functions with compact support 
defined on X, so integrals are defined on K(X). When G acts topologically on X, 
then L g defined on K (X) b.y 

(Lgf)(x) = f(g-Ix) 
maps K(X) onto K(X). Note that 

LgLh = Lgh 

so that G acts on the left of K(X) with the action 

f ~ Lgf· 

DEFINITION 2.3. Let x be a multiplier for G. An integral J on K(X) is 
relatively (left) invariant with multiplier x if 

J(Lgt) = x(g)J(f) 

for f E K(X) and g E G. Equivalently, if J is represented by the Radon 
measure m, then m is relatively (left) invariant with multiplier x if 

jt(g- 1x)m(dx) = x(g) jt(x)m(dx) 

for f E K (X) and g E G. 

Here are a couple of examples. 

EXAMPLE 2.5. With X = Rn and G = Gl n as in Example 2.1, G acts topolog­
ically on X and Lebesgue measure dx is relatively invariant with multiplier 

x(g) = [det(g) [. D 

EXAMPLE 2.6. With X = Rn and G = On, consider a probability measure P 
on X and let X E X be a random vector with distribution P-this we write as 
.ff?(X) = P. Recall that X has a spherical distribution if .ff?(X) = .ff?(gX) for 
g E On. In terms of P, X is spherical iff P is invariant (with multiplier X = 1) 
under On, that is, iff 

P(B) = P(g- 1B) 
for all Borel sets Band g E On. If we define the probability measure gP by 

(gP)(B) = P(g 1B) 

for all Borel sets B, then X is spherical iff P = gP forgE On. Since .ff?(X) = P 
implies .ff?(gX) = gP, we have that X is spherical iff P is On invariant (i.e., 
P = gP). Notice that the group On acts on all the probability measures on Rn 
via the definition of gP. D 

EXAMPLE 2.7. For this example, let sn be the vector space of n X n real 
symmetric matrices and let G = Gln act on Sn via 

x ~ gxg'. 
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With dx denoting Lebesgue measure on Sn, define an integral J by 

J(f) = 1 f(x) dx. 
sn 

To see if J is relatively invariant (for some multiplier), consider 

and introduce the change of variables y = g- 1x(g 1)' sox= gyg'. This change 
of variables defines a nonsingular linear transformation on sn whose determinant 
is 

(det(g))"+ 1 

[see Eaton (1983), page 169 for a proof]. Thus 

dx = jdet(g) jn+l dy, 

so J(Lgf) = Jdet(g)Jn+IJ( f) and J is relatively invariant with the given 
multiplier. This example is considered again later. 0 

EXAMPLE 2.8. As in Example 2.4, let X c !t'p, n be all the n X p real 
matrices of rank p (so p :s; n) and take G = On X Gl P with the group action 
defined in Example 2.4. Let dx denote Lebesgue measure restricted to X and 
define the integral J by 

dx 
J( f)= jt(x) (detx'x)"12 = jt(x)m(dx) 

for f E K(X). We now show J is invariant (relatively invariant with multiplier 
X= 1). For (y, g) EOn X GlP, 

J(L(y,g)t) = jf(y'x(g-- 1)')m(dx) 

and the change of variable y = y'x(g- 1)' yields x = yyg'. This linear transfor­
mation (y -+ yyg') on !t'p, n has a Jacobian given by 

jdet(g) jn 

[see Eaton (1983), page 168]. Substitution now yields 

J(L(y,gJ) = jf(y)jdet(g)jnjd ( 'd~ )jn/2 
et g y yg' 

Thus J is invariant. 0 

jdet(g) !n
2 
J(f) = J(f ). 

jdetgg'j 1 
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Now we turn to the question of existence and uniqueness of relatively 
invariant integrals with a given multiplier. Assume G acts topologically on X 
and assume G acts transitively on X (this is the only case where we can hope for 
uniqueness). Fix x0 in X and assume that the function 

7T: g ~ gxo 

on G to X is an open mapping (forward images of open sets are open). Note that 
7T maps G onto X because G is assumed to be transitive. Further, let 

so H is a closed subgroup of G. This subgroup is often called the i..<;otropy 
subgroup of x0 • Let All denote to modulus of Hand let A denote the modulus 
of G. 

THEOREM 2.1 (Weil). In order that there exists a relatively invariant inte­
gral J with multiplier x on G, it is necessary and sufficient that X satisfy the 
equation 

(2.1) AH(h) = x(h)!::..(h) forh E H. 

When J exists, it is unique up to a positive constant. 

PROOF. See Nachbin (1965), Chapter 3, especially pages 125-141. o 

A few remarks are in order concerning Theorem 2.1. The validity of the 
theorem does not depend on the choice of x0 , that is, if the result is true for one 
x 0 , then it is true for all x 0's. The verification of (2.1) requires the calculation of 
both the modulus for G and the modulus for H. In the special case when X is 
compact and G is compact, Theorem 2.1 guarantees the existence of a unique 
G-invariant probability measure on X. For future reference, we state this as: 

THEOREM 2.2. Assume the conditions of Theorem 2.1 and assume both X 
and G are compact. Then there exist<; a unique G-invariant probability measure 
on X. 

PROOF. Because X is compact, all integrals are finite as the function f = 1 is 
integrable. Since G is compact, H is compact so A = A H = 1 and x must be 
identically 1 also. Thus, (2.1) holds so there exists a finite G-invariant integral 
(measure) on X. Normalizing this to be a probability measure gives the unique­
ness. 0 

Here are a couple of examples. 

EXAMPLE 2.9. With Gln acting on Rn, observe that the basic assumption of 
transitivity of the group action is not satisfied. However Gin does act transitively 
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on Rn- {0} =X. With 

0 

the isotropy subgroup of x 0 is 

H = {hlh E Gln, hx0 = x0 }. 

It is easily verified that h E H iff 

h=(~ !)EGln, 
where a E Gln_ 1 and b is 1 X (n- 1). The modulus of Gln is il = 1. To 
compute the modulus of H, a left invariant measure on H is first computed. Let 
da db be Lebesgue measure restricted to H. For k E H, consider 

Set 

where 

k=(~ !)· 
Then, 

The Jacobian of this transformation is 

cp( k) =I det( a) ln- 1• 

c+/3d). 
ad 

Thus J is relatively invariant with multiplier cp, so from Theorem 1.6, 

dadb 
Pt(da db)=---~ 

' ldet( b) ln- 1 

is a left-invariant measure on H. Thus, to compute ilH, consider 

J1(1Rk) = f f(xk - 1 )P1( dx) 

with P1 given above. Here, dx has been written for da db. The usual change of 
variable-Jacobian argument yields 

J1(!Rk) = ldet(a) IJ1(f ). 
Therefore 

ilu(k) =ldet(a)l, 
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where 

k=(~ !)· 
Now consider a multiplier 

xs(g) =ldet(g)l6 

on G where 8 is a fixed real number. Then (2.1) holds iff 

llu(h)=x~:(h) forhEH. 

With 

h=(~ !), 
xs(h) =ldet(a)l8 , 

so that (2.1) becomes 

I det( a) I = I det( a) 16 

for all a E Gln-I· Thus 8 must be 1 and 

X (g) = I det( g) I 

27 

is the only multiplier on Gln which satisfies (2.1). Of course, Lebesgue measure on 
Rn - {0} is relatively invariant with multiplier x and is unique up to a positive 
constant. 0 

EXAMPLE 2.10. As in Example 2.3, consider the group On acting on Fp, n· 
This group action is transitive and both On and FP. n are compact sets. Thus 
there exists a unique On-invariant probability distribution on ~. n which we call 
the uniform distribution on Fp, n· When p = 1, this is just the uniform distribu­
tion on the sphere of radius 1 in Rn. When p = n, then we just get Haar 
measure on On = Fn n· 

This example is r~lated to the problem of how to define what one means by "a 
randomly chosen subspace of dimension p in Rn." To see the connection, let Sp, n 
denote all the rank p orthogonal projection matrices defined on R". Then Sp, n is 
the image of F~, n under the mapping 

x ~xx', X E Fp,n• 

This map is onto but, of course, not one-to-one. The group On acts on Sp, n by 

u ~ gug', 

as is suggested by mapping from Fp," to Sp, nand the action of On on Fp, n· This 
action is transitive because for each U E Sp, 11 , there is a g E 0 11 such that 

gug' = ( ~ ~)· 
That Sp, n is a compact subset of Yn, n is easily established. Thus, there exists a 
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unique On-invariant probability on Sp, n which we call the uniform distribution 
on S Since there is a one-to-one map between subspaces of dimension p and p,n 

elements of sp, n> this defines a uniform distribution on p dimensional subspaces. 
D 

2.3. Maximal invariants. In this section we consider the problem of calcu­
lating explicit representations of orbit indices when a group G acts on a set X. 
Recall that for x E X, 

Ox= {gxjg E G} 

is the orbit of x and these orbits are the equivalence class of points which are 
equivalent under the action of G. That is, x 1 is equivalent to x 2 if x1 = gx 2 for 
some g E G. The problem is to describe what the orbits are for some examples. 
This was done in Example 2.2, but here general methods are described along with 
the examples. The main interest in orbit indices arises from problems in the 
construction of best invariant tests which is discussed in later chapters. 

Let the group G act on X and suppose a function f maps X into Y. 

DEFINITION 2.4. The function f is invariant if f(x) = f(gx). The function f 
is maximal invariant if f is invariant and if f(x1) = f(x 2 ) implies x1 = gx2 for 
some g E G. 

Thus, f is invariant iff f is constant on each orbit in X. Also f is maximal 
invariant iff f is constant on each orbit and takes different values on different 
orbits. That is, maximal invariant functions provide an orbit index, namely, 
knowing the value of maximal invariant f at x is equivalent to knowing Ox. 
Notice that the image spaceY plays no role in Definition 2.4. In examples, Y is 
ordinarily chosen with convenience in mind. 

THEOREM 2.3. Suppose f: X ---+ Y1 is maximal invariant under the action of 
G on X. Then a function h: X ---+ Y2 is invariant iff there exists a function k, k: 
Y1 ~ Y2 , such that h(x) = k( f(x)). 

PROOF. If k exists, obviously h is invariant since f is invariant. Conversely, 
suppose h is invariant and define k on Y1 as follows: 

(i) If y E Y1 is given by y = f(x), set k(y) = h(x). 
(ii) If y E Y1 is not in the range of f, define k arbitrarily. 

That k is well defined follows from the invariance of h and the maximal 
invariance of f. Obviously h(x) = k( f(x)). D 

This result shows that once a maximal invariant is known, then all the 
invariant functions are known, namely, they are just the functions of a maximal 
invariant. 

The first method we use to construct a maximal invariant might be termed 
"the reduction method." The idea is to "reduce" or "transform" a point x to a 
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canonical form via elements of G is such a way as to pick out a particular point 
from each orbit. 

EXAMPLE 2.11. Consider the group on acting on Rn, in the usual way. Given 
X E R", there exists a g E on such that 

gx = llxflx0 , 

where Jlxll is the length of x and x0 is the first standard unit vector 

For example, take g to have first row equal to x' /llxll· That the function 

l(x) = llxllxo 

is maximal invariant is proved as follows. Clearly I is invariant since x and gx 
have the same length. Now l(x) = l(y) iff llxll = IIYII· Thus when llxll = IIYII, we 
must find agE G so that gx = y. Pick g 1 and g 2 such that 

glx = llxllxo = IIYilxo = gzY· 

Then y = g:; 1g1x, so x and y are in the same orbit. Clearly, any one-to-one 
function of Jlxll is also a maximal invariant, and a function is invariant iff it can 
be written as a function of llxll· 0 

EXAMPLE 2.12. As in Example 2.2, let G = On act on Sn with action 

X ~ gxg', g E On. 

Given X E Sn, the spectral theorem shows there is agE on such that 

gxg' = .\(x ), 

where .\(x) is ann X n diagonal matrix with diagonal elements A1(x) ~ A2(x) ~ 
· · · ~ .\ n< x ), which are the ordered eigenvalues of x. The claim is that 

l(x) = .\(x) 

is maximal invariant. Since eigenvalues are invariant under the group action 
x ~ gxg', I is invariant. If l(x1) = l(x 2 ), we must show that x2 = gx1g' for 
some g E G. Pick g 1, g 2 E G such that 

i = 1,2. 

With g = g2g1, 

gx1g' = g2glxlg{g2 = g2.\(xl)gz = g2.\(xz)g2 = X2. 

Thus the vector of ordered eigenvalues of x is a maximal invariant. 0 

EXAMPLE 2.13. For this example the product group on X op acts on 2'p, n 

VIa 

x ~gxh', 
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where we assume p :$; n. The reduction argument here follows from the singular 
value decomposition theorem [for the version used here, see Anderson (1984), 
page 590]. According to this theorem, given X E filp, n• there exists g E on and 
h E OP such that 

x=gA.(x)h', 

where A.(x): n X p has the form 

0 

A.(x) = 0 

0 

and A. 1 ~ · • • ~ A.P ~ 0 are the square roots of the eigenvalues of x'x. (The 
numbers A. 1, ••• , A.P are often called the singular values of x.) The claim is that 

f(x) = A.(x) 

is maximal invariant. Obviously f is invariant since singular values do not 
change under the given group action. If f(x1) = f(x2) [so A.(x1) = A.(x2 )], pick 
g 1,g2 E On and h 1, h 2 E 01' such that 

gixihi = A.(xJ, 

Since A.(x 1) = A.(x2 ), this implies that 

i = 1,2. 

X2 = g?.g1x1hfh2, 

so x 1 and x 2 are in the same orbit. Thus f is maximal invariant. 0 

The next method of constructing maximal invariants involves finding a 
function -r mapping X into G, which has the property 

(2.2) -r(gx) = g-r(x), 

where g-r(x) means the composition of the two group elements g and -r(x). 
Temporarily assume we can find such a T and consider 

f(x)=(-r(x)) \, 

where (-r(x)) -lis the inverse in G of -r(x). Using (2.2), 

f(gx) = ( -r(gx))- 1gx = (g-r(x))- 1gx 

= ( -r(x)- 1)g-1gx = ( -r(x))- 1x = f(x), 

so I is invariant. To show I is a maximal invariant, suppose l(x1) = l(x2 ). Then 

( -r(xl)) -lxl = ( -r(x2)) -lx2, 

which yields 
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This shows X 1 and x2 are in the same orbit which entails the maximal invariance 
of f. Here are some examples where 'T can be constructed. 

EXAMPLE 2.14. With G = R1 and X= Rn, consider the action 

where en is the vector of 1's in Rn and g E R1. Define 'T by 

T(x) = x, 
where as usual x = n -IL~xi. An easy calculation shows (2.2) holds and thus 

f(x) = (T(x))- 1x =x -xen 

is a maximal invariant. D 

EXAMPLE 2.15. For this example elements of G consist of pairs (a, b) with 
a > 0 and b E R1 and the group operation is 

(au bi)(a2, b2) = (ala2, aib2 + bi). 

With en denoting the vector of 1's in Rn, the set X is 

X= Rn- span{ en}, 

so X is Rn with a line removed. The action of G on X is 

(a, b)x =ax+ ben. 

For x E X, x E R1 is as in the last example and 

[ 
n ]1/2 

s(x) = ~(x;- .X) 2 • 

Define 'T on X to G by 

T(x) = (s(x),x). 

Note that s(x) > 0 because the line where s vanishes has been removed from 
Rn. (This is another example of removing a "small" set.) An easy calculation 
shows that 

'T((a, b)x) =(a, b)(s(x), x). 
Since (2.2) holds, 

f(x) = (T(x))- 1x = 
X - xen 

s(x) 

is maximal invariant. D 

In some examples, it is possible to calculate a maximal invariant by decompos­
ing the group into subgroups and doing the calculation for each subgroup, that 
is, doing the calculation in steps. The applicability of this stepwise procedure 
depends on the notion of moving a group action from one space to another. Here 
is the idea. Suppose G acts on X and a fixed function f maps X onto Y. In order 
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to try to define a group action on Y, one possibility is to write y = f(x) and then 
define gy by 
( 2 .3) gy = f ( gx). 

Conditions under which this gives an unambiguous definition are provided by: 

THEOREM 2.4. Suppose that f(x 1) = f(x 2) implies that f(gx 1) = f(gx 2) for 
all g E G. Then (2.3) defines G acting on Y. 

PROOF. To see that gy is well defined, if y = f(x 1) = f(x 2), then by assump­
tion f(gx 1 ) = f(gx 2) for all g E G. Thus gy = f(gx 1 ) for all g E G is an 
unambiguous specification of gy. Obviously, ey = y for all y E Y. Also for 
y = f(x) and g 1, g 2 E G, 

gl(g2y) = glf(g2x) = f(glg2x) 

= (glg2)f(x) = (glg2)y. 
Thus G acts on Y. D 

To describe the stepwise calculation of a maximal invariant, suppose G acts 
on X and suppose H and K are subgroups of G which generate G, that is, each 
g E G can be written in the form g = h 1k 1h 2k 2 · · · hrkr for some integer r 
where hiE Hand ki E K, i = 1, ... , r. 

THEOREM 2.5. Suppose that under the action of H on X, the function f1 

mapping X onto Y is a maximal invariant and satisfies 

f1(x1) = f1(x2) implies fr(kx1) = f1(kx2) 
for all k E K. Also suppose that f2 mapping Y into Z is a maximal invariant 
under the induced action of K acting on Y (as described in Theorem 2.4). Then 
f(x) = fi fr(x)) is a maximal invariant under the action of G on X. 

PROOF. Recall that the action of K on Y is defined by: write y = f1(x) and 
set ky = f r( kx ). To show f is invariant, consider h E H. Then 

f(hx) = f2( fr(hx)) = f2(f1(x)) 
since f 1 is H invariant. For k E K, 

f(kx) = f2( fr(kx)) = f2(kfr(x)) = M fr(x)) 

by definition of kfr(x) and the invariance of f2• It is now an easy induction 
argument to show that · 

f(h 1k 1h2k2 ··· hrkrx) =f(x) 

for all r = 1, 2, ... and hiE H, ki E K. Thus f(gx) = f(x) since H and K 
generate G. To show f is maximal, suppose f(x 1 ) = f(x 2). Hence 

f(xl) = f2( f1(x1)) = M fr(x2)) 
which, by the maximality of f2 implies there is a k E K so that 

kfr(x1) = fr(x 2) = f1(kx1). 
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The final equality follows from the definition of the action of K on Y. The 
maximality of / 1 implies there is an hE H so that 

x 2 = h(kx1) = (hk )x1 • 

Thus, x 2 = gx1 for some g so x1 and x 2 are in the same orbit. Thus f is 
maximal. D 

The advantages of reducing in steps are most apparent when dealing with 
rather complicated problems. The next example, in which the correlation coeffi­
cient is a maximal invariant, well illustrates this situation. 

EXAMPLE 2.16. With n ~ 3, let en denote the vector of 1's in Rn and set 

Q = In - n 1e ne ~. 

Clearly, Q is the orthogonal projection onto the subspace perpendicular to en. 
Let X c 2'2 n be the set of n X 2 real matrices x such that Qx has rank 2. Note 
that ' 

s(x) = x'Qx 

is the (unnormalized) sample covariance matrix when one observes n two 
dimensional vectors and arranges them into x: n X 2 whose rows are the 
transposes of the data vectors. Points in X are those sample points such that 
s(x) has rank 2, that is, s(x) is positive definite. 

The group for this example is a product group G = G 1 X G2 with 

Gl = { YI'Y E On, yen = en}· 

The group G2 is a subgroup of Al 2 • An element of G2 is a pair (a, b) with b E R 2 

and 

a;> 0, i = 1, 2. 

The action of an element ( y, (a, b)) in G1 X G2 on x E 2'2, n IS 

(y,(a, b))x = yxa' + enb', 

where the prime denotes transpose. Even though a' = a, we write a' to remind 
the reader that transposes are necessary in such situations to insure that actions 
are indeed left actions. That we have a left action is easy to check, as is the fact 
that points in X are mapped into points in X. 

To construct a maximal invariant, consider the two subgroups H and K 
defined as follows. WitheE Glz denoting the 2 X 2 identity matrix and IE on 
denoting the n X n identity matrix, let 

H = { ( y, ( e, b)) I'Y E G11 ( e, b) E G2} 

and 

K = {(I,(a,O))J(a,O) E Gz}. 
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Since every element (y,(a, b)) in G can be expressed as 

(y,(a, b))= (y,(e, b))(I,(a,O)), 

Hand K generate G. 
Our first claim is that /1 defined on X onto S2+ (the set of 2 X 2 positive 

definite matrices) by 

Mx)=s(x) 

is maximal invariant under the action of II on X. To see that /1 isH-invariant, 
consider (y,(e, b)) E II so 

( y, ( e, b) )x = yx + en b'. 

Thus 
Q( y, ( e, b) )x = Qyx = yQx 

because Qen = 0 and Q commutes with each y E G1• Because Q = Q' = Q2, 

/ 1((y,(e, b))x) = [(y,(e, b))x]'Q[(y,(e, b))x] 

= (yQx)'(yQx) = x'Qx = /1(x) 

and hence / 1 is invariant. For the maximality of / 1, suppose 

/ 1(x) =x'Qx =/1(y) =y'Qy 

with x, y E X. Since Q2 = Q = Q', 
( Qx )'Qx = ( Qy )'Qy, 

which implies there is a y E G1 such that 
yQy = Qx. 

The existence of this y follows from a minor modification of Proposition 1.20 in 
Eaton (1983). From the definition of Q we have 

X= X- enx' + enx' = Qx + eni', 

where i = x'enJn E R 2• Therefore, 

X= Qx + eni' = yQy + eni' = y(y- enY') + eni' 

= (y,(O,i-y))y. 

Hence x and yare in the same H orbit, so / 1 is maximal. 
To apply Theorem 2.5, it must be verified that 

/ 1(x) =MY) implies Mkx) = Mky) 

for all k E K. With 

it is an easy calculation to verify that 

0 ) E K, 
a2 

s(kx) = ks(x)k'. 

Thus / 1(x) = / 1(y) implies that 

/ 1(kx) = s(kx) = ks(x)k' = ks(y)k' = s(ky) = f(ky), 

so Theorem 2.5 applies. 
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Finally, a maximal invariant for the action of K on S?,+- given by 

s ~ ksk', kEK, 

needs to be found. Writing 

812) ., E S, 
''22 

an easy argument shows that 

is a maximal invariant on 82+-. Hence by Theorem 2.5, 

812( X) 
I (X) = r::r::· 

ys11(x)s2ix) 
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is a maximal invariant under the action of G on X. Of course, l(x) is just the 
sample correlation coefficient. 0 

2.4. Induced group actions: Equivariance. The situation described in 
Theorem 2.4 is one circumstance in which it is possible to induce a group action 
on one space, given a group action on anther space. In this section other 
circumstances are discussed where group actions can be induced on a space, 
based on a group action on an associated space. Applications of these ideas occur 
throughout these notes. 

First, suppose that a group G acts on X and let I be a function on X toY. 
Here is a useful definition of a new function, denoted by gl for g E G, which also 
maps X toY: 

(2.4) (gf)(x) = l(g- 1x). 

It is clear that el = I where e is the identity in G and 

(2.5) 

that is 

(g1(g2f))(x) = (g2f)(g; 1x) = l(g2 1g; 1x) = 1((g1g2)- 1x) 

= ((glg2)/)(x). 

Of course, the reason for the inverse in the definition (2.4) is so that (2.5) is valid. 
Hence if Z is a set of functions from X to Y such that I E Z implies gl E Z for 
all g E G, then G acts on Z via (2.4). This group action on the set of functions Z 
should not be confused with the group action induced on Y which is described in 
Theorem 2.4. 

EXAMPLE 2.17. Take X= {1,2, ... , n} and let G be the group of all one-to­
one functions from X to X (the permutation group of X). Let Z be the set of all 
real valued functions defined on X. A point in Z can be thought of as a vector in 
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Rn, namely, f E Z corresponds to a vector in Rn given by 

/(1) 
/(2) 

f(n) 

Conversely, every point in Rn is a point in Z. According to (2.4), if f E Rn has 
ith coordinate f(i), then gf has ith coordinate (gf )(i) = f(g 1i). This defini­
tion yields the left group action of the permutation group G on Rn. There is 
some confusion in the literature concerning the action of the permutation group 
on Rn. 0 

EXAMPLE 2.18. Consider a measurable space (X, !Jd) and suppose that G acts 
on X in such a way that each g is a bimeasurable mapping. In this circumstance, 
we say that G acts measurably on (X, !Jd). Thus, G acts on the a-algebra !Jd in 
the obvious way: 

gB = { xjx = gy, y E B}. 

Now, let P be a probability measure and think of Pas a map from !Jd into [0, 1]. 
Then, according to (2.4) (with X= !Jd and f = P), 

(gP)(B) = P(g- 1B). 

In other words, gP is a probability measure on !Jd whose value at B is P(g- 1B). 
In terms of random variables, the above means that if !/'(X) = P, then 

!f'(gX) = gP for X taking values in X. To see this, first observe that !!'(X) = P 
means 

Prob(X E B)= P(B). 

Therefore, 

Prob(gX E B)= Prob(X E g- 1B) = P(g- 1B) = (gP)(B), 

so !f'(gX) = gP. This definition of gP appeared in Example 2.10. o 

ExAMPLE 2.19. This example deals with induced group actions for random­
ized decision functions (aL<Jo known as Markov kernels, transition probability 
kernels, among other things). Consider two measurable spaces (X, !Jd1) and 
(Y, !Jd2 ). A Markov kernel 8 is a function defined on !Jd2 X X into [0, 1] such 
that: 

(i) For each x EX, 8(·ix) is a probability measure on !Jd2• 

(ii) For each BE !Jd2 , 8(Bi · ) is a !Jd1 measurable function. 

Suppose that the group G acts measurably on both (X, !Jd1) and (Y, !Jd2 ) so G 
acts on !Jd 2 X X via 

g(B, x) = (gB, gx ). 

If 8 is Markov kernel, then according to (2.4) (with X= B2 X X and f = 8) G 
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acts on o via 

(go)(Bjx) = o(g- 1BJg- 1x). 

This example occurs later in the discussion of invariance and decision theory. D 

Yet another method for inducing a group action concerns what might be 
called the "kernel method." Suppose G acts on X and K(x, y) is a function of 
two variables defined on X X Y. The range space of the kernel K is not relevant. 
The idea here is to try to use K to induce a group action on Y in such a way that 
K becomes an invariant function. To say it another way, when can a group 
action on Y be specified so that K(x, y) = K(gx, gy) for all x, y, g? 

THEOREM 2.6. Consider G acting on X and suppose K is defined on X X Y. 
Assume that for each g E G and each y E Y, there exists a unique y' E Y such 
that 
(2.6) K(gx, y') = K(x, y) 

for all x E X. Then G acts on Y via the defined group action gy = y'. With this 
group action, 

K(gx, gy) = K(x, y), 

so K is an invariant function on X X Y. 

PROOF. That ey = y for y E Y is clear by the uniqueness of y'. To verify we 
have a left action, consider (g1g 2 )y and use (2.6) to compute as follows: 

K((g1g2 )x,(g1g2 )y) = K(x, y) forx EX 

implies that 

K(z,(g1g 2 )y) = K(g2 1(g1 1z), y) = K(g1 1z,g2 y) = K(z,g1(g2 y)) 

for all z E X. Again uniqueness implies 

(glg2)Y = gi(g2y). D 

EXAMPLE 2.20. Consider a parametric family of probability measures 9 = 

{P(-JB)JB E E>}, defined on a measurable space (X, 88). Suppose that G acts 
measurably on (X, 88). The family 9 is G-invariant if P E 9 implies gP E 9 
for all P E .Cf' and g E G. Here the notation gP of Example 2.18 is used. 

Assuming the family 9 is G-invariant, also assume that 

P(BJB1 ) = P(BJ82 ) for all BE 88 

implies that 01 = 02 , that is, the points in E> are in one-to-one correspondence 
with the elements of the family 9. To apply Theorem 2.6, define K on B X E> by 

K(B, B) = P(BJB). 

To show that the assumptions on K assumed in Theorem 2.6 hold, consider 
BE e and g E G. Since 9 is invariant, P(g- 1BJ8) = (gP( ·iB))(B) is in .9, so 
there exists a B' E e such that 

(gP( ·JB))(B) = P(BJO') 
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for all BE !!J. In terms of K, this means that there is a 8' such that 

K(B, 8') = K(g- 1B, 8) 

for all B and by the assumption on the family Y', ()' is unique. Theorem 2.6 
implies that the natural induced group action on e yields 

P(gBJgO) = P(BJO) 

forgE G, BE !!J and() E e. Thus, if .P(X) = P(·JO), then .P(gX) = P(-JgO) 
because 

.P(gX) = gP( ·JO). 

This example is treated more completely in the next lecture. D 

Finally, the notation of an equivariant function is introduced. A special case 
of this notion arose in the construction of a maximal invariant via the function T 

in Equation (2.2). For the general case, suppose a group G acts on both X and Y. 

DEFINITION 2.5. A function f on X to Y is equivariant if 

(2.7) f(gx) = gf(x) forgE G, x EX. 

The terminology in the statistical literature is not consistent. In some works, 
condition (2.5) is called invariance, but recently the tendency has been to the 
word equivariance. Note that when the group action of G on Y is trivial (that is, 
gy = y for all g and all y ), then equivariance reduces to in variance. 

Given G acting on X andY, it seems rather difficult to give a description of all 
the equivariant functions. However, given G acting on X and given a function f, 
the results of Theorem 2.4 give the necessary and sufficient condition for the 
existence of a group action on Y such that (2.7) holds. In fact the condition of 
Theorem 2.4, 

(2.8) f(x 1 ) = f(x 2 ) implies that f(gx 1 ) = f(gx 2 ) for all g E G, 

is precisely the necessary and sufficient condition that f be equivariant accord­
ing to (2.7). Theorem 2.4 establishes the implication in one direction. That (2.7) 
implies (2.8) is obvious. 

Equivariant functions arise naturally in estimation problems which are invari­
ant under a group (these are discussed in detail later). Here are some examples 
which are related to estimation problems. 

ExAMPLE 2.21. Take X = .Pp, n as the vector space of n X p real matrices 
and Y = SP as the vector space of p X p real symmetric matrices. The group Gl P 

acts on X by 
x ~ g(x) = xg', 

and Gl p acts on Sp by 

y ~ g(y) = gyg', g E Glp. 

Fix an n X n symmetrix matrix B and define f by 

f(x) = x'Bx. 
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Then 

f(g(x)) = f(xg') = gx'Bxg' = g( f(x)) 
so f is equivariant. 0 
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EXAMPLE 2.22. For this example, G is the group Gf of p X p lower 
triangular matrices with positive diagonal elements, X is the set of all n X p real 
matrices of rank p andY is c;. Recall that each x E X can be written uniquely 
as 

X= yg', 

where y is an n X p matrix which satisfies y'y = IP and g E c; [see Proposi­
tion 5.2 in Eaton (1983)]. Define f on X to c; by f(x) is the unique element in 
c; such that 

x = y( f(x))' 
as above. With c; acting on X by 

x ~ g(x) = xg' 
and with c; acting on itself via left multiplication 

h~gh, hE c;, 
it is easily verified that 

f(g(x)) = gf(x). 
Thus f is equivariant. 0 

Equivariant functions can, under certain conditions, be used in conjunction 
with Haar measure arguments to define invariant integrals. 

EXAMPLE 2.23. Let SP+ be the set of positive definite matrices and let Gf be 
the group of p X p lower triangular matrices with positive diagonal elements. 
The function cp on c; to s: defined by 

q:,(h) = hh' 
is one-to-one, onto, bicontinuous (a homeomorphism) and is equivariant, 

q:,(gh) = ghh'g' = g(hh'), 
where c; acts on s; in the usual way: 

x ~ g(x) = gxg'. 

The group c; acts transitively on s; and Theorem 2.1 together with Example 
2.7 shows that the integral 

dx 
Jl(t) = ~/(x) (det(x))(p+l)/2 

is invariant under this group action. 
However, consider the integral 
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for f E K(S;), where v1 is a left-invariant measure on c;. The equivariance of cp 
shows that 

for g E c; and f E K(Sp+). The uniqueness assertion of Theorem 2.1 shows 
there is a fixed constant c > 0 such that 

dx f f(x) < +Il/2 =cjf(hh')v1(dh) 
(det(x )) P 

for all f E K(S)-) and hence for all f which are integrable. The value of the 
constant c depends on the explicit choice for v1• With the choice 

dh 
vz(dh) = nr=lh:i 

as in Example 1.10, the constant cis 2P. This is proved by choosing 

f ( x) = I det( x) ( exp [ - ~ tr x] 

and evaluating the two integrals for some convenient choice of the number r. D 
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